左手微带导波结构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几年来,一种被称为“左手材料”(left-handed materials,LHMs)的人工等效材料在国际固体物理、材料科学、光学和应用电磁学领域内开始获得愈来愈广泛的青睐,对其的研究正呈现迅速发展之势,而它的出现却是源于上世纪60年代前苏联科学家V. G. Vesalago的假想。
     物理学中,介电常数ε和磁导率μ是描述材料媒质中电磁场性质的最基本的两个物理量。在已知的物质世界中,对于电磁媒质而言,介电常数ε和磁导率μ都是正值,电场、磁场和波矢量三者构成右手关系,这样的物质被称为右手材料(right-handed materials,RHMs),这种右手规则一直以来被认为是物质世界的常规,但这一常规却在上世纪60年代开始遭遇颠覆性的挑战。在1967年,前苏联物理学家V. G. Vesalago在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢量之间构成左手关系。他称这种假想的物质为左手材料,同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如逆多普勒效应(Reversed Doppler Effect)、逆斯涅尔折射效应(Reversed Snell Refraction)及逆Cerenkov辐射效应(Reversed Cerenkov Radiation)等等。这篇论文引起了一位英国人的关注,1968年被译成英文重新发表在另一个前苏联物理类学术刊物上。但几乎无人意识到,材料世界从此翻开新的一页。
     由于自然界中并没有左手材料的存在,左手材料的研究发展并不是一帆风顺的,尽管它有很多奇异的性质,但都只是停留在理论上,所以这一怪诞的假设并没有被人们所接受,直到上世纪末才开始出现一丝曙光:
     1996年,英国皇家学院John Pendry等人指出可以用细金属导线阵列构造介电常数ε为负的人工媒质,1999年又指出可以用金属开口谐振环阵列构造磁导率μ为负的人工媒质。
     2001年,美国加州大学圣地亚哥分校的David Smith等人在Science杂志上发表文章,沿用Pendry的方法,构造出了介电常数与磁导率同时为负的人工媒质,并通过实验观察到了微波频段的电磁波通过这种人工媒质与空气的交界面时发生的“负折射”现象。从此这类人工媒质的研究成为国际电磁学界一个引人注目的前沿领域,并引发了热烈的讨论。
     2002年底,美国麻省理工学院孔金瓯教授从理论上证明了左手材料存在的合理性,并称这种人工介质可用来制造高指向性的天线、聚焦微波波束、实现“完美透镜”、用于电磁波隐身等等。左手材料的前景开始引发学术界、产业界尤其是军方的无限遐想。
     2003年是左手材料研究获得多项突破的一年。美国西雅图Boeing PhantomWorks的C. Parazzoli与加拿大University of Toronto电机系的G. V. Eleftheriades所领导的两组研究人员在实验中直接观测到了负折射定律:Iowa State University的S. Foteinopoulou也发表了利用光子晶体做为介质的左手物质理论仿真结果;美国麻省理工学院的E. Cubukcu和K. Aydin在《自然》杂志发表文章,描述了电磁波在两维光子晶体中的负折射现象的实验结果。基于科学家们的多项发现,左手材料的研制赫然进入了美国《科学》杂志评出的2003年度全球十大科学进展,引起全球瞩目。
     由于前面利用金属细导线和开口谐振环阵列等效实现的左手材料,具有损耗大和左手频段窄等特点,很难在微波和毫米波系统中获得应用。2003年开始,美国Arthur A. Oliner、T. Itoh和加拿大George V. Eleftheriades教授利用对偶传输线模型等效实现了一维和两维结构的左手导波结构,证明了具有低损耗和宽频带的特性,为左手材料在微波和毫米波系统中的应用提供了可能,并给出了一些在微波领域中的应用,表现出一些左手材料独有的特性。
     同时,左手材料的显著特点是它的介电常数和磁导率都是负数,所以人们也称之为“双负介质(材料)(Double Negative Material, DNM)”,通常也被称为“负折射系数材料(Material with Negative Refractive Index, MNR)”,或简称“负材料”。
     本论文主要围绕着左手材料的人工等效实现和在微波及毫米波系统中的应用问题,在基于左手传输线电路模型的基础上,提出了新型左手传输线单元结构,该单元结构具有着结构简单紧凑、损耗低和左手频带宽等优点。同时,系统的分析了该结构单元的电路模型和色散关系,并给出了左手传输线在微波和毫米波系统中的创新性应用。
     论文首先简要介绍了左手材料概念的提出和当今国际电磁学界对左手材料的研究进程。然后,在基于左手传输线电路模型的基础上,提出了新型的左手传输线微带单元结构,该单元结构具有结构紧凑、体积小和宽频带、低损耗的特点,同时给出了该单元结构的电路模型参数的提取过程,为在微波和毫米波系统中的应用提供了基础,并在最后实验验证了左手微带传输线的等效实现。
     随后,论文对一维左手微带传输线在微波和毫米波系统中的应用进行了深入的研究分析。由于左手材料和传统的右手材料相比较,具有如下独有的特性:后向辐射和相位超前的特性,同时在利用传统的右手材料来等效实现左手材料的过程中,由于不可避免的引入了右手寄生参量的存在,所以等效实现的左手材料不是一个纯的左手材料,而是一个左手材料和右手材料的混合结构,等等,这些特性决定着人工等效左手材料在电磁领域有着一些创新性的应用。首先,由于人工等效的左手传输线是一个左—右手混合传输线,当处于平衡状态的时候,是一个左手的高通网络和右手的低通网络混合结构,通过合适的选择参数可以得到一个超宽带的滤波网络,即构成超宽带滤波器;其次,利用左手传输线的相位超前特性,可以很容易的应用到对相位需要超前的单元中去,本论文给出了由左手微带传输线构成的新型平衡—不平衡转换器,该转换器具有结构简单,设计方便等优点;最后,同样是利用相位超前特性,提出了一种新型微波和毫米波系统天线阵列的馈电网络,可以根据设计需要来调整天线阵列单元间的相位差,从而来控制天线阵列辐射方向图的偏转,同时该馈电网络具有结构简单,损耗小等优点。
     同时,论文也给出了单层两维左手传输线微带等效实现单元结构,该单元结构具有结构简单、尺寸紧凑、便于加工和低损耗、宽频带等优点,同时也给出了该单元结构的电路模型参数的提取过程,为在微波和毫米波系统中左手材料的平面结构的应用提供了基础。
     最后,论文同时对两维左手微带传输线在微波和毫米波系统中的应用也进行了深入的研究分析。由于电磁波在左手材料和右手材料的分界面处具有逆斯涅尔折射效应,和左手材料对消失波的放大作用,早在1968年,前苏联科学家V.G.Vesalago就提出了可以利用左手材料来实现完美透镜的假设。本论文给出了,由提出的新型两维左手微带单元结构组成的左手材料和两边端接右手平板波导构成的完美透镜模型,该模型证明了左手材料的逆斯涅尔折射效应和消失波的放大作用。
     本论文在基于左手传输线电路模型的基础上,提出了新型一维和两维左手传输线的微带单元结构,并基于提出的单元结构给出了它们在微波和毫米波系统中的一些创新性的应用,同时论文中提出的一些设计方法对左手材料和微波及毫米波系统的设计也有着重要的参考价值。
In recent years, a kind of "left-handed materials"(LHMs), the artificial equivalent materials in solid-state physics, materials science, optical and electromagnetic fields starts to obtain the increasingly widespread favor, and the research is showing its rapid development. But its appearance was acturally from the former Soviet Union scientists V. G. Vesalago imagination in the 1960s.
     In physics, the permittivityεand the permeabilityμare the two fundamental physical quantities, which describe the electromagnetism nature of the material. In the known material world, to the electromagnetic medium, the permittivityεand the permeabilityμare both positive, where the electric field, the magnetic filed and the wave vector satisfy the right hand relations, and such materials are called right-handed materials (RHMs). Since this kind of right-hand rule was considered necessarily the natural convention, but this convention had been suffering the subversive challenge from the 1960s. In 1967, the former Soviet Union physicist V. G. Vesalago published a paper in a former Soviet Union academic publication, and had reported for the first time in novel discovery relating to the fundamental research of the material electromagnetic nature. Namely, the electric field, the magnetic filed and the wave vector satisfy the left hand relations when the permittivityεand the permeabilityμare simultaneity negative. He called this kind of imaginary material the left-handed material (LHM), and predicted that the electromagnetic behavior in LHM was opposite to that in the RHM. For instances, the reversed Doppler Effect, the reversed Snell Refraction and the reversed Cerenkov Radiation, etc. This paper aroused an English man's interest, and was translated into English for publishing in another former Soviet Union physics academic publication in 1968. However, hardly anybody at that time realized that the material world henceforth opens the new page.
     Because there is no left-handed materials existence in the nature world, the research on the LHMs is not plain sailing. Although it has so many strange natures, all the research is limited to theoretical analysis. The supposition had not been accepted by the people until the end of the last century, when the first light of morning appeared.
     In 1996, John Pendry and his group in the Blackett Lab. of United Kingdom pointed out that the negative permittivityεmedium can be constructed from the thin copper wires structure. And in 1999, they demonstrated that the negative permeabilityμmedium can be constructed from the structure of split-ring resonators.
     In 2001, David Smith and his group at University of California, San Diego, published the paper on the Science magazine, in which the artificial material with the permittivityεand the permeabilityμsimultaneity negative was constructed by John Pendry.
     By the end of 2002, Professor Jin Au Kong from MIT proved the rationality of the existence of LHM, and pointed out that this kind of artificial material are highly promising in high- directional antennas making, microwave beam focused to achieve "perfect lens", the electromagnetic stealth and so on. The prospect of LHM starts to arouse the infinite dreams of the academia, the industrial field and particular the military.
     2003 was the golden year for LHM researching in which many breakthroughs were obtained. The group at Boeing Phantom Works and another group at University of Toronto demonstrated the concept of a negative refraction in the labs. And S. Foteinopoulo at Iowa State University also published the simulated results of the LHMs that constructed with photonic crystal. Based on these discoveries, the development of LHMs impressively entered the world's top ten scientific advances selected by the Science Magazine in 2003, and attracted global attention.
     Because the LHMs are composed of the thin copper wires and split-ring resonators, which have large insert-loss and narrow left-handed frequency band, and so on, it is very difficultly to be applied in microwave and millimeter wave system. In the begin of 2003, Professor Arthur A. Olinear, T. Itol and George V. Eleftheriades realized that a transmission line approach towards LHMs was possible, which had been demonstrated by having low loss and wide left-haned frequency band, and provided the possibility for LHMs in the microwave and millimeter wave system applications.
     With the remarkable characteristic of LHMs of simultaneously negative permittivityε and permeabilityμ, the LHM is also called Double Negative Material (DNM), or Material with Negative Refractive Index (MNR).
     The concept of LHM and the study course in the international electromagnetism are briefly introduced at the beginning of the thesis. Then, based on the model of left-handed transmission lines (LH-TLs), a novel left-handed microstrip unit structure is presented, which has smaller size and lower insert-loss. At the same time, the extraction process of the model parameters in the unit structure is given, which provides the foundation in microwave and millimeter wave system applications. The experiment confirmes the equivalent realization of LH-TLs
     Then, the 1-dimension LH-TLs applications researches in microwave and millimeter wave system are analyzed. At first, the TLs approach of LH materials is based on the dual of the conventional transmission lines. Because of unavoidable parasitic series inductance and shunt capacitance resulting in a RH contribution increasing with frequency, the LH transmission line is a composite right-left handed transmission line (CRLH-TL). We obtain an ultra-wide band (UWB) filter network through the appropriate choice parameters. Second, based on the advance phase shift characteristics of LHMs, a novel balun structure with CRLH-TL is presented. Combined the traditional right-handed line with CRLH-TL, the process of design balun will become more easy and simple. At last, a novel feeding network for 2-dimension millimeter wave microstrip patch arrays with CRLH-TL is proposed. Because of the simpler structure and the shorter length of the CRLH-TL feeding network, the antenna array is of higher gain than that with the conventional parallel feed network. Besides, the radiation pattern shift resulting from the traditional parallel-series feeding network is removed since no inserting phases shift are introduced in the patch elements using the novel feeding structure.
     Synchronously, a novel unit of planar distributed structure with double negative material (DNM) is proposed. The present unit cell implemented with microstrip structure has composite structure on single-layer but not two layers as did before. By using interdigital capacitor instead of the former mushroom structure with caps, the structure has depressed the left-handed transmission frequency band than the former one. And the extraction process of the model parameters in the unit structure is also given. Also, a new DNM lens based on the present planar distributed 2-D structure, which id interfaced with two parallel-plate waveguides (PPWs) is designed and simulated. The focusing/refocusing effect is observed by full-wave simulations.
     The investigation in this thesis is of theoretically and practically significant for realization the microstrip unit structure of the LH-TLs, and for novel applications in the microwave and millimeter wave system. Furthermore, this work is valuable for design of components in the microstrip circuits and microwave system based on the left-handed materials.
引文
[1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, vol. 10, Jan. -Feb. 1968, pp. 509-514.
    [2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, vol. 76, June 1996, pp. 4773-4776.
    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics-Condensed Matter, vol. 10, June 1998, pp. 4785-4809.
    [4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, vol. 47, Nov. 1999, pp. 2075-2084.
    [5] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission resonances on metallic gratings with very narrow slits," Physical Review Letters, vol. 83, Oct. 1999, pp. 2845-2848.
    [6] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Sehultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, vol. 84, May 2000, pp. 4184-4187.
    [7] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, Apr. 2001, pp. 77-79.
    [8] D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, vol. 77, Oct. 2000, pp. 2246-2248.
    [9] H. Mosallaei, and Y. Rahmat-Samii, "Composite materials with negative permittivity and permeability properties: concept, analysis, and characterization," IEEE AP-S Antennas and Propagation Society International Symposium, 2001, 8-13 July 2001, pp. 378-381.
    [10] D. R. Fredkin, and A. Ron, "Effectively left-handed (negative index) composite material," Applied Physics Letters, vol. 81, Sept. 2002, pp. 1753-1755.
    [11] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, vol. 65, May 2002, 195104.
    [12] R. W. Ziolkowski, "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, vol. 51, July 2003, pp. 1516-1529.
    [13] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, Oct. 2000, pp. 3966-3969.
    [14] D. R. Smith, and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, vol. 85, Oct. 2000, pp. 2933-2936.
    [15] P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: Always positive and very inhomogeneous," Physical Review Letters, vol. 88, May 2002, 187401.
    [16] D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Applied Physics Letters, vol. 81, Oct. 2002, pp. 2713-2715.
    [17] A. K. Iyer, and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MTT-S International Microwave Symposium Digest, 2002, 2-7 June 2002, pp. 1067-1070.
    [18] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Physical Review Letters, vol. 90, Mar. 2003, 107401.
    [19] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Physical Review Letters, vol. 90, Mar. 2003, 107402.
    [20] P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Physical Review E, vol. 67, Feb. 2003, 025602.
    [21] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, vol. 31, Oct. 2001, pp. 129-133.
    [22] A. Grbic, and G. V. Eleftheriades, "Experimental verification of backward-wave radiation. from a negative refractive index metamaterial," Journal of Applied Physics, vol. 92, Nov. 2002, pp. 5930-5935.
    [23] George V. Eleftheriades, and Ashwin K. Iyer, "Planar negative refractive index media using periodically L-C loaded transmission lines", IEEE Trans. Microwave Theory Tech:, Vol. 50, NO. 12, December 2002, pp. 2702-2712.
    [24] George V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators", IEEE Microwave and Wireless Components Letters, Feb. 2003.
    [25] P. R. Berman, "Goos-Hanchen shift in negatively refractive media," Physical Review E, vol. 66, Dec. 2002, 067603.
    [26] I. A. Eshrah, A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Rectangular waveguide with dielectric-filled corrugations supporting backward waves," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Nov. 2005, pp. 3298-3304.
    [27] A. Grbic, and G. V. Elefiheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Applied Physics Letters, vol. 82, Mar. 2003, pp. 1815-1817.
    [28] G. Gomez-Santos, "Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens," Physical Review Letters, vol. 90, Feb. 2003, 077401.
    [29] A. Alu, and N. Engheta, "Physical Insight Into the 'Growing' Evanescent Fields of Double-Negative Metamateriai Lenses Using Their Circuit Equivalence," IEEE Transactions on Antennas and Propagation, vol. 54, Jan. 2006, pp. 268-272.
    [30] R. W. Ziolkowski, "Superluminal transmission of information through an electromagnetic metamaterial," Physical Review E, vol. 63, Apr. 2001, 046604.
    [31] A. A. Oliner, "A periodic-structure negative-refractive-index medium without resonant elements", IEEE AP-S/URS1 Int. Symp. Dig., June 2002.
    [32] Chiyan Luo, Mihai Ibanescu, Steven G. Johnson, and J. D. Joannopoulos, "Cerenkov Radiation in Photonic Crystals," Science, vol. 299, Jan. 2003, pp. 368-371.
    [33] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, vol. 78, Jan. 2001, pp. 489-491.
    [34] R. W. Zioikowski, and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, vol. 64, Nov. 2001, 056625.
    [35] P. Markos, and C. M. Soukoulis, "Transmission studies of left-handed materials," Physical Review B, vol. 65, Jan. 2002, 033401.
    [36] U. Leonhardt, "Notes on waves with negative phase velocity," IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, Jan. -Feb. 2003, pp. 102-105.
    [37] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index waveguides," Physical Review E, vol. 67, May 2003, 057602.
    [38] A. Alu, and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Transactions on Microwave Theory and Techniques, vol. 52, Jan. 2004, pp. 199-210.
    [39] H. Cory, and C. Zach, "Wave propagation in metamaterial multi-layered structures," Microwave and Optical Technology Letters, vol. 40, Mar. 2004, pp. 460-465.
    [40] H. Cory, and A. Shtrom, "Wave propagation along a rectangular metallic waveguide longitudinally loaded with a metamaterial slab," Microwave and Optical Technology Letters, vol. 41, Apr. 2004, pp. 123-127.
    [41] Clifford M. Krowne, "Physics of Propagation in Left-Handed Guided Wave Structures at Microwave and Millimeter-Wave Frequencies," Physical Review Letters, vol. 92, Feb. 2004, 053901.
    [42] E. Saenz, I. Ederra, R. Gonzalo, and P. de Maagt, "Transmission enhancement between rectangular waveguides by means of left-handed media," Electronics Letters, vol. 41, June 2005, pp. 725-727.
    [43] J. He, Sailing He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microwave and Wireless Components Letters, vol. 16, Feb. 2006, pp. 96-98.
    [44] J. W. Wang, and A. Lakhtakia, "On reflection from a half-space with negative real permittivity and permeability," Microwave and Optical Technology Letters, vol. 33, June 2002, pp. 465-467.
    [45] J. Gerardin, and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, vol. 34, Sept. 2002, pp. 409-411.
    [46] T. M. Grzegorczyk, M. Nikku, Xudong Chen, B. -I. Wu, and Jin Au Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Apr. 2005, pp. 1443-1450.
    [47] Hao Dong, and Thomas X. Wu, "Analysis of discontinuities in double-negative (DNG) slab waveguides," Microwave and Optical Technology Letters, vol. 39, Dec. 2003, pp. 483-488.
    [48] A. Alu, and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Transactions on Microwave Theory and Techniques, vol. 52, Jan. 2004, pp. 199-201.
    [49] C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, vol. 90, Dec. 2001, pp. 5483-5486.
    [50] C. Caloz, and T. Itoh, "Application of the transmission line theory of left-handed materials to the realization ofa microstrip 'LH line'", APS, 2002. IEEE, Vol. 2, 16-21 June 2002.
    [51] C. Caloz, and T. Itoh, "Planar Distributed Structures with Negative Refractive Index", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 4, April 2004, pp. 1252-1263.
    [52] George V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators", IEEE Microwave and Wireless Components Letters, Feb. 2003.
    [53] C. Caloz, and T. Itoh, "Transmission line approach of Left-Handed Materials and microstrip implementation of an artificial LH-TL", IEEE Transactions on AP, Vol. 52, NO. 5, MAY 2004, pp. 1159-1166.
    [54] C. Caloz, and T. Itoh, "Application of the Transmission Line of Left-Handed (LH) Materials to the Realization ofa Microstrip LH Transmission Line", IEEE, APS Int 'l Sypm. Vol. 1, pp. 412-415, San Antonio, TX, June 2002.
    [55] C. Caloz, A. Sanada, and T. Itoh, "A Novel Composite Right-Left-Handed Coupled-line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 3, March 2004, pp. 980-992.
    [56] I. S. Nefedov, and S. A. Tretyakov, "Theoretical study of waveguiding structures containing backward-wave materials," URSIXXVIlth General, Asserably, 17-24 August, 2002.
    [57] J. F. Woodley, and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Physical Review E, vol. 70, Oct. 2004, 046603.
    [58] A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, vol. 14, Feb. 2004, pp. 68-70.
    [59] T. M. Grzegorczyk, C. D. Moss, Jie Lu, Xudong Chen, J. Jr. Pacheco, and Jin Au Kong, "Properties of left-handed metamaterials: transmission, backward phase, negative refraction, and focusing," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Sept. 2005, pp. 2956-2967.
    [60] A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Physical Review Letters, vol. 91, July 2003, 037401.
    [61] C. Caloz, I-Hsiang Lin, and T. Itoh, "Characteristics and potential applications of nonlinear left-handed transmission lines," Microwave and Optical Technology Letters, vol. 40, Mar. 2004, pp. 471-473.
    [62] Ilya V. Shadrivov, Andrey A. Sukhorukov, Yuri S. Kivshar, Alexander A. Zharov, Allan D. Boardman, and Peter Egan, "Nonlinear surface waves in left-handed materials," Physical Review E, vol. 69, Jan. 2004, 016617.
    [63] V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Physical Review B, vol. 69, Apr. 2004, 165112.
    [64] T.J. Cui, Z.C. Hao, X.X. Yin, W. Hong, and J.A. Kong, "Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials," Physics Letters A, vol. 323, Mar. 2004, pp. 484-494.
    [65] A.B. Kozyrev, and D.W. van der Weide, "Nonlinear wave propagation phenomena in left-handed transmission-line media," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Jan. 2005, pp. 238-245.
    [66] Weihai Fang, Shanjia Xu, "Frequency Selective Characteristics of A New Dielectric Periodic Structure Composed of Left-Handed Materials", Microwave and Optical Technology Letters, Vol.48, No., pp. 2006.
    [67] Weihai Fang, Shanjia Xu, "Investigation on Effects of Left-handed Materials on Frequency Selective Characteristics of Dielectric Periodic Structures", International Journal of Infrared and Millimeter Waves, Vo. 26, No. pp., 2006.
    [68] Weihai Fang, Shanjia Xu, "A New Frequency Selective Surface Composed of Left-Handed Materials", International Journal of Infrared and Millimeter Waves, Vo. 26, No. pp., 2006.
    [69] Pan Yongmei, Xu Shanjia, " A New Leaky Wave Antenna Based on Channel Guide Filled with Left-Handed Material for Millimeter-Wave Applications", International Journal of Infrared and Millimeter Waves, Vo. 26, No. pp., 2006.
    [70] Pan Yongmei Xu Shanjia and Wu Ke, "Leaky Characteristics of a New Millimeter Wave Antenna Based on Groove Guide with an Asymmetric Conductor Strip", International Journal of Infrared and Millimeter Waves, Vo. 26, No. pp., 2006.
    [71] Huang Meng and Xu Shanjia, "Scattering and Radiation Characteristics of Step Discontinuity in Left-Handed Slab Waveguide Operating in Evanescent Surface Mode", International Journal of Infrared and Millimeter Waves, Vo. 26, No. pp., 2006.
    [72] Huang Meng and Xu Shanjia, "Scattering and Radiation Characteristics of Step Discontinuity in a Double Negative (DNG) Slab Waveguide Operating in the Evanescent Surface Mode", Microwave and Optical Technology Letters, Vol.48, No.6, pp. 1085-1088, 2006.
    [73] H. Cory and A. Barger, Surface-wave propagation along a metamaterial slab, Microwave Opt. Technol. Lett., vol. 38, pp. 392-395, Sep. 2003
    [74] B.I. Wu, T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability, J. Appl. Phys., vol. 93, pp.9386—9388, Jun. 2003
    [75] Paolo Baccarelli, et al, Fundamental Modal Properties of Surface Waves on Metamaterial Grounded Slabs, IEEE Ttrans on MTT, vol. 53, no. 4, April 2005.
    [76] I.W. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Guided modes in negative refractive index waveguides, Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 67, no. 5, pp.057 602-057 602, May 2003.
    [77] A. Alu and N. Engheta, Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or doublepositive (DPS) layers, IEEE Trans on MTT, vol. 52, no.1, pp. 199-210, Jan. 2004.
    [1] C. Caloz, and T. Itoh, "Application of the transmission line theory of left-handed materials to the realization of a microstrip 'LH line'", APS, 2002. IEEE, Vol. 2, pp. 16-21, San Antonio, TX, June 2002.
    [2] George V. Eleftheriades, and Ashwin K. Iyer, "A backward-wave antenna based on negative refractive index L-C networks", APS, 2002. IEEE, Vol. 2, pp. 340-343, San Antonio, TX, June 2002.
    [3] A. A. Oliner, "A periodic-structure negative-refractive-index medium without resonant elements", IEEE AP-S/URSI Int. Symp. Dig., June 2002.
    [4] George V. Eleftheriades, and Ashwin K. Iyer, "Planar negative refractive index media using periodically L-C loaded transmission lines", IEEE Trans. Microwave Theory Tech., Vol. 50, NO. 12, December 2002, pp. 2702-2712.
    [5] George V. Eleftheriades, Omar Siddiqui, and Ashwin K, Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators", IEEE Microwave and Wireless Components Letters, Feb. 2003.
    [6] C. Caloz, and T. Itoh, "Planar Distributed Structures with Negative Refractive Index", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 4, April 2004, pp. 1252-1263.
    [7] C. Caloz, and T. Itoh, "Transmission line approach of Left-Handed Materials and microstrip implementation of an artificial LH-TL", IEEE Transactions on AP, Vol. 52, NO. 5, MAY 2004, pp. 1159-1166.
    [8] C. Caloz, A. Sanada, and T. Itoh, "A Novel Composite Right-Left-Handed Coupled-line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 3, March 2004, pp. 980-992.
    [9] Zhang Zhongxiang and Xu Shanjia, "A Novel Balun Structure Consisting of Composite Right-Left Handed Transmission Line", Microwave and Optical Technology Letters, Vol. 45, No. 5, pp. 422-424, 2005.
    [10] Zhu Qi, Zhang Zhongxiang, Zhang Jun and Xu Shanjia. "Realization of Left-Handed Transmission Line and Its Applications", 2004 Progress in Electromagneties Research Symposium (PIERS 2004), Nanjing, China, 2004.
    [11] Salehi H. and Mansour R. R., "Analysis, modeling and applications of coaxial waveguide-bansed left-handed transmission lines", IEEE Trans. Microwave Theory Tech., Vol. 53, NO. 11, Nov. 2005, pp. 3489-3497.
    [12] Salehi H., Majedi A. H. and Mansour R. R., "Analysis and design of supercoducting left-handed transmission lines", IEEE Trans. Applied Superconductivity, Vol. 15, NO. 2, June. 2005, pp. 996-999.
    [13] Horii Y., Caloz C. and Itoh T., "Super-compact multilayered left-handed transmission line and diplexer application", IEEE Trans. Microwave Theory Tech., Vol. 53, NO. 4, April 2005, pp. 1527-1534.
    [14] Jae-Hyun Park, Young-Ho Ryu, Jae-Gon Lee and Jeong-Hae Lee, "A novel planar left-handed transmission line using grounded reactangular patch with meander line", Digest of the 2006 IEEE AP-S, International Symposium, in Albuquerque, New Mexico, U. S. A, July 2006, pp. 4141-4144.
    [15] Salehi H. and Mansour R. R., "A novel quasi lumped-element resonator using a left-handed transmission line section", Digest of Microwave Sym. 2005 IEEE MTT-S Int., June 2005, pp. 327-331.
    [16] Jia-Sheng Hong and M. J. Lancaster, "Microstrip filter for RF microwave application", John Wiley & Sons, Inc., 2001.
    [1] C. Caloz, and T. Itoh, "Application of the transmission line theory of left-handed materials to the realization of a microstrip 'LH line'", APS, 2002. IEEE, Vol. 2, pp. 16-21, San Antonio, TX, June 2002.
    [2] George V. Eleftheriades, and Ashwin K. Iyer, "A backward-wave antenna based on negative refractive index L-C networks", APS, 2002. IEEE, Vol. 2, pp. 340-343, San Antonio, TX, June 2002.
    [3] A. A. Oliner, "A periodic-structure negative-refractive-index medium without resonant elements", IEEE AP-S/URSI Int. Symp. Dig., June 2002.
    [4] George V. Eleftheriades, Omar Siddiqui, and Ashwin K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators", IEEE Microwave and Wireless Components Letters, Feb. 2003.
    [5] C. Caloz, and T. Itoh, "Transmission line approach of Left-Handed Materials and microstrip implementation of an artificial LH-TL", IEEE Transactions on AP, Vol. 52, NO. 5, MAY 2004, pp. 1159-1166.
    [6] Salehi H. and Mansour R. R., "Analysis, modeling and applications of coaxial waveguide-bansed left-handed transmission lines", IEEE Trans. Microwave Theory Tech., Vol. 53, NO. 11, Nov. 2005, pp. 3489-3497.
    [7] C. Caloz, A. Sanada, and T. Itoh, "A Novel Composite Right-Left-Handed Coupled-line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 3, March 2004, pp. 980-992.
    [8] Horii Y., Caloz C. and Itoh T., "Super-compact multilayered left-handed transmission line and diplexer application", IEEE Trans. Microwave Theory Tech., Vol. 53, NO. 4, April 2005, pp. 1527-1534.
    [9] Salehi H., Majedi A. H. and Mansour R. R., "Analysis and design of supercoducting left-handed transmission lines", IEEE Trans. Applied Superconductivity, Vol. 15, NO. 2, June. 2005, pp. 996-999.
    [10] Jae-Hyun Park, Young-He Ryu, Jae-Gon Lee and Jeong-Hae Lee, "A novel planar left-handed transmission line using grounded reactangular patch with meander line", Digest of the 2006 IEEE AP-S, International Symposium, in Albuquerque, New Mexico, U. S. A, July 2006, pp. 4141-4144.
    [11] Salehi H. and Mansour R. R., "A novel quasi lumped-element resonator using a left-handed transmission line section", Digest of Microwave Sym. 2005 IEEE MTT-S Int., June 2005, pp. 327-331.
    [12] Zhang Zhongxiang and Xu Shanjia, "A Novel Balun Structure Consisting of Composite Right-Left Handed Transmission Line", Microwave and Optical Technology Letters, Vol. 45, No. 5, pp. 422-424, 2005.
    [13] Zhu Qi, Zhang Zhongxiang, Zhang Jun and Xu Shanjia. "Realization of Left-Handed Transmission Line and Its Applications", 2004 Progress in Electromagnetics Research Symposium (PIERS 2004), China, 2004.
    [14] Ramirez-Mireles F., "Signal design for ultra-wide-band communications in dense multipath", IEEE Trans. Vehicular Technology, Vol. 51, NO. 6, Nov. 2002, pp. 1517-1521.
    [15] Adinoyi A. and Yanikomeroglu H., "Practival capacity calculation for time-hopping ultra-wide-band multiple-acess communications", Communications Letters, IEEE, Vol. 9, NO. 7, July. 2005, pp. 601-603.
    [16] Naito T., "Seamless ultra-wide-band transmission technologies", Optical Fiber Communications Conference, March 2003, pp. 326-327.
    [17] Schiavone G., Wahid P., Palaniappan R., Tracy J., Wan-Doom E. and Lonske B., "Outdoor propagation analysis of ultra-wide-band signals", IEEE AP-S/URSI Int. Symp. Dig., June 2003, pp. 999-1002.
    [18] Wong-Tat Tung and Jiangzhou Wang, "MMSE receive for multicarrier CDMA overlay in ulter-wide-band communications", Vehicular Technology, IEEE Trans. On, Vol. 54, NO. 2, March. 2005, pp. 603-614.
    [19] Liu Y., Chow C. W. and Tsang H. K., "Silicon waveguides based ultra-wide-band filter for raman amplication", Lasers & Electro-Optics Society, IEEE, Oct. 2006, pp. 609-610.
    [20] Di Renzo M., Feliziani M., Graziosi F., Manzi G. and Santucci F., "Characterization of the ultra-wide-band channel", Wireless Communications and Applied Computational Electromagnetics, IEEE Int. Conference On, April 2005, pp. 27-30.
    [21] Gianesello F., Gloria D., Raynaud C., Tinella C. and Vincent P. etc, "Integration of ultra-wide-band high pass filter using high performance inductors in advanced high resistivity SOI CMOS technology", Digest of Silicon Monolithic Integrated Circuits in RF Systems, 2006 Topiccal Meeting On, Jan. 2006, pp. 18-20.
    [22] Yahalom A. and Pinhasi Y., "Analysis of linear system response to wide band signals with applications to filters", Electronics, Circuits and Systems, 2004 ICECS, 11th IEEE Int. Conference On, Dec. 2004.
    [23] Packiarai D., Ramesh M. and Kalghatgi A. T., "Broad band filter for UWB communications", Microwave Conference, 2006, 36th European, Sept. 2006, pp. 606-608.
    [24] Hantscher S., Etzlinger B., Reisenzahn A. and Diskus C. G., "UWB radar calibration using wiener filters for spike reduction", Microwave Symposium Digest, 2006 IEEE MTT-S Int., June 2006, pp. 1995-1998.
    [25] Cusmai G., Brandolini M., Rossi P. and Svelte F., "An interference robust CMOS 3.1-8 GHz receiver front-end for UWB radio", Custom Intergrated Circuits Conference, 2005, Sept. 2005, pp. 157-160.
    [26] Saito A. and Okabe M., "Effect of magnetic power size of band pass filter ultra wideband communication systems", Magnetics Conference, 2005, Digest of the IEEE Int., April 2005, pp. 1931-1932.
    [27] Saito A., Harada H. and Nishikata A., "Development of hand pass filter for UWB communication systems", Ultra Wideband Systems and Technologies, 2003 IEEE Conf. On, Nov. 2003, pp. 76-80.
    [28] Ishida H. and Araki K., "Design and analysis of UWB hand pass filter", Wireless Communication Technology, 2003, IEEE Topical Conference on, Oct. 2003, pp. 457-458.
    [29] Yo-Shen Lin, Chi-Hsueh Wang, Chao-Huang Wu and Chun-Hsiung Chen, "Novel compacti parallel-coepled microstrip bandpass filter with lumped-element K-inverts", IEEE Trans. Microwave Theory Tech., Vol. 53, NO. 7, July 2005, pp. 2324-2328.
    [30] Wei-Ting Wong, Yo-Shen Lin, Chi-Hsueh Wang and Chun-Hsuing Chen, "Highly selective microstrip bandpass filter for UWB applications", 2005 Asia-Pacific Microwace Conference Proceedings, Dec. 2005.
    [31] Seungpyo Hong and Kai Chang, "Stub-tuned microstrip bandpass filter for millimeterwave diplexer design", Microwave and Wireless Components Letters, IEEE, Vol. 15, NO. 9, Sept. 2005, pp. 582-584.
    [32] Kuo-Sheng Chin, Liu-Yang Lin and Jen-Tsai Kuo, "New formulas for synthesizing microstrip bandpass filter with relatively wide bandwidths", Microwave and Wireless Components Letters, IEEE, Vol. 14, NO. 5, May 2005, pp. 231-233.
    [33] Lei Zhu, Menzel W., Ke Wu and Boegelsack E, "Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter", 2001 Asia-Pacific Microwace Conference Proceedings, Dec. 2001, pp. 625-628.
    [34] Gan H., Dongwu Lou and Dongxiao Yang, "Compact microstrip bandpass filter with sharp transition bands", Microwave and Wireless Components Letters, IEEE, Vol. 16, NO. 3, March 2006, pp. 107-109.
    [35] Pu-Hua Deng, Yo-Shen Lin, Chi-Husueh Wang and Chun-Hsiung Chen, "Compact mierostrip bandpass filter with good selectivity and stopband rejection", IEEE Trans. Microwave Theory Tech., Vol. 54, NO. 2, Feb. 2006, pp. 533-539.
    [36] Pal S., Stevens C. J. and Edwards D. J., "Compact parallel coupled HTS microstrip bandpass filters for wireless communications", IEEE Trans. Microwave Theory Tech., Vol. 54, NO. 2, Feb. 2006, pp. 768-775.
    [37] Chi-Feng Chen, Ting-Yi Huang and Ruey-Beei Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filter", IEEE Trans. Microwave Theory Tech., Vol. 54, NO. 2, Feb. 2006, pp. 755-762.
    [38] Oltman G., "The compensated balun", IEEE Trans. Microwave Theory Tech., Vol. 14, NO. 3, March 1966, pp. 112-119.
    [39] Jae-Gu Choi, Sang-Hwa Yi and Kwang-Hwa Kim, "Development of a novel tapered balun for the UWB UHF coupler", Power Modulator Symposium, May 2004, pp. 493-496.
    [40] Byoung Hwa Lee, Dung Seok Park, Sang Soo Park and Min Cheol Park, "Design of new three-line balun and its implementation using multilayer congfiguration", IEEE Trans. Microwave Theory Tech., Vol. 54, NO. 4, June 2006, pp. 1405-1414.
    [41] Ichein C., Krogerus J. and Vainikainen P., "Use of balun chokes in small-antenna radiation measurements", Instrumentation and Mesurement IEEE Trans. On, Vol. 53, NO. 2, April 2004, pp. 498-506.
    [42] Mclean J. S., "Analysis of the equal-delay topology for transformer and hybrid networks", Electromagnetic Compatibility, IEEE Trans. On, Vol. 48, NO. 3, Aug. 2006, pp. 516-521.
    [43] Jong-Wook Lee and Webb K. J., "A low-loss planar microwave balun with an integrated bias scheme for push-pull amplifiers", Microwave Symposiun Digest, 2001 IEEE MTT-S Int., May 2001, pp. 197-200.
    [44] Jong-Wook Lee and Webb K. J., "Analysis and design of low-loss planar microwave baluns having three symmetric coupled lines", Microwave Symposiun Digest, 2002 IEEE MTT-S Int., June 2002, pp. 117-120.
    [45] Byoung Hwa Lee, Dong Seok Park, Sang Soo Park and Min Cheol Park, "Design of new three-line balun and its implementation using multilayer configuration", IEEE Trans. Microwave Theory Tech., Vol. 54, NO. 4, June 2006, pp. 1405-1414.
    [46] Choonsik Cho and Gupta K. C., "A new design procedure for single-layer and two-layer three-line baluns", IEEE Trans. Microwave Theory Tech., Vol. 46, NO. 12, Dec. 1998, pp. 2514-2519.
    [47] P. R. Riqq and J. E. Carroll, "The canonical coupler: a new approach to microwave coupler design", European Microwave Conference, 1979, pp. 490-494.
    [48] Jwo-Shiun Sun and Guan-Yu Chen, "A novel design of the planar coupled-line balun", ICMMT 2002, pp. 1117-1120.
    [49] Mecharry D. E., "Decade bandwidth planar MMIC balun", Microwave Symposiun Digest, 2006 IEEE MTT-S Int., June 2006, pp. 1153-1156.
    [50] Kian Sen Anq, Leong Y. C. and Chee How Lee, "Multisection impedance-transforming coupled-line baluns", IEEE Trans. Microwave Theory Tech., Vol. 51, NO. 2, Feb. 2003, pp. 536-541.
    [51] Ng C. Y., Chongcheawchamnan M. and Robertson I. D., "Analysis and design of a highperformance planar Marchand balun", Microwave Symposiun Digest, 2002 IEEE MTT-S Int., June 2002, pp. 113-116.
    [52] Gi-Hyon Ryu, Dae-Hyun Kim, Jae-Hak Lee and Kwang-Seok Seo, "Graphical design of air-gap stacked Marchand balun", Microwave Symposiun Digest, 2001 IEEE MTT-S Int., May 2001, pp. 201-204.
    [53] Chongcheawchamnan M., Ng C. Y., Aftanasar M. S., Robertson I. D. and Minalgiene J., "Broadband CPW Marchand balun using photoimageable multilayer thich-film process", Electronics Letters, Sept. 2001, pp. 1228-1229.
    [54] Zhen-Yu Zhang, Yong-Xin Guo, Ong L. C. and Chia, "A new planar Marchand balun", Microwave Symposiun Digest, 2005 IEEE MTT-S Int., June 2005.
    [55] Schwindt R. and Cam Nguyen, "Computer-aided analysis and design of a planar multilayer Marchand balun", IEEE Trans. Microwave Theory Tech., Vol. 42, NO. 7, July 1994, pp. 1429-1434.
    [56] Guo Y. X., Zhang Z. Y. and Ong L. C., "LTCC full-matching Marchand balun", Microwave Conference, 2006, 36th European, Sept. 2006, pp. 76-78.
    [57] Lin H. A., Leong M. S., Ooi B. L. and Chew S. T., "A new method of designing Marchand baluns for multilayer applications" Microwave Conference, 2001 Asia-Pacific, Dec. 2001, pp. 425-428.
    [58] Yo-Shen Lin and Chun-Hsiung Chen, "Lumped-element Marchand balun type coplanar waveguide-to-coplanar stripline transitions", Microwave Conference, 2001 Asia-Pacific, Dec. 2001, pp. 539-542.
    [59] Zhang Zhongxiang and Zhu Qi, "A Novel Balun Structure with Coupling Lines", Proceedings of 2003 Asia-Pacific Microwave Conference, Nov. 2003.
    [60] Foster P. R. and Soe Min Tun, "A wideband balun form coaxial line to TEM line", Antennas and Propagation, 1995 Int. Conference On, April 1995, pp. 286-290.
    [61] Zhang Zhongxiang and Xu Shanjia, "A Novel Balun Structure Consisting of Composite Right-Left Handed Transmission Line", Microwave and Optical Technology Letters, Vol. 45, No. 5, pp. 422-424, 2005.
    [62] Zhang Zhongxiang and Xu Shanjia, "Novel Balun and Bandpass Filter Structure Consisting of Composite Right/Left-Handed Transmission Line", International Journal of Microwave and Optical Technology, Vol. 1, No. 2, pp. 458-463 August 2006.
    [63] Zhu Qi, Zhang Zhongxiang, Zhang Jun and Xu Shanjia. "Realization of Left-Handed Transmission Line and Its Applications", 2004 Progress in Electromagnetics Research Symposium (PIERS 2004), Nanjing, China, 2004.
    [64] I. J. Bahl and P. Bhartia, "Microstrip Antennas", Artech House, 1980.
    [65] J. R. James, P. S. Hall and C. Wood, "Microstrip Antenna Theory and Design", Peter Peregrinus, 1981.
    [66] 钟顺时,《微带天线理论与应用》,西安电子科技大学出版社,1991。
    [67] 林昌禄和聂在平,《天线工程手册》,电子工业出版社,2002。
    [68] 林昌禄、陈海和吴为公,《近代天线设计》,人民邮电出版社,1990。
    [69] 江贤祚,《天线原理》,北京航空航天大学出版社,1993。
    [70] Haeng Sook Noh, Jae Seung Yun, Jong Myen Kim and Soon-lk Jeon, "Microstrip patch array antenna with high gain and wideband for TX/RX dual operation at Ku-band", Digest of the 2004 IEEE AP-S, International Symposium, June 2004, pp. 2480-2483.
    [71] Botha M. M. and Davidson D. B., "Design of broadband, uniformly fed, planar aperture coupled microstrip patch arrays", AFRICON, 1999 IEEE, Oct. 1999, pp. 1021-1024.
    [72] Mishra A. R., Sood K. K. and Kumar A., "Cavity backed microstrip patch array feed for multiple beam applications", Electronics Letters, Jan. 1998, pp. 4-6.
    [73] Alatan L., "Design of a series fed circularly polarized microstrip patch army", Digest of the 2002 IEEE AP-S, International Symposium, June 2002, pp. 212-215.
    [74] Jackson D. R. and Manghani P., "Analysis and design of a linear array of electromagnetically coupled microstrip patches", IEEE AP Trans. On, Vol. 38, No. 5, May 1990, pp. 754-759.
    [75] Kanamaluru S., Li M. -Y. and Chang K., "Design of aperture coupled microstrip antenna array fed by dielectric image line", Electronics Letters, Vol. 31, May 1995, pp. 843-845.
    [76] Homg T. -S. and Alex. N. G., "Microstrip linear array of EMC dipoles with a corporate feed", Digest of the 1991 IEEE AP-S, International Symposium, June 1991, pp. 634-637.
    [77] Rascoe D. L., Riley A. L., Huang J., Lubecke V. and Duffy L., "Ka-band MMIC beamsteered transmitter array", IEEE Trans. Microwave Theory Tech., Vol. 37, NO. 12, Dec. 1989, pp. 2156-2168.
    [78] P. S. Hall, "Microstrip linear array for polarization-agile antenna applications", European Microwave Conference, Oct. 1981, pp. 813-818.
    [79] Oknn, E. E. and Turner C. W., "Design of broadband microstrip series array for mm-wave applications", Electronics Letters, Vol. 38, Aug. 2002, pp. 1036-1037.
    [80] Petosa A., Mongia R. K., Ittipibonn A. and Wright J. S., "Design of microstrip-fed series array of dielectric resonator antennas", Electronics Letters, Vol. 31, Aug. 1995, pp. 1306-1307.
    [81] Metzler T., "Microstrip series arrays", IEEE AP Trans. On, Vol. 29, No. 1, Jan. 1981, pp. 174-178.
    [82] Petosa A., Ittipiboon A., Cuhaci M. and Larose R., "Bandwidth improvement for a microstrip-fed series array of dielectric resonator antennas", Electronics Letters, Vol. 32, March 1996, pp. 608-609.
    [83] Okon E. E. and Turner C. W., "A wide-band microstrip series array at mm-wave", High Frequency Postgraduate Student Colloquium, Sept. 1999, pp. 88-92.
    [84] Sell Park and Hyun-Kwon Hong, "Development of 10-V josephsnn series arrays", Instrumentation and Measurement, IEEE Trans. On, April 2003, pp. 512-515.
    [85] Henderson A., Abdelaziz A. A. and James J. R., "Microstrip planar array with interference suppression radome", Electronics Letters, Vol. 28, July 1992, pp. 1465-1466.
    [86] Song H. J. and Bialkowski M. E., "Ku-band 16×16 planar array with aperture-coupled microstrip-patch elements", IEEE AP Trans. On, Vol. 40, No. 5, Oct. 1998, pp. 25-29.
    [87] Milligan T. and Herscovici N., "The aperture-coupled helix antenna", IEEE AP Trans. On, Vol. 37, No. 3, June 1995, pp. 47-50.
    [88] Huang J., "Microstrip antenna developments at JPL", IEEE AP Trans. On, Vol. 33, No. 3, June 1991, pp. 33-41.
    [89] Pourush R., Tyagi G. S., Srivastava G. P. and Pourush P. K. S., "Radiation performance of switchable ferrite microstdp array antenna", Antennas anf Wireless Propagation Letters, Vol. 5, No. 1, Dec. 2006, pp. 195-198.
    [90] Stickland P. C., "Planar arrays for MSAT and INMARSAT land mobile satellite", Digest of the 1995 IEEE AP-S, International Symposium, June 1995, pp. 1388-1391.
    [91] Gray D. P. and Shafai L., "Two planar array candidates for LMDS/LMCS subscriber terminal", Digest of the 1999 IEEE AP-S, Int. Symposium, July 1999, pp. 2728-2731.
    [92] Dixit L., Gupta A. and Pourush P. K. S., "Circularly polarized planar array on YIG ferrite", Microwave Conference, 2000 Asia-Pacific, Dec. 2000, pp. 1381-1383.
    [93] Mladenov P., Prosvirnin S., Tretyakov S. and Zouhdi S., "Planar arrays of wavy microstrip lines as thin resonant magnetic walls", Digest of the 2003 IEEE AP-S, International Symposium, June 2003, pp. 1103-1106.
    [94] Shahabadi M., Busuioc D., Borji A. and Safavi-Naeni S., "Low-cost, high-efficiency quasi-planar array of waveguide-fed circularly polarized mierostrip antennas", IEEE AP Trans. On, Vol. 53, No. 6, June 2005, pp. 2036-2043.
    [95] 张忠祥,朱旗,徐善驾,《左手微带传输线在毫米波天线阵中的应用》,红外与毫米波学报,第24卷,第5期,pp.341-343+347,2005-10。
    [96] Zhang Zhongxiang and Xu Shanjia, "A Novel Parallel-Series Feeding Network of Microstrip Patch Arrays with Composite Right/Left Handed Transmission Line for Millimeter Wave Application", International Journal of Infrared and Millimeter Waves, Vol. 26, No. 9, pp. 1329-1341 2005.
    [97] Zhongxiang Zhang and Shanjia Xu, "A Novel Feeding Network with CRLH-TL for 2-D Millimeter Wave Patch arrays", Microwave Conference Proceedings, 2005 Asia-Pacific, Dec. 2005.
    [98] Zhu Qi, Zhang Zhongxiang and Xu Shanjia. "Millimeter Wave Mierostrip Array Design with CRLH-TL as Feeding Line", Digest of Antennas and Propagation Society International Symposium 2004, IEEE, June 2004, pp. 3413-3416.
    [1] A. A. Oliner, "A periodic-structure negative-refractive-index medium without resonant elements", IEEE AP-S/URSI Int. Symp. Dig., June 2002.
    [2] George V. Eleftheriades, and Ashwin K. lyer, "A backward-wave antenna based on negative refractive index L-C networks", APS, 2002. IEEE, Vol. 2, pp. 340-343, San Antonio, TX, June 2002.
    [3] C. Caloz, and T. Itoh, "Application of the transmission line theory of left-handed materials to the realization of a microstrip 'LH line'", APS, 2002. IEEE, Vol. 2, pp. 16-21, San Antonio, TX, June 2002.
    [4] C. Caloz, and T. Itoh, "Transmission line approach of Left-Handed Materials and microstrip implementation of an artificial LH-TL', IEEE Transactions on AP, Vol. 52, NO. 5, MAY 2004, pp. 1159-1166.
    [5] George V. Eleftheriades, and Ashwin K. Iyer, "Planar negative refractive index media using periodically L-C loaded transmission lines", IEEE Trans. Microwave Theory Tech., Vol. 50, NO. 12, December 2002, pp. 2702-2712.
    [6] C. Caloz, and T. Itoh, "Planar Distributed Structures with Negative Refractive Index", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 4, April 2004, pp. 1252-1263.
    [7] C. Caloz, and T. Itoh, "Transmission line approach of Left-Handed Materials and microstrip implementation of an artificial LH-TL", IEEE Transactions on AP, Vol. 52, NO. 5, MAY 2004, pp. 1159-1166.
    [8] C. Caloz, A. Sanada, and T. Itoh, "A Novel Composite Right-Left-Handed Coupled-line Directional Coupler with Arbitrary Coupling Level and Broad Bandwidth", IEEE Trans. Microwave Theory Tech., Vol. 52, NO. 3, March 2004, pp. 980-992.
    [9] Zhu Qi, Zhang Zhongxiang, Zhang Jun and Xu Shanjia. "Realization of Left-Handed Transmission Line and Its Applications", 2004 Progress in Electromagnetics Research Symposium (PIERS 2004), Nanjing, China, 2004.
    [10] Zhang Zhongxiang and Xu Shanjia, "A Novel Two Dimensional CRLH-TL Structure for Double Negative Materials", Digest of Antennas and Propagation Society International Symposium 2006, IEEE, July 2006, pp, 4149-4152.
    [11] Zhang Zhongxiang and Xu Shanjia, "A Novel Planar Structure of Double Negative Material", Microwave Conference Proceedings, 2006, Asia-Pacific, Dec. 2006.
    [12] Jae-Hyun Park, Young-Ho Ryu, Jae-Gon Lee and Jeong-Hae Lee, "A neovel planar left-handed transmission line using grounded rectangular patch with meander line", Digest of Antennas and Propagation Society International Symposium 2006, IEEE, July 2006, pp. 4141-4144.
    [13] Alu A. and Engheta N., "Sub-wavelength focusing and negative refraction along positive index and negative index plasmonic nano-transmission lines and nano-layers", Digest of Antennas and Propagation Society International Symposium 2005, IEEE, July 2005, pp. 35-38.
    [14] Bonache J., Gil M., Garica-Garcia J. and Martin E, "On the electrical characteristics of complementary metamaterial resonators", Microwave and Wireless Components Letters, IEEE, Vol. 16, No. 10, Oct. 2006, pp. 543-545.
    [1] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, vol. 10, Jan. -Feb. 1968, pp. 509-514.
    [2] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, vol. 76, June 1996, pp. 4773-4776.
    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics-Condensed Matter, vol. 10, June 1998, pp. 4785-4809.
    [4] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, vol. 47, Nov. 1999, pp. 2075-2084.
    [5] J. A. Porto, F. J. Garcia-Vidal, and J. B. Penalty, "Transmission resonances on metallic gratings with very narrow slits," Physical Review Letters, vol. 83, Oct. 1999, pp. 2845-2848.
    [6] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, vol. 84, May 2000, pp. 4184-4187.
    [7] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, Apr. 2001, pp. 77-79.
    [8] D. R. Smith, D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, vol. 77, Oct. 2000, pp. 2246-2248.
    [9] H. Mosallaei, and Y. Rahmat-Samii, "Composite materials with negative permittivity and permeability properties: concept, analysis, and characterization," IEEE AP-S Antennas and Propagation Society International Symposium, 2001, 8-13 July 2001, pp. 378-381.
    [10] D. R. Fredkin, and A. Ron, "Effectively left-handed (negative index) composite material," Applied Physics Letters, vol. 81, Sept. 2002, pp. 1753-1755.
    [11] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, vol. 65, May 2002, 195104.
    [12] R. W. Ziolkowski, "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, vol. 51, July 2003, pp. 1516-1529.
    [13] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters, vol. 85, Oct. 2000, pp. 3966-3969.
    [14] D. R. Smith, and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, vol. 85, Oct. 2000, pp. 2933-2936.
    [15] P. M. Valanju, R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: Always positive and very inhomogeneous," Physical Review Letters, vol. 88, May 2002, 187401.
    [16] D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Applied Physics Letters, vol. 81, Oct. 2002, pp. 2713-2715.
    [17] A. K. Iyer, and G. V. Eleftheriades, "Negative refractive index metamaterials supporting 2-D waves," IEEE MTT-S International Microwave Symposium Digest, 2002, 2-7 June 2002, pp. 1067-1070.
    [18] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Physical Review Letters, vol. 90, Mar. 2003, 107401.
    [19] S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Physical Review Letters, vol. 90, Mar. 2003, 107402.
    [20] P. F. Loschialpo, D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Physical Review E, vol. 67, Feb. 2003, 025602.
    [21] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, vol. 31, Oct. 2001, pp. 129-133.
    [22] A. Grbic, and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, vol. 92, Nov. 2002, pp. 5930-5935.
    [23] I. A. Eshrah, A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Rectangular waveguide with dielectric-filled corrugations supporting backward waves," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Nov. 2005, pp. 3298-3304.
    [24] A. Grbic, and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Applied Physics Letters, vol. 82, Mar. 2003, pp. 1815-1817.
    [25] A. Alu, and N. Engheta, "Physical Insight Into the 'Growing' Evanescent Fields of Double-Negative Metamaterial Lenses Using Their Circuit Equivalence," IEEE Transactions on Antennas and Propagation, vol. 54, Jan. 2006, pp. 268-272.
    [26] R. W. Ziolkowski, "Superluminal transmission of information through an electromagnetic metamaterial," Physical Review E, vol. 63, Apr. 2001, 046604.
    [27] Chiyan Luo, Mihai Ibanescu, Steven G. Johnson, and J. D. Joannopoulos, "Cerenkov Radiation in Photonic Crystals," Science, vol. 299, Jan. 2003, pp. 368-371.
    [28] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, vol. 78, Jan. 2001, pp. 489-491.
    [29] R. W. Ziolkowski, and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, vol. 64, Nov. 2001, 056625.
    [30] P. Markos, and C. M. Soukoulis, "Transmission studies of left-handed materials," Physical Review B, vol. 65, Jan. 2002, 033401.
    [31] U. Leonhardt, "Notes on waves with negative phase velocity," IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, Jan. -Feb. 2003, pp. 102-105.
    [32] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, "Guided modes in negative-refractive-index wavegnides," Physical Review E, vol. 67, May 2003, 057602.
    [33] A. Alu, and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative(DNG), and/or double-positive (DPS) layers," IEEE Transactions on Microwave Theory and Techniques, vol. 52, Jan. 2004, pp. 199-210.
    [34] H. Cory, and A. Shtrom, "Wave propagation along a rectangular metallic waveguide longitudinally loaded with a metamaterial slab," Microwave and Optical Technology Letters, vol. 41, Apr. 2004, pp. 123-127.
    [35] Clifford M. Krowne, "Physics of Propagation in Left-Handed Guided Wave Structures at Microwave and Millimeter-Wave Frequencies," Physical Review Letters, vol. 92, Feb. 2004, 053901.
    [36] E. Saenz, I. Ederra, R. Gonzalo, and P. de Maagt, "Transmission enhancement between rectangular waveguides by means of left-handed media," Electronics Letters, vol. 41, June 2005, pp. 725-727.
    [37] J. He, Sailing He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microwave and Wireless Components Letters, vol. 16, Feb. 2006, pp. 96-98.
    [38] J. W. Wang, and A. Lakhtakia, "On reflection from a half-space with negative real permittivity and permeability," Microwave and Optical Technology Letters, vol. 33, June 2002, pp. 465-467.
    [39] J. Gerardin, and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, vol. 34, Sept. 2002, pp. 409-411.
    [40] T. M. Grzegorczyk, M. Nikku, Xudong Chen, B. -I. Wu, and Jin Au Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Apr. 2005, pp. 1443-1450.
    [41] Hao Dong, and Thomas X. Wu, "Analysis of discontinuities in double-negative (DNG) slab waveguides," Microwave and Optical Technology Letters, vol. 39, Dec. 2003, pp. 483-488.
    [42] A. Alu, and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Transactions on Microwave Theory and Techniques, vol. 52, Jan. 2004, pp. 199-201.
    [43] C. Caloz, C. C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, vol. 90, Dec. 2001, pp. 5483-5486.
    [44] I. S. Nefedov, and S. A. Tretyakov, "Theoretical study of waveguiding structures containing backward-wave materials," URS1 ⅩⅩⅦth General Assembly, 17-24 August, 2002.
    [45] J. F. Woodley, and M. Mojahedi, "Negative group velocity and group delay in left-handed media," Physical Review E, vol. 70, Oct. 2004, 046603.
    [46] A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, vol. 14, Feb. 2004, pp. 68-70.
    [47] T. M. Grzegorczyk, C. D. Moss, Jie Lu, Xudong Chen, J. Jr. Pacheco, and Jin Au Kong, "Properties of left-handed metamaterials: transmission, backward phase, negative refraction, and focusing," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Sept. 2005, pp. 2956-2967.
    [48] A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Physical Review Letters, vol. 91, July 2003, 037401.
    [49] C. Caloz, I-Hsiang Lin, and T. Itoh, "Characteristics and potential applications of nonlinear left-handed transmission lines," Microwave and Optical Technology Letters, vol. 40, Mar. 2004, pp. 471-473.
    [50] Ilya V. Shadrivov, Andrey A. Sukhorukov, Yuri S. Kivshar, Alexander A. Zharov, Allan D. Boardman, and Peter Egan, "Nonlinear surface waves in left-handed materials," Physical Review E, vol. 69, Jan. 2004, 016617.
    [51] V. M. Agranovich, Y. R. Shen, R. H. Baughman, and A. A. Zakhidov, "Linear and nonlinear wave propagation in negative refraction metamaterials," Physical Review B, vol. 69, Apr. 2004, 165112.
    [52] T. J. Cui, Z. C. Hao, X. X. Yin, W. Hong, and J. A. Kong, "Study of Iossy effects on the propagation of propagating and evanescent waves in left-handed materials," Physics Letters A, vol. 323, Mar. 2004, pp. 484-494.
    [53] A. B. Kozyrev, and D. W. van der Weide, "Nonlinear wave propagation phenomena in left-handed transmission-line media," IEEE Transactions on Microwave Theory and Techniques, vol. 53, Jan. 2005, pp. 238-245.
    [54] Zhang Zhongxiang and Xu Shanjia, "A Novel Planar Structure of Double Negative Material", Microwave Conference Proceedings, 2006 Asia-Pacific, Dec. 2006.
    [55] Zhang Zhongxiang and Xu Shanjia, "A Novel Two Dimensional CRLH-TL Structure for Double Negative Materials", Digest of Antennas and Propagation Society International Symposium 2006, IEEE, July 2006, pp. 4149-4152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700