金属有机配合物M-TCNQ微纳米结构的制备及电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料在纳米电子学、光子学、磁器件等方面有着广阔的应用空间。自从Iijima发现纳米碳管以来,各种新颖的一维纳米材料如纳米线、纳米棒、纳米带和纳米同轴电缆等相继被发现,其中纳米线和纳米管是纳米尺度材料科学的前沿,它们最有意义的应用是在纳米电子学领域。纳米线既可以用作功能单元,也可以作为导电沟道,是研究电输运的良好模型体系;对纳米线电学性质的研究是实现纳米电子器件的基础。所以纳米电子学最近受到了全球范围的关注和快速发展。
     目前,碳纳米管在场发射显示方面的研究获得了极大的进展,但走向实用化还是遭遇了难以克服的困境,主要由于半导体和金属性的碳纳米管共存且技术上很难实现分离。另外,碳纳米管制备时的温度较高,对设备要求也就较高,故而成本也难以降低。作为一种有机半导体,电荷转移型金属有机配合物M-TCNQ块体和薄膜材料具有电双稳特性,有的还具有准一维导电性,在光电开关、存储器件方面具有广泛的应用前景,被认为是理想的分子电子学材料。但是目前M-TCNQ的一维结构研究甚少,它的一维纳米结构可能具有独特的光、电特性。研究其一维生长的过程及工艺以及它们的潜在应用,例如:场发射,如何利用单根M-TCNQ纳米线组成纳电子器件等,对于了解M-TCNQ晶体的生长特性和在纳电子领域的应用具有重要科学意义。有关有机材料的功函数测试工作报道较少,研究M-TCNQ纳米线的场发射性能,有必要了解其功函数大小。
     M-TCNQ具有柱状的堆积结构,一定条件下可以获得其一维生长。M-TCNQ薄膜在强电场作用下的纳秒内能够从高阻态转变为低阻态,这一特性可能使得M-TCNQ一维纳米结构具有优异的场发射性能。理论上,取向排列好、离散、有序分布的纳米线\管阵列或均匀分布的薄膜都将具有良好的场发射性能。所以本论文围绕M-TCNQ一维纳米结构的制备和电学性能研究,重点研究了在M-TCNQ纳米线的蒸气输运反应法的制备工艺、生长机理及其场发射性能。
     分别利用传统的溶液反应法、真空条件下的蒸气输运反应法和直接气相反应法制备M-TCNQ一维微纳米结构,通过SEM、XRD、XPS等测试手段,对它们的形貌、结构和成分进行了表征。重点研究了蒸气输运反应法制备M-TCNQ纳米线的工艺及生长机理。金属薄膜的厚度及均匀性、反应温度和时间、真空度、基片种类等对纳米线的形貌、晶体结构有直接影响。通过对反应时间的控制,观察到了处于不同生长阶段的Ag-TCNQ纳米线;结合银膜在不同条件下热处理引起的形貌变化,提出了取向纳米线和纳米带等形貌按VS机制的生长过程。
     在上述M-TCNQ纳米结构制备研究的基础上,测试了Ag-TCNQ微纳米线
    及纳米线阵列的电学性质。首先利用电子束刻蚀技术和光刻技术分别制作由纳米线和微米线组成的两端器件,利用函数发生器、示波器和探针系统测试其I-V特性,发现了单根微纳米具有较好的开关特性和负电阻特性,有希望用于超高密度存储以至于纳米级的场效应晶体管;观察到了纳米线阵列也具有电双稳性质。然后将纳米线阵列制作成过电压保护器原型,结点数大大增加有可能提高安全系数,通过电容充放电测试了器件原型的转变时间。
     测试了Ag-TCNQ纳米线样品的功函数。UPS谱测试得到的平均功函数为5.82eV;STM谱粗略测出局域功函数小于5eV。然后,利用自建的二极系统从实验上研究了M-TCNQ纳米线阵列的场致发射性能影响因素,总的说来制备M-TCNQ时的初始金属薄膜厚度、反应温度和时间以及测试时的极间距等对场发射性能均有影响。一般来说,金属膜厚度在10-20nm时的M-TCNQ纳米线具有较低的开启电压,约在2.0V/μm左右。
     为了进一步改善场发射性能,在纳米线表面蒸镀低功函数的LiF膜,或者选用金属片作为纳米线生长的衬底进行了研究。表面镀LiF的Ag-TCNQ纳米线在5V/μm的场强下达到0.275mA/cm~2的发射电流,稳定性得到了较大的提高。在金属基片上制备的Ag-TCNQ纳米线在电场为2.0V/μm时的电流密度为0.5mA/cm~2,Cu-TCNQ纳米线在电场为0.7V/μm时的电流密度为0.6mA/cm~2,比Si基片上的样品有了较大的性能改善。
     利用单根纳米线的电学性质和场发射样品的XRD谱解释了场发射中的电流“阶跃”现象。结合纳米线的导电性、纳米线与基片的接触界面以及纳米线尖端形貌分析了场电子的发射过程。利用经典F-N理论对场发射数据进行分析,估算出Ag-TCNQ的功函数约为1.29eV,Cu-TCNQ功函数为0.50eV。从实用角度看,需要进一步提高场发射电流和改善场发射稳定性。
     希望以上对电荷转移型金属有机配合物M-TCNQ微纳米结构的制备及一些应用基础方面的研究对今后M-TCNQ的电子器件研制起到一些参考作用。
One-dimensional semiconductor nanomaterials are now being studied for their novel physical properties. Among them, nanowires and nanotubes are at the frontier of materials science owing to their unique chemical, physical and mechanical properties, with the most interesting applications in nanoelectronics. At present, various one-dimensional nano-materials, for instance, carbon nanotubes, have been synthesized and their field emission properties were studied, but the commercial realization in field emission display are still full of challenges, because of the complicated synthesis technique and difficulty in purifying the mixture of the metallic and semiconductor carbon nanotubes.
    Metal-organic complexes of M-TCNQ have columnar stacking structure, which can be used to synthesize the nanowires. So the interest to study their electrical property, and further realize the novel nano-electronic devices was initiated. In this dissertation, the synthesis and field electron emission properties of M(Ag、Cu)-TCNQ nanowires were studied.
    Firstly, growth conditions of Ag、Cu-TCNQ micro/nanostructures by the vapor transport reaction were systematically investigated. It is exciting that the semiconducting nanowires of Cu-TCNQ phase I was obtained by this method which is hard to synthesize by the solution reaction method. It was also found that the thickness of M(Ag、 Cu) film, reaction temperature and time greatly influence the diameter, density and alignment of the resulting nanowires. The formation processes of Ag-TCNQ nanowires proceed through the steps of nucleation and directional growth, which are governed by the vapor-solid growth mechanism. Other morphologies such as belts and flowers were also obtained due to some uncontrollable variations in the growth conditions.
    The I-Vcurve for a two-terminal device with a single Ag-TCNQ nanowire shows that it has the electric bistable property, similar to the Ag-TCNQ films. A prototype of over-voltage protector made of the nanowires array has good performance with the response time shorter than 870 ns.
    The field-induced electron emission from the Ag、 Cu-TCNQ nanowires were measured, respectively. Results show that M-TCNQ nanowires grown with the 10-20 nm metal film have a low turn-on field of about 2.0 V/μm, and the nanowires on metal substrate has current density of about 0.5 mA/cm~2 at 2.0 V/μm for Ag-TCNQ, 0.6
    mA/cm以~2 at 0.7 V/μm for Cu-TCNQ, respectively, higher than those nanowires on Si substrate. The process of electron emission is similar to the two-process model. The stability in emission current can be improved by depositing a LiF layer on the surface of the M-TCNQ nanowires. Therefore, M-TCNQ nanowires are believed to be a candidate for displaying information.
    In summary, the synthesis of one-dimensional M-TCNQ nanowires and their potential application in field emission were investigated. These studies may be useful for the crystal growth, organic nano-devices such as electric switches and information storage, and potential application in cold cathode materials for information display.
引文
1. Fowler R. H., Nordeim L. W. 1928 Proc R soc, [M]London A: 173
    2. Iijima S. Helical Microtubules of Graphitic Carbon [J]. Nature, 1991, 354: 56-58
    3. Walt A. de Heer, A. Chatelain, and D. Ugarte A Carbon Nanotube Field-Emission Electron Source [J]. Science 1995, 270: 1179-1180
    4. Q. H. Wang, T. D. Corrigan, J. Y. Dai, R. P. H. Chang, and A. R. Krauss, Field emission from nanotube bundle emitters at low fields [J]. Appl. Phys. Lett. 1997, 70(24): 3308-3310.
    5. Kenneth A. Dean and Babu R. Chalamala. The environmental stability of field emission from single-walled carbon nanotubes [J]. Applied Physics Letters 1999, 75: 3017-3019.
    6.朱绍文,贾志杰,李钟泽等.碳纳米管及其应用前景[J].科技导报,1999,12:7-9.
    7. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Fully sealed, high-brightness carbon-nanotube field-emission display [J]. Appl. Phys. Lett. 1999, 75: 3129-3131
    8. Fan S S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H J. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283: 512-514.
    9. J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, Field emission from carbon nanotubes for displays [J]. Diamond and Related Materials 2000, 9(3-6): 1184-1189
    10. N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H, You, S. H. Jo, C. G. Lee, J. M. Kim, Application of carbon nanotubes to field emission displays [J]. Diamond and Related Materials. 2001, 10: 265-270
    11.刘卫华,朱长纯,王琪琨等.碳纳米管(CNT)场发射显示器的关键技术的研究[J].电子学报,2002,30:694-696.
    12.朱亚波 王万录 廖克俊.对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究[J].物理学报2002,51:2335-2339
    13. Obraztsova E D, Bornard J M, Kaznetsov V L, et al., Structural measurements for single-wall carbon nanotubes by Raman scattering technique [J]. Nanaostrucrured Materials 1999, 12: 567-572.
    14. Igor S. Altman, Peter V. Pikhitsa, and Mansoo Choi. Electron field emission from nanocarbons: A two-process model [J]. Appl. Phys. Lett., 2004, 84(7): 1126-1128
    15. R. Krupke, Hennrich F, von Lohneysen H, Kappes M. M., Separation of metallic from semiconducting single-walled carbon nanotubes [J]. Science, 2003, 301: 344-347
    16. R. F. Service, Sorting technique may boost nanotube research [J]. Science, 2003, 300: 2018
    17. M. S. Strano Christopher A. Dyke, Monica L. Usrey, Paul W. Barone, Mathew J. Allen, Hongwei Shan, Carter Kittrell, Robert H. Hauge, James M. Tour, and Richard E. Smalley, Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization [J]. Science. 2003, 301: 1519-1522
    18. Wen-Jun Li, Er-Wei Shi, Jung-Min Ko, Zhi-zhan Chen, H. Ogino, Tsuguo Fukuda, Hydrothermal synthesis of MoS_2 nanowires [J]. Journal of Crystal Growth, 2003, 250: 418-422; Y. B. Li, Y. Bando, and D. Golberg, MoS_2 nanoflowers and their field-emission properties [J]. Appl. Phys. Lett., 2003, 82: 1962-1964
    19. Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, Field emission from MoO_3 nanobelts [J]. Appl. Phys. Lett., 2002, 81: 5048-5050
    20. Reui-San Chen, Ying-Sheng Huang, Ya-Min Liang, Chim-Sung Hsieh, and Dah-Shyang Tsai, and Kwong-Kau Tiong, Field emission from vertically aligned conductive IrO_2 nanorods [J]. Appl. Phys. Lett., 2004, 84(9): 1552-1554
    21. C. X. Xu, X. W. Sun, and B. J. Chen. Field emission from gallium-doped zinc oxide nanofiber array [J]. Appl. Phys. Lett., 2004, 84(9): 1540-1542
    22.张立德,张玉刚.一维纳米材料中的新效应和新功能[J].功能材料增刊,2004,35:50-53
    23. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C_(60): Buckminsterfullerene[J]. Nature. 1985, 318: 162-163
    24.曹敏花,郭彩欣,杨宇,胡长文.一维纳米结构材料研究进展[J].功能材料增刊,2004, 35:2731-2734
    25.张立德.纳米功能材料的进展和趋势[J].材料导报,2003,17:1-4
    26. Younan Xia, Peidong Yang, Yugang Sun, Yiying Wu, Brian Mayers, Byron Gates. One-dimensional nanostructures: Synthesis, characterization, and applications Advanced Materials. 2003, 15(5): 353-389
    27. C. N. R. Rao, F. L. Deepak, Gautam Gundiah, A. Govindaraj. Inorganic nanowires [J]. Progress in Solid State Chemistry. 2003, 31: 5-147
    28. Wagner R S, Ellis W C, Study of the filamentary growth of silicon crystals from the vapor [J]. J. Appl. Phys. 1964; 35(10): 2993-3000; Wagner RS, Ellis WC. V
    29. Wu Y, Yang P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth [J]. J. Am. Chem. Soc. 2001; 123: 3165-3166.
    30. Morales A. M., Lieber C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science. 1998, 279: 208-211
    31. Y. Wu, Yang, P Germanium Nanowire Growth via Simple Vapor Transport, Chem. Mater. 2000, 12: 605-607; Zhang, Yingjiu;, Zhang, Qi; Wang, Nanlin; Yan, Yunjie; Zhou, Huihua; Zhu, Jing. Synthesis of thin Si whiskers (nanowires) using SiCl_4, J. Cryst. Growth 2001, 226: 185-191; Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction [J]. Journal of Vacuum Science & Technology B, 1997, 15: 554-557
    32. Chen, C. -C. Yeh, C. -C. Chen, C. -H. Yu, M. -Y. Liu, H. -L. Wu, J. -J. Chen, K. -H. Chen, L. -C. Peng, J. -Y. Chen, Y. -F. Catalytic Growth and Characterization of Gallium Nitride Nanowires[J]. J. Am. Chem. Soc. 123, 2001: 2791-2798
    33. Zhang, Lide; Liang, Changhao; Wang, Guozhong; Peng, Xinsheng. Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires [J]. Chem. Phys. Lett. 2002, 357: 314-318
    34. Chen, Yongjun; Li, Jianbao; Han, Yongsheng; Yang, Xiaozhan; Dai, Jinhui. The effect of Mg vapor source on the formation of MgO whiskers and sheets [J]. J. Cryst. Growth 2002, 245: 163-170
    35. Lee ST, Wang N, Zhang YF, Tang YH. Nucleation and growth of Si nanowires from silicon oxide [J]. Phys Rev B. 1998, 58: R16024-16026
    36. Weiqiang, Han; Shoushan, Fan; Qunqing, Li; Wenjie, Liang; Binglin, Gu; Dapeng, Yu. Continuous synthesis and characterization of silicon carbide nanorods [J]. Chemical Physics Letters, 1997, 265: 374-378
    37. Stejny JJ, Trinder RW, Dlugosz J. Preparation and structure of poly(sulfur nitride) whiskers[J]. J Mater Sci 1981, 16: 3161-3170.
    38. Stejny JJ, Dlugosz RW, Keller A. Electron microscope diffraction characterization of the fibrous structure of poly(sulfur nitride) crystals [J]. J. Mater Sci 1979, 14: 1291-1300.
    39. Kruyt HR, Arkel AEV. Koltoid-Z 1928, 32: 29.
    40. Gates B, Mayers B, Cattle B, Xia Y. Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium [J]. Adv Funct Mater., 2002, 12: 219-227.
    41. Mayers B, Xia Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach[J]. J Mater Chem., 2002, 12: 1875-1881.
    42. (a)Messer B, Song JH, Huang M, Wu Y, Kim F, Yang P. Surfactant-Induced Mesoscopic Assemblies of Inorganic Molecular Chains [J]. Adv. Mater. 2000; 12: 1526-1528;
    (b)Song J, Messer B, Wu Y, Kind H, Yang P. MMo_3Se_3 (M=Li~+, Na~+, Rb~+, Cs~+, NMe_4~+) Nanowire Formation via Cation Exchange in Organic Solution [J] J. Am. Chem. Soc. 2001; 123: 9714-9715.
    43. Zhou D, Seraphin S. Production of silicon-carbide whiskers from carbon nanoclusters [J]. Chem Phys. Lett., 1994, 222: 223-238.
    44. Han WQ, Fan SS, Li QQ, Hu YD. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science, 1997, 277: 1287-1289.
    45. Trentler TJ, Hickman KM, Goel SC, Viano AM, Gibbons PC, Buhro WE. Solution-liquid-solid growth of crystalline ⅲ-ⅴ semiconductors-an analogy to vapor-liquid-solid growth [J]. Science, 1995, 270: 1791-1794.; Buhro WE, Hickman KM, Trentler TJ. Turning down the heat on semiconductor growth: Solution-chemical syntheses and the solution-liquid-solid mechanism [J] Adv. Mater., 1996, 8: 685-688
    46. Chen YY, Chen ZY, Shu Q, An GY, In-situ preparation of Al/TiAl_3 composite by direct reaction between molten Al and TiO_2 powder, Journal of Materials Science & Technology. 1998, 14: 569-570
    47. Fasol G. Applied physics - Nanowires: Small is beautiful [J]. Science, 1998, 280: 545-546
    48.张志琨,崔作林,陈克正,王彦妮,宁英沛.纳米铜和纳米导电纤维的结构,科学通报,1995,40(20):1852-1854
    49. Hiruma K, Katsuyama T, Ogawa K, Koguchi M, Kakibayashi H, Morgan GP. Quantum size microcrystals grown using organometallic vapor-phase epitaxy [J]. Appl, Phys. Lett., 1991, 59: 431-433
    50. Yazawa M, Koguchi M, Muto A, Ozawa M, Hiruma K. Effect of one monolayer of surface gold atoms on the epitaxial-growth of InAs nanowhiskers [J]. Appl. Phys. Lett., 1992, 61: 2051-2053.
    51. Meng GW, Zhang LD, Mo CM, Zhang SY, Qin Y, Feng SP, Li HJ. Synthesis of "a β-SiC nanorod within a SiO_2 nanorod" one dimensional composite nanostructures [J]. Sol. Stat. Commun., 1998, 106(4): 215-219.
    52. Rao CNR, Nath M. Inorganic nanotubes [J]. Dalton Transactions, 2003, 1: 1-24
    53.陈泉水.高后秀.刘双翼.张贵杰.杨渝钦.一维非碳纳米结构材料研究的动向.化工进展,2004,23(2):140-145.
    54. Benjamin Messer, Jae Hee Song, and peidong Yang. Microchannel Networks for Nanowire Patterning[J]. J Am Chem Soc. 2000, 122(41): 10232-10233; Y Huang, Xiangfeng Duan, Qingqiao Wei, and Charles M. Lieber. Directed Assembly of One-Dimensional Nanostructures into Functional Networks [J]. Science. 2001, 291: 630-633.
    55. Xia Y. N., Rogers J A, Whitesides G M. Unconventional methods for fabricating and patterning nanostructures [J]. Chem. Rev, 1999, 99(7): 1823-1848.
    56.董亚杰,李亚栋,一维纳米材料的合成、组装与器件[J].科学通报,2002,47(9):641-649
    57.贾志杰,王正元,徐才录,碳纳米管的加入对PMMA强度和导电性能的影响[J].材料开发与应用.1998,13(5):22-26
    58. Tans S J, Verschueren A R M, Dekker. Room-temperature transistor based on a single carbon nanotube. Nature. 1997, 393: 49-52
    59. Postma HWC, Teepen T, Yao Z et al. canbon nanotube single-electron transistors at room temperature. Science, 2001, 293: 76-79
    60. Yao Z, Postma HWC, Balents Leon, et al. carbon naotube intramolecular junctions. Nature, 1999, 402: 273-276
    61. Fuhrer M S, Nygard J, Shih L, et al Crossed nanotube junctions, Science, 2000, 288: 494-497
    62. Cui Y, Duan X F, Hu J T, Lieber C M. Doping and electrical transport in silicon nanowires[J]. J Phys Chem B, 2000, 104(22): 5213-5216
    63. Cui Y, Lieber C M, Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science, 2001, 293: 851-853.
    64. Duan X, Yu Huang, Yi Cui, Wang J, Lieber C M, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J]. Nature. 2001, 409: 66-69
    65. Bachtold A, Hadley P, Nakanishi T, Dekker C. Logic circuits with carbon nanotube transistors [J]. Science, 2001, 294: 1317-1320.
    66. Huang Y, Duan X F, Cui Y, Lauhon L J, Kim K H, Lieber C M. Logic gates and computation from assembled nanowire building blocks [J]. Science, 2001, 294: 1313-1317.
    67. S. A. Curran, Pulickel M. Ajayan, Werner J. Blau, David L. Carroll, Johnathma N. Coleman, Alan B. Dalton, Andrew P. Davey, Anna Drury, Brendan McCarthy, Stephanie Maier, Adam Strevens. A Composite from Poly (m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and Carbon Nanotubes: A Novel Material for Molecular Optoelectronics [J]. Advanced Materials 1998, 10(14): 1091-1093.
    68. Dai HJ, Hafner JH, Rinzler AG, Colbert DT, Smalley RE. Nanotubes as nanoprobes in scanning probe microscopy [J]. Nature, 1996 384 (6605): 147-150.
    69. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287 (5453): 622-625; Cui Y, Lieber C M, Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001, 293: 851-853.
    70. R. S. Potember, et al, Electrical switching and memory phenomena in Cu-TCNQ thin films[J]. Appl. Phys. Lett., 1979, 34: 405-407.
    71. L. Shields, Small insertions of neutral TCNQ and structural dislocations in the conducting chain can lead to appreciable changes in the electrical and magnetic characteristics of these salts [J]. J. Chem. SOC., Faraday Trans. 2, 1983, 79: 243.
    72. Sato C, wakamatsu S, Tadokoro K, Ishii K. Polarized memory effect in the device including the organic charge-transfer complex, copper-tetracyanoquinodimethane [J]. J. Appl. Phys., 1990, 68(12): 6535-6537.
    73. Hua Z Y, Chen G R, A new material for optical, electrical and electronic thin-film memories[J]. Vacuum, 1992, 43: 1019-1022
    74. Z. Y. Hua, G. R. Chen, W. Xu, D. Y. Chen, New organic bistable films for ultrafast electric memories [J]. Applied Surface Science. 2001, 169-170: 447-451
    75. Zhongze Gu, Haiming Wu, Yu Wei, Juzheng Liu. Mechanism Generating Switching Effects in Cu-TCNQ and Ag-TCNQ Films [J]. Journal of Physical Chemistry, Vol.97, 1993, 2543-2545
    76. J. J. Hoagland, X. D. Wang, and K. W. Hipps, Characterization of Cu-CuTCNQ-M Devices Using Scanning Electron Microscopy and Scanning Tunneling Microscopy [J]. Chem. Mater. 1993, 5: 54-60
    77. N. Gu, X. M. Yang, H. Y. Sheng, W. Lu, Y. Wei, Electrical switch properties of CuTCNQ organic crystals with nanometer feature size [J]. Synthetic Met. 1995, 71: 2221-2222
    78. S. Q. Sun, p. J. Wu, D. B. Zhu, Electronic switching properties in nanometer-sized Cu-(TCNQ)_2 powder compactions [J]. solid state communication, 1996, 99: 237-240
    79. S. G. Liu, Y. Q. Liu, P. J. Wu, D. B. Zhu, H. Tian, K. C. Chen. Characterisation and electrical property of molten-grown CuTCNQ film material [J]. Thin Solid Film, 1996, 289: 300-305
    80. Shuqing Sun, Peiji Wu, Daoben Zhu. The preparation, characterization of amorphous Cu-TCNQ film with a low degree of charge-transfer DCT and its electric switching properties [J]. Thin Solid Films 1997, 301: 192-196
    81. Liu, S. G.; Liu, Y. Q.; Wu, P. J.; Zhu, D. B. Multifaceted Study of CuTCNQ Thin-Film Materials. Fabrication, Morphology, and Spectral and Electrical Switching Properties [J]. Chem. Mater. 1996, 8: 2779-2787.
    82. Takahito Oyamada, Haruo Tanaka, Kazumi Matsushige, Hiroyuki Sasabe and Chihaya Adachi. Switching effect in Cu: TCNQ charge transfer-complex thin films by vacuum codeposition [J]. Appl. Phys. Lett., 2003, 83: 1252-1254.
    83. Kumai R, Okimoto Y, Tokura Y. Current-induced insulator-metal transition and pattern formation in an organic charge-transfer complex [J]. Science, 1999, 284: 1645-1647.
    84.蔡亲佳,陈国荣,莫晓亮,范智勇,顾海华,姚彦,杨剑,华中一,徐华华,K(TCNQ)薄膜的制备及其电双稳特性[J].真空科学与技术,2001,21:364-367
    85. Watannabe N, Iwasa Y, Koda T. Negative-resistance effect in rubidium tetracyanoquinodimethane(Rb-TCNQ) [J]. Phys. Rev. B, 1991, 44: 11111-11118
    86. N. Kuroda, T. Sugimoto, M. Hagiwara, Hassnudin, K Ueda, T. Tada, H. Uozaki, N. Toyota, I. Mogi, K. Watanabe, M. Motokawa, Electronic properties of Cs_2TCNQ_3 crystals grown under magnetic field [J]. Synthetic Metals. 2003, 133-134: 535-537
    87. L. Ballester, C. Alonso. M. Fonari, A. Gutierrez, M. Mitewa, M. F. Perpinan, K. Suwinska, New Pr and Nd complexes containing TCNQ radicals[J]. Journal of Alloys and Compounds. 2001, 323-324: 138-141
    88. Gregory Long, Roger D. Willett, Electrochemical synthesis, characterization and magnetic studies of Ni/TCNQ salts [J]. Inorganica Chimica Acta. 2001, 313: 1-14
    89. L. Ballester, A. Gutierrez, M. F. Perpinan, M. T. Azcondo, A. E. Sanchez, Interactions of TCNQ in iron and nickel coordination compounds [J]. Synthetic Metals, 2001, 120: 965-966; Loreto Ballester, Angel Gutierrez, M. Felisa Perpinan, M. Teresa Azcondo. Supramolecular architectures in low dimensional TCNQ compounds containing nickel and copper polyamine fragments [J]. Coordination Chemistry Reviews. 1999, 190-192: 447-470
    90. Zhao H, Bazile MJ, Galan-Mascaros JR, Dunbar KR. A rare-earth metal TCNQ magnet: Synthesis, structure, and magnetic properties of [Gd_2(TCNQ)_5(H_2O)_9] [Gd(TCNQ)_4-(H_2O)_3] center dot 4H_2O[J]. A ngewandte Chemie-International Edition 2003, 42(9): 1015
    91. Melby R L, Harder R J, Heftier W R et al Substituted Quinodimethans. Ⅱ. Anion-radical Derivatives and Complexes of 7, 7, 8, 8-Tetracyanoquinodimethan [J]. J. Am. Chem. Soc. 1962, 84: 3374-3387
    92. Shields L. Crystal Structure of AgTCNQ and Contrasting Magnetic Properties of Electrochemically Synthesized AgTCNQ and CuTCNQ (7, 7, 8, 8Tetracyanoquinodimethane) [J]. J. Chem. Soc. Faraday Trans, 2. 1985, 81: 1-9
    93. Gregory Long, Roger D. Willett, Electrochemical synthesis, characterization and magnetic studies of Ni/TCNQ salts [J]. Inorganica Chimica Acta. 2001, 313: 1-14
    94. L. Ballester, A. Gutierrez, M. F. Perpinan, M. T. Azcondo, A. E. Sanchez, Interactions of TCNQ in iron and nickel coordination compounds [J]. Synthetic Metals, 2001, 120: 965-966; Loreto Ballester, Angel Gutierrez, M. Felisa Perpinan, M. Teresa Azcondo. Supramolecular architectures in low dimensional TCNQ compounds containing nickel and copper polyamine fragments [J]. Coordination Chemistry Reviews. 1999, 190-192: 447-470
    95. Robert A. Heintz, Hanhua Zhao, Xiang Ouyang, Giulio Grandinetti, Jerry Cowen, and Kim R. Dunbar. New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior [J]. Inorg. Chem. 1999, 38, 144-156
    96. O'Kane, S. A., Clerac, R., Zhao, H. H, Ouyang X., Galan-Mascaros, J. R., Heintz R., Dunbar K. R., New Crystalline Polymers of Ag(TCNQ) and Ag(TCNQF_4): Structures and Magnetic Properties [J]. J. Solid State Chem., 2000, 152: 159-173
    97.莫晓亮.有机电子器件的基础研究[D].上海:复旦大学,2002
    98. Hoffman. R. C., Potember. R. S. [J]. Appl. Opt. 1989, 28: 1417
    99.陈国荣,莫晓亮,一种金属有机配合物纳米线及其制备方法[P].中国专利:02151236.1,2002
    100. Yamaguchi, S.; Viands, C. A.; Potember, R. S. Image of silver and copper tetracyanoquinodimethane salts using a scanning tunneling microscope and and atomic force microscope [J]. J. Vac. Sci. Tech. B 1991, 9: 1129-1133.
    101. JoachimC, Launay J P. J Mol. Electron, 1990, 6: 37.
    102.陈国荣.蓝光DVD-R用光信息存贮材料.中国专利:CN1178794A
    103. H. Zhao, R. A. Heintz, X. Ouyang, and K. R. Dunbar. Spectroscopic, Thermal, and Magnetic Properties of Metal/TCNQ Network Polymers with Extensive Supramolecular Interactions between Layers [J]. Chem. Mater. 1999, 11: 736-746
    104. J. B. Torrance, The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): how to design an organic metal [J]. Acc. Chem. Res. 1979, 12: 79-86.
    105. Masafumi Sakata, Kazuhiro Tasaki, Susumu Matsuzaki, Spectroscopic investigation of pressure-induced phase transitions in TCNQ complex salts [J]. Solid State Communications, 2003, 125: 423-427
    106.曹冠英.金属有机配合物M-TCNQ微纳米结构的制备及吸氢性能研究[D].上海:复旦大学,2005
    107.D.Briggs等编著.X射线与紫外光电子能谱.北京大学出版社.1984
    108.张群,孔令柱,张强基,王伟军,华中一,Ag-TCNQ薄膜电双稳特性的XPS研究[J].真空科学与技术,2003,23:169-172
    109. J. Fraxedas, J. Caro, A. Figueras, P. Gorostiza and F. Sanz. Surface characterization of thin films of tetrathiofulvalene 7,7,8,8-tetracyano- p-quinodimethane evaporated on NaC1 (001)[J]. J. Vac. Sci. Technol. A. 1998, 16: 2517-2523
    110. J. M. Lindquist, J. C. Hermminger [J]. J. Phys. Chem. 1988, 92: 1394
    111. Rojas, C.; Caro, J.; Grioni, M.; Fraxedas. Surface characterization of metallic molecular organic thin films: tetrathiafulvalene tetracyanoquinodimethane [J]. Surface science, 2001, 482-485: 546-551
    112. John M. Lindquistt and John C. Hemminger. High-Energy Resolution Ⅹ-ray Photoelectron Spectroscopy Studies of Tetracyanoquinodimethane Charge-Transfer Complexes with Copper, Nickel, and Lithium [J]. Chemistry of Materials 1989, 1, 72-78
    113. W. D. Grobman, R. A. Pollak, D. E. Eastman, E. T. Maas, Jr., and B. A. Scott. Valence Electronic Structure and Charge Transfer in Tetrathiofulvalinium Tetracyanoquinodimethane (TTF-TCNQ) from Photoemission Spectroscopy [J]. Phys. Review Letter, 1974, 32: 534-537
    114. D. N. Srivastava, R. A. Singh. Possibility of fractal growth in polymer composites of charge-transfer materials [J]. Synth. Met. 1998, 96: 235-238
    115. Guanying Cao, Fang Fang, Chunnuan Ye, Xiaoyan Xing, Huahua Xu, Dalin Sun, Guorong Chen. Microscopy investigation of Ag-TCNQ micro/nanostructures synthesized via two solution routes [J]. Micron. 2005, 36: 285-290
    116.马树人编著.结构化学.化学工业出版社,2000:172
    117. J. S. Chappell, A. N. Bloch, W. A. Bryden, M. Maxfield, T. O. Poehler and D. O. Cowan. Degree of charge transfer in organic conductors by infrared absorption spectroscopy [J]. J. Am. Chem. Soc., 1981, 103: 2442-2443
    118. Matsuzaki, S.; Kuwata, R.; Toyoda, K. Solid State Commun. 1980, 33: 403.
    119.郭立俊,魏红彬.银纳米粒子的制备及溴离子对其表面性质的影响[J].河南大学学报(自科版),2000,30(3):20-23.
    120.焦健,潘明虎,薛其坤,包信和.硅表面纳米银团簇的氧助迁移行为[J].催化学报,2003,24:433-436
    121.闵乃本.晶体生长的物理基础.上海科学技术出版社,1982:210.
    122. Y. Saito, G. Goldbeck-Wood, H. Mitller-Krmnbhaar. Dendritic crystallization: Numerical study of the one-sided model[J]. Phys. Rev. Let., 1987, 58: 1541-1543.
    123. Frank F C. Philmag. 1953, 44: 854
    124.袁洪涛,张跃,谷景华.原位生长高度定向ZnO晶须[J].物理学报2004,53(2):646-650
    125. Young Chul Choi, Dae Woon Kim, Tae Jae Lee, Cheol Jin Lee, Young Hee Lee, Growth mechanism of vertically aligned carbon nanotubes on silicon substrates Synthetic Metals 2001, 117: 81-86; J. S. Suh, J. S. Lee, Highly ordered two-dimensional carbon nanotube arrays[J]. Appl. Phys. Lett. 1999, 75: 2047-2049.
    126.王如志,Ⅲ族氮化物半导体薄膜场发射性能研究[D].北京工业大学,2003
    127.杜芳林,陈克正,张志琨,崔作林.真空烧结对纳米铜粒子性能的影响[J].功能材料,2001,32:301-303
    128. Onipko, K. -F. Berggren, Yu. O. Klymenko, and L. I. Malysheva, J. J. W. M. Rosink, L. J. Geerligs, E. van der Drift, and S. Radelaar, Scanning tunneling spectroscopy on π-conjugated phenyl-based oligomers: A simple physical model, Phys. Rev. B, 2000, 61, 16: 11118-11124
    129.华中一,陈殿勇,蒋益明,莫晓亮,彭建军,陈国荣,潘星龙,章壮健,超快速高可靠过电压保护器,仪器仪表学报,2000,21:557-559
    130. Tang, C. W.; VanSlyke, S. A. Organic electroluminescent diodes. Applied Physics Letters(1987), 51(12): 913-915.
    131. Spindt C A et al J Appl. Phys., Physical properties of thin-film field emission cathodes with molybdenum cones. 1976, 47: 5248-5263
    132.罗恩泽,刘云鹏,刘卫东,陈陆君,郑茂盛.Fowler-Nordheim公式用于实际场发射体的修正.电子学报,1996,24(3):5-9
    133.曾葆青,杨中海,场致发射体的局域功函数研究 真空科学与技术1999,3:201-206
    134. K. Wandelt, in thin metal films and gas chemisorption, edited by P. Wissmann (Elsevier, Amsterdam, 1987) p.280
    135. Fischer, R.; Schuppler, S.; Fischer, N.; Fauster, T.; Steinmann, W. Image states and local work function for silver/palladium (111). Physical Review Letters 1993, 70(5): 654-657.
    136. R. J. Behm, N. G. arcia, H. Rohrer. Scanning Tunneling Microscopy and Related Methods, Kluwer Academic, 1990, p163
    137.[美]陈成钧,华中一,朱昂如,金晓峰译.扫描隧道显微学引论.中国轻上业出版社,1996:7
    138. Heeger, S. Kivelson, J. Schrieffer, W. P. Su, Solitons in conducting polymers [J]. Review of Modern Physics. 1988, 60: 781-850.
    139.张兆祥、侯士敏、赵兴钰、张浩、孙建平、刘惟敏、薛增泉、施祖进、顺镇南.单壁碳纳米管的场发射特性研究[J].物理学报2002,51:434-438
    140. Schuster R, Barth J. V., Wintterlin J, Behm R. J., Ertl G. Distance dependence and corrugation in barrier-height measurements on metal-surfaces. Ultramicroscopy. 1992, 42: 533-540
    141. Pashley M. D., Pethica J. B., and Coombs J. C. Scanning tunnelling microscope studies [J]. Surface Science, 1985, 152/153: 27-32.
    142. Payne M. C. and Inkson J. C., Measurement of work functions by tunneling and the effect of the image potential [J]. Surface Science, 1985, 159: 485-495
    143. Jiann-Jong Chia, Chi-Chung Kei, Tsong-P. Perng, and Way-Seen Wang, Organic semiconductor nanowires for field emission [J]. Advanced Materials. 2003, 15: 1361-1364.
    144. Schwoebel P. R., Brodie I. Surface-science aspects of vacuum microelectronics [J]. Journal of Vacuum Science & Technology B 1995, 13: 1391-1410
    145. P. Poncharal. Z. L. Wang, Daniel Ugarte, and Walt A. de Heer. Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes [J]. Science, 1999, 283: 1513-1516
    146. E. W. Wong, P. E. Sheehan, C. M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes [J]. Science, 1997, 277: 1971-1975; H. G. C raighead. Nanoelectromechanical Systems [J]. Science, 2000, 290: 1532-1535
    147.朱亚波 王万录 廖克俊.对碳纳米管阵列的场发射电场增强因子以及最佳阵列密度的研究[J].物理学报2002,51:2335-2339
    148. Chen Y, Shaw D T, Guo L P, Field emission of different oriented carbon nanotubes [J]. Appl. Phys. Lett. 2000, 76: 2469-2471
    149. Yeon Sik Jung, Duk Young Jeon. Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition [J]. Applied Surface Science, 2002, 193: 129-137
    150. Ma X C, Wang E G, Zhou W Z et al, Polymerized carbon nanobells and their field-emission properties [J]. Appl. Phys. Lett., 1999, 75: 3105-3107
    151. Zhong D Y, Liu S, Zhang G Y, Wang E. G. Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission [J]. J. Appl. Phys., 2001, 89: 5939-5943
    152. Zhang G Y, Ma X C, Zhong D Y, Wang E. G. Polymerized carbon nitride nanobells [J]. J. Appl. Phys., 2002, 91: 9324-9332
    153.丁佩,晁明举,梁二军,郭新勇,杜祖亮.CN_x纳米管的制备、结构观察及低场致电子发射性能研究[J].物理学报,2004,8:2786-2791
    154. Bonard, Jean-Marc; Kind, Hannes; Stockli, Thomas, Nilsson, Lars-Ola. Field emission from carbon nanotubes: the first five years [J]. Solid State Electronics, 2001, 45: 893-914
    155.姚彦,金属有机配合物材料纳米线的研究[D].复旦大学,2003年
    156. D. Y. Zhong, G. Y. Zhang, and S. Liu, T. Sakurai, E. G. Wang. Universal field-emission model for carbon nanotubes on a metal tip [J]. Applied Physics Letters 2002, 80: 506-508
    157. Semet V, Birth VT, Vincent P, Guillot D, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne Wl, Legagneux P, Pribat D [J]. Appl Phys Lett. 2002, 81: 343-345
    158. Richard G. Forbes, C. J. Edgcombe, U. Valdre. Some comments on models for field enhancement [J]. Ultramicroscopy, 2003, 95: 57-65
    159. Chen J., Deng S. Z., She J. C., Xu N. S., Zhang W. X. Wen, X. G, and Yang S. H. Effect of structural parameter on field emission properties of semiconducting copper sulphide nanowire films[J]. J. Appl. Phys. 2003, 93: 1774-1777
    160. N. S. Xu, Jun Chen, and S. Z. Deng. Physical origin of nonlinearity in the Fowler-Nordheim plot of field-induced emission from amorphous diamond films: Thermionic emission to field emission [J]. Appl. Phy. Lett. 2000, 76: 2463-2435
    161. R. V. Latham(Ed), high Voltage Vacuum Insulation: Basic Concepts and Technological practice, Academic Press, London, 1995.
    162. Huibiao Liu, Yuliang Li, Shengqiang Xiao, Haiyang Gan, Tonggang Jiu, Hongmei Li, Lei Jiang, Daoben Zhu, Dapeng Yu, Bin Xiang, and Yaofeng Chen. Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction [J]. J. Am. Chem. Soc. 2003, 125(36): 10794-10795
    163. Gan H. Y., Liu H. B., Li Y. L., Liu Y., Lu F. S., Jiu T. G., Zhu D. B. Template synthesis and characterization of chiral organic nanotubes and nanowires [J]. Chemical Physics Letters 2004, 399 (1-3): 130-134.
    164.武芳卉,周峥嵘,王全瑞,丁宗彪,陶凤岗,夏焱,徐伟,华中一.新型有机电双稳态材料的设计和性质[J].化学学报,2002,60:4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700