弹塑性系统的互补原理及泛惩罚有限元素法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于凸分析和非光滑分析的数学理论,对弹塑性介质的位势理论、变分边值问题、极限平衡理论、非线性有限元分析及数值计算方法诸环节进行了较为系统、深入的研究,主要完成如下几项工作:
     1.建立了具有弹塑性耦合效应一般介质的共轭塑性公设及相应的广义本构定律,讨论了非凸屈服条件下的加一卸载准则,纠正了经典塑性位势理论中的某些不严格提法。
     2、从共轭塑性公设出发,系统地导出了具有强物理非线性本构行为和边界效应边值问题的变分不等原理、对偶一互补变分原理,讨论了系统能量泛函的极值性质和解的存在,唯一性条件,证明了三类变量泛函的驻值性质。
     3、提出了力学系统中一条具有认识论上广泛意义的互补对偶原理。
     4、建立了理想弹塑性介质变分问题的最小余能原理,证明了一个理论上严格、且具有较大实用价值的罚-对偶变分原理,讨论了强间断条件下刚塑性介质的对偶变分原理。
     5、建立了极限平衡理论中严格互补的对偶界限定理,证明了一个满足kuhn—Tucker约束(?)性条件的对偶型变分原理,由此导出了一个中值定理和一个新的下限定理,建立了关于安全因子的有效的罚-对偶变分原理,并予以实际应用。
     6、提出了约束变分问题有限元分析的统一方法——泛惩罚有限元素法,此为建立各种类型的有限元格式提供了正确的途径。证明了混合/杂交元和罚函数单元又是其中的泛惩罚函数的二种简单构造。导出了一个有效的罚一对偶有限元格式和其修正格式,这种格式不仅保证了数值解的收敛性,同时克服了单纯罚单元的弊病,具有较高的数值精度和稳定性。并具体构造了一个泛惩罚余能有限元格式。
     7、编制了弹塑性分析的泛惩罚有限元程序,提出了一种降低非线性有限元规划问题自由度的计算方法,从而大大提高了计算效率。对工程问题进行了实际应用,大量数值实验结果证明了本文理论分析和数值方法的正确性。
Based on the mathematical theory of nonsmooth analysis, a systematical research has been devoted in this dissertation to problems on the plastic potential theory, variational boundary value problems, limit analysis, nonlinear finite element analysis and numerical procedures etc.. The work carried out includes the following:
     1. A couple of generalized conjugate plastic postulates are proposed, which can be used in analysis of elastoplastic coupling for both hard materials(such as usual structural metal) and soft materials (such as excelsior, foam rubber, grain material and some polymer etc.). From these postulates, the corresponding generalized constitutive relations are established, which permit the study of large classes of materials. In addition, the loading-unloading criterion for nonconvex plastic potential is given by use of the concept of generalized gradient in Clarke's sence, and the classical plastic potential is replaced by the generalized superpotentials, which yield the correct and symmetric mathematical expressions of constitutive relations.
     2. According to the generalized plastic postulates, two conjugate energy bounding theorems for deformation theories are developed in the form of variational inequalities, which yield the dual-complementary variational principles for general materials including strong physical nonlinearities and discontinuities ( like jumps, locking effects, etc.). The extremum properties of variational functional ( such as Hamiltonian, Lagrangian and psudo-Hamiltonian etc. ) are studied and the existence and uniqueness of solutions for variational boundary value problems are proved by using convex analysis theory.
     3. In chapter 5 of this thesis, a true complementary energy variational principle for elasto-perfect plasticity is established with the aid of Fenchel transformation. Based on the property of plastic super-potantial in this principle, two kinds of variational principles are constructed. The first one is a penalty-type principle, which possesses obviously physical significance, and the other one is a duality-type principle, in which the dual variable satisfying the so-called constraint qualification in nonlinear programming is suggested. By joining these two principles together, an interesting penalty-duality variational principle is established, which is not only rigorous in theory, but also of practical value in engineering applications.
     4. The dual bounding theorems and a generalized variational principle for limit analysis are established in chapter 6 of this thesis. Based on the duality-type principle in this problem, a new lower bound theorem is stated, in which, the yield condition is relaxed, and a mean-value theorem is proved which gives the safety factor lying between the upper and lower bounds obtained by classical bounding theorems with the same kinematically and statically admissiol (?) Moreover, a penalty-duality algorethm for the safety factor of limit analysis is developed, and the application of these theorems are illustrated by several examples.
     5. As a philosophy by-product, a universal complementary-dual principle of continuum mechanics is advanced in this Ph. D. thesis, which may be described as follows :
     Let U be a general displacement space and U~* be a complementary general force space (here, the terminology " complementary " is inphilosophical sence ), then, if there exists a theorem about U, we musthave a dual theorem about U~* if we have a theorem defined on the multiplicative space U×U~*, exchange the place of dual variables in this theorem, then a new dual theorem may be obtained.
     All the theorems proposed in this thesis may be considered as applications of this principle.
     6. Based on the theory of nonlinear programming, a unified formula----Panpenalty Finite Element Method ---- is established for variational boundary value problems with general constraint conditions. Which provides a correct way to construct various finite element models, it is proved that the hybrid/mixed type model and pure penalty type model are no more than simple construction of the panpenalty function in this formula. An efficient penalty-duality finite element model and its modified model are constructed, the positive definite Hessian matrix of these two models may be obtained for some given penalty factors determined by certain conditions, meanwhile, the disadvantages of pure penalty type model are overcome.
     Application of this method is illustrated by examples of comple- mentary energy principle of elasticity, the analysis for incompressible medium ( examples of linear problem with equality constraint ) and the plastic limit analysis (examples of nonliear problem with inequality constraint).
     7. A nonlinear programming algorethm is described in chapter 10, which gives an efficient solution of nonlinear finite element equations and a variable metric method based on DFP-BFGS updating is suggested in this algorethm for solving the unconstrained minimization problem. In order to reduce the number of degrees-of-freedom in nonlinear finite element equation, a generalized matrix inverse technique is adopted. And this results in a decrease to a great extant in computer time.
     Based on the theories established in this thesis, a computer program PFP ( Panpenalty Finite element Programming ) consisting of about 4000 Fortran statements is developted. Using this program, several engineering problems are calculated, and great number of numerical tests show that the present theories and methods give results with better convergency and higher numerical precision.
引文
1. Oden,J.T. & Reddy, J.N., Variational Methods in Theoretical Mechanics,Second Edition, Springer-Verlag, 1983.
    2. Washizu, K., Variational Methods in Elasticity & Plasticity, Third Edition, Pergamon Press, 1982.
    3.钱伟长,变分法及有限元,上册,科学出版社,1980.
    4.胡海昌,弹性力学的变分原理及其应用,科学出版社,1981.
    5. Fraeijs de V(?)ubeke, B.M., Upper and Lower Bounds in Matrix Structural Analysis, in "Matrix Methods of Structural Analysis, B.M. Fraeijs de Veubeke (ed.), Pergamon Press, Oxford, 1964.
    6. Fraeijs de Veubeke, B.M., Displacement and Equilibrium Methods in the Finite Element Hethods, in "Stress Analysis", O.C. Zienkiewicz and G.S. Holister (ed.), Wiley, London, 1965, pp. 145
    7. 卞学鐄,有限元法论文选,国防工业出版社,1980.
    8. Tang Limin (唐立民), Chen Wanji (陈万吉), Liu Yingxi (刘迎曦), String net Function Approximation and Quasi-Conforming Technique, in "Hybrid and Mixed Finite Element Methods", S.W. Atluri, R.H. Gallagher and O.C.Zienkiewicz (ed.), John Wiley & Sons, 1983, pp. 173-188.
    9.钱伟长,非协调元和广义变分原理,有限元法邀请学术报告会,安徽,合肥,1981,5.
    10. Herrmann, L.R., Elasticity Equations for Incompressible and Nearly Incompressible Materials by a Variational Theorem, AIAA J. Vol. 3,No. 10(1965), pp. 1896-1900.
    11.高扬,刚塑性介质变分原理的统一理论及罚一对偶有限元素法,合肥工业大学之报,4(1983),pp.91-97
    12. Oden, J.T., A Theory of Penalty Methods for Finite Element Approximations of Highly Nonlinear Problems in Continuum Mechanics, Computers and Structures, Vol. 8,1978, pp.445-449.
    13. Oden, J.T., RIP Methods for Stokesian Flows, Third International Conference on Finite Elements in Flow Problems, Banff Center, Banff,Alberta, June 10-13, 1980.
    14. Oden, J.T., Kikuchi, N. & Song, Y.J., An Analysis of Exterior penalty Methods and Reduced Integration for Finite Element Approximations of Contact Problems in Incompressible Elasticity, TICOM Report 79-10,Texas, Austin, 1979.
    15. Oden, J.T., Kikuchi, N., Finite Element Methods for Constrained problems in Elasticity, Int. J. Num. Meth. Eng., Vol. 18, 1982,pp.701-725.
    16. Oden, J.T., Mixed Finite Element Approximations via Interior and Exterior Penalties for contact Problems in Elasticity, in "Hybrid and Mixed Finite Element Methods",S.N. Atluri, R.H. Gallagher and O.C.Zienkiewicz, John Wiley & Sons, 1983, pp.467-486.
    17. Moreau, J.J., Fonctionnelles Sous- differentiables, C. R. Acad. Sci.Paris, Ser. A, 257(1963), pp. 4117-4119.
    18. Moreau, J.J., On Unilateral Constraints, Frection and Plasticity,in"New Variational Techniques in Mathematical Physics",Centro Internationale Matematico Estivo, Ⅱ Ciclo 1973,G. Capriz & G. Stampacchia (ed.) , Edizioni Cremonese, Roma, 1974, pp.175-322.
    19. Panagiot poulos, P.D., Convex Analysis and Unilateral Static Problems,Ing. Archiv. Bd. 45, H.1(1976), S. 55-68.
    20. Nguyen, Q.S., Materiaux Elasto-visco-plastiques et Elastoplastiques a Potentiel Generalise, C. R. Acad. Sci. Paris, Ser. A, 277(1973),915-918.
    21. Moreau, J. J., La Convexite en Statique, in "Analyse Convexe et ses Applications", J. P. Aubin (ed.), Lecture Notes in Economics and Mathematical Systems, No. 102 (1974), Springer-Verlag, pp. 141-167.
    22. Moreau, J. J., One-sided Constraints in Hydrodynamics, in "Nonlinear Programming", J. Abadie (ed.), North-Holland Pub. Co. 1967, pp. 261-279.
    23. Clarke, F. H. ,Necessary Conditions for Nonsmooth Problems in Optimal Control and the Calculus of Variations, Thesis, Univ. of Washington,Seattle (1973).
    24. Clarke, F. H., Generalied Gradients and applications, Trans. Am. Math.Soc., 205(1975), pp. 247-262.
    25. Clarke, F. H., A New Approach to Lagrange Multipliers, Math. of Op. Research 1(1976), pp. 165-174.
    26. Rockafellar, R. T., Generalized Directional Derivatives and Subgradients of nonconvex Functions, Can. J.Math. Vol.32, No. 2(1980),pp.257-280.
    27. Rockafellar, R. T., La Theorie des Sous-Gradients et Ses Applications a l'Optimisation: Fonctions Convexes et Nonconvexes, Collection Chaire Aisenstadt, Presses de l'Universite de Montreal, 130 pp.
    28. Panagiotopoulos, P. D., Nonconvex Energy Functions . Hemi-variational Inequalities and Substationarity Principles, Acta Mechanica, 48(1983),pp. 111-130.
    29. Rockafellar, R. T., Convex Analysis, Princeton Univ. Press, 1970.
    30. Ekeland, I. & Temam, R., Convex Analysis and Variational Problems,North-Holland, 1976.
    31. Aubin, J. P., Ekeland, I., Applied Nonliear Analysis, John-Wiley & Sons,Inc., 1984, 518pp.
    32. Avriel, M., Nonliear Programming Analysis and Methods, Prentice-Hall, Inc., 1976.
    33. Clarke, F. H., Optimization and Nonsmooth Analysis, John Wiley & Sons,Inc., 1983, 308pp.
    34. Panagiotopoulos, P. D., Nonsmooth Mechanics and Its Applications,in " Proc. Int. Conf. Nonliear Mech.", Chien Wei-zang (ed.-in-Chief),Science Press, Beijing, China 1985, pp. 33-39.
    35.夏道行,吴卓人,严绍宗,舒五昌,实变函数论与泛函分析,高等教育出版社,1979.
    36. Drucker, D. C., A More Fundamental Approach to Plastic Stress-Strain Relations, in " Proc. First U. S. National Congress on Applied Mechanics ", Chicago, 1951, pp. 487-491.
    37. Drucker, D. C., On Uniqueness in the Theory of Plasticity, Quart.Appl. Math., 14(1956), pp. 35-42.
    38. Zhukov, A., Plastic Deformations of Isotropic Metals in Combined Loading (in Russian), Izv. Akad. NauK. SSSR OTN 12,1956,pp.72-87.
    39. Ilyushin, A.A., On the Increment of Plastic Deformation and Yield Function (in Russian), Prikl Math. Mech., 24, 1960, pp.663-666.
    40.黄克智,损伤与断裂,教育部塑性力学讲习班讲座,北京大学,1985年2月.
    41. Ilyushin A. A., On the Postulate of Plasticity, Prik. Math. Mech.,25(1961), pp. 503-507.
    42. 曲圣年,殷有泉,塑性力学的Drucker公设和Ilyushin公设,力学学报,5(1981), 465-473页.
    43. Weisskopf, V. F., Physics in the Twentieth Century, Selected Eassys,MIT Press,1972. (中译本,廿世纪物理学,科学出版社,1979)
    44. Moreau, J. J, La Notion de Sur-Potentiel et les Liaisons Unilaterales en Elastostatique, C. R. Acad. Sc., 267(1968), pp. 954-957.
    45. Moreau, J. J., Convex Analysis and Applied in System of elastoplasticity, in " Applications of Methods of Functional Analysis to Problems in Mechanics", P. Germain & B. Nayroles (ed.), Springer-Verlag (1976), pp. 56-89.
    46. Panagiotopoulos, P. D., Dynamic and Incremental Variational Inequatity Principles, Differential Inclusions and Their Applications to Co-Existent Phases Problems, Acta Mechanica, 40(1981),pp. 85-107.
    47. Panagiotopoulos, P. D., Nonconvex Superpotentials in the Sense of F. H. Clarke and Applications, Mech. Research Commun., vol. 8(6),1981, pp.335-340.
    48. Germain, P., Nguyen, Q. S. & Suquet, P., Continuum Thermodynamics,Trans. of the ASME, J. Appl. Mech., Vol. 50,Dec. 1983,pp.1010-1020.
    49.殷有泉,曲圣年,弹塑性耦合和广义正交法则,力学之报,1(1982), 63-70页.
    50. 王仁,熊祝华,黄文彬,塑性力学基础,科学出版社,1982,598 pp.
    51.高杨,互补对偶之道,(Ⅰ)自然科学系统中的互补对偶原理,清华研究生杂志,1986年,第一期.
    52. Prager, W., On Ideal-Locking Materials, Trans. Soc. Pheol., 1 (1957),PP. 169-175.
    53. Nguyen, Q. S. et Halphen, B., Sur les Lois de Comportement ElastoVisco-Plastique a Potentiel Generalise, C. R. Acad. Sc. Paris, t.277 Serie A, 1973, pp.319-322.
    54. Halphen, B. & Nguyen,Q. S., Sur les Materiaux Standards Generalises,J.de Mecanique, 14(1975), pp. 39-63.
    55. Panagiotopoulos, P. D., Non-Convex Energy Functionals, Application to Non-Convex Elastoplasticity, Mech. Res. Commun., Vol. 9 (1), 1982,pp. 23-29.
    56. Tonti, E., A Mathematical Model for Physical Theores, Report Instituto di Meccanica Razionale del Politecenico di Milano Piazza da Vinci 32-20133, Milano, Italy (1972).
    57. Arthurs, A. M., Complementary Variational Principles, Sec. Ed.,Clarendon Press, 1980, 154pp.
    58. Oden, J. T. & Raddy, J. N., On the Dual Complementary Variational Principles in Mathematical Physics, Int. J. Eng. Sci., Vol. 12 (1974),pp. 1-29.
    59. Oden, J. T., The Classical Variational Principles of Mechanics, in " Energy Methods in Finite Element Analysis ", R. Glowinski, E. Y.Rodin, O. C. Zienkiewicz (ed.), John Wiley & Sons, 1979,pp.1-37.
    60. Prager, W. & Synge, J. L., Approximations in Elasticity Based on the Concept of Function Space, Quart, Appl. Math., Vol. 5, No. 3 (1947), pp. 241-269.
    61. Synge, J. L., The Hypercircle Method in Mathematical Physics, Cambridge Univ. Press, 1957.
    62. Stumpf, (?).,Generating (?)unctionals and (?) Principles in NonLinear Plate and Shallow Shell theory, Lecture Notes in Mathamatics,503, Springer-Verlag, 1976, pp. 500-510.
    63. Stumpf, H., Dual Extremum Principles and Error Bounds in Nonlinear Elasticity Theory, J. Elasticity, 8 (1978), pp. 425-438.
    64. Stumpf, H., Zur Dualitat in der Nichtlinearen Elastizitatstheorie,ZAMM 57 (1977),T157-T159.
    65. Stumpf, H., The Principle of Complementary Energy in Nonliear Plate Theory, J. Elasticity, 6(1976), pp. 1-10.
    66. Stumpf, H., Generalization of the Hypercircle Method and Pointwise Error Bounds in Nonlinear Elasticity, in " Variational Methods in Mechanics of Solids ", S. Nemat-Nasser (ed.), Pergamon Press, 1978,pp. 121-126.
    67. Sewell, M. J., On Legendre Transformations and Umbilic Catastrophes,Math. Proc. Camb. Phil. Soc., 83 (1978), pp. 273-288.
    68. Sewell, M. J., Legendre Tansformations and Extremum Principles, in " Mechanics of Solids ",The Rodney Hill 6Oth Anniversary Volume, H. G.Hopkins & M.J. Sewell (ed.), Pergamon Press, 1982, pp. 563-650.
    69. Martin, J. B., Plasticity, Fundamentals and General Results, MIT Press 1975, 931pp.
    70. 胡海昌,关于拉格朗日乘子及其它,力学学报,17,5(1985),426页.
    71. 玻尔,原子论和自然的描述,商务印书馆,1981.
    72.徐利治,数学方法论选讲,华中工学院出版社,1983年。
    73.卓荣培,刘文杰,时空对称性与守恒定律,高等教育出版社,1982年。
    74. 高扬,互补对偶之道,(Ⅱ)思源系统中的互补对偶原理,清华研究生杂志,1986年,第一期。
    75.高玉臣,黄克智,理想弹塑性平面应变问题,力学之报,1981年特刊.
    76. Duvant, G. & Lions, J. L., Inequations in mechanics and Physics,Dunod, Paris, 1977.
    77. Nayroles, B., Quelques Applications Variationnelles de la Theorie des Fonctions Duales a la Mecanique des Solides, J. Mecan.,10(1971),pp. 263-289.
    78. Mercier, B., Sur la Theorie et l'Analyse Numerique de Problemes de Plasticite, These, Universite de Paris, 1977.
    79. Suquet, P., Existence et Regularite des Solutions des Equations de la Plasticite Parfaite, C. R. Acad. Sc., Paris, T286, Serie D,1978,pp. 1201-1204.
    80. Temam, R. & Strang, G., Duality and Relaxation in the Variational Problems of Plasticity, J. de Meca., Vol. 19, No. 3 (1980),pp. 493-527.
    81. Temam, R. & Strang G., Functions of Bounded Deformation, Arch. Rat.Mech.(?), Vol. 75, No. 1 (1980), pp. 7-21.82. Kohn, R. & Temam,R., Dual Spaces of Stresses and Strains, wit Applications to Hencky Plasticity, Appl. Math. Optim.,10 (1983),pp. 1-35.
    83. Anzellotzi,G. & G(?)aquirta, M., On the Existence of the Fields of Stresses and Displacements for an Elasto-Perfactly Plastic Body in Static Equilibrium, J. Math. Pures et Appl., 61 (1982), pp. 219-244.
    84. Hardt, R. & Kinderlehrer, D., Elastic Plastic Deformation, Appl.Math. Optim.,10 (1983),pp. 203-246.
    85. Temam, F, Problemes Mathenatiques (?) Bordas, Paris,1983, 353pp.
    86. Gao Yang (高掦) & Hwang Keh-chih (黄克智), On the Complementary Energy Variational Principle for Hencky Plasticity, in " Proc. Int.Conf. Nonlinear Mechanics ", Shanghai, China, 1985, Editor-in-Chief By Chien Wei-zang, Science Press, pp. 489-494.
    87. Mokhtar S.,Bazaraa & Shetty, C. M., Nonlinear Programming Theory and Algorithms, John Wiley & Sons,1979, 560pp.
    88. 高掦,非连续流动场中极限分析的广义变分原理,合肥工业大学学报,1(1982), 44-51页.
    89. Temam, R., Mathematical Problems in Plasticity, in " Computational Methods in Nonlinear Mechanics ", J. T. Oden (ed.), North-Holland,1980, pp. 475-483.
    90.钱令希,钟万勰,论固体力学中的极限分析并建议一个一般变分原理,力学学报,6(1963),4,287-303页。
    91.王治平,用一般变分原理求初轧机轧制压力,力学学报,8(1966),2,141-149页.
    92.王仁,黄文彬,曲圣年等,对“论固体力学中的极限分析并建议一个一般变分原理”一文的讨论,力学学报,8(1965),1,63-76.
    93. 薛大为,建议一组关于极限分析的定理,科学通报,20 (1975),4, 175-181页。
    94. 薛大为, 一个关于大变形的极限分析定理,科学通报(数学物理化学专辑), 25(1980).
    95.金伏生,建议一个极限分析的广义变分原理,固体力学学报1(1981),107页.
    96. Mura, T. & Lee, S. L., Application of Variational Principles of Limit Analysis, Quart. Appl. Math., Vol. 21, No. 3(1963), pp. 243-248.
    97. Mura, T.,Kao, J. S. & Lee, S. L., Limit Analysis of Circular Orthotropic Plates, J. Eng. Mech. Div. ASCE, Em5, Oct. (1964), pp.375-395.
    98. Lee, S. L., Mura, T. & Kao, J. S., A Variational Method for the Limit Analysis of Anisotropic Plates, Quart.Appl. Math., Vol. 24,No. 4 (1967), pp. 323-330.
    99. Mura, T., Lee, S. L. & Bryant, R. H., Rimawi, W. H., Limit Analysis by Direct Method of Variation, J. Eng. Mech. Div., ASCE, Em5, Oct.(1967), pp. 67-78.
    10O.Bryant, R. H., Lee, S. L. & Mura, T., Mises Limit Load for Simply Supported Conical Sendwich Shell Under Internal Pressure, Ing. Arch., 37 (1969), pp. 281-287.
    101. Valentine, F. A., The Problem of Lagrange with Differential Inequalities as Added side Conditions, in " Contributions to the Calculus of Variations," 1933-1937, University of Chicago Press, 1937.
    102.程极泰,最优设计的数学方法,国防工业出版社,1981.
    103. 高扬,极限分析的广义界限定理,应用数学和力学,第四卷,第四期,1983年,527-538页。
    104.高扬,一组关于压力加工中求解极限载荷的公式,全国第二届塑性加工理论年会(?)读论文,北京航空学院科研报告BH-B754, 1981.
    105.高扬,凸弯边件高压橡皮成形机理的研究,北京航空学院硕士学位论文,1981。
    106. 高扬,论刚塑性混合介质极限分析的广义变分原理,合肥工业大学学报,第一期(1984),1-14。
    107. Hopkins, H. G., Wang, A. J.(王仁),(?)for Circular Plates of Perfactly (?)trary yiela Condition, J. Mech. Phys. Sol., Vol. 3, No. 2(1954), pp. 117-129.
    108. Pian, T. H. H. & Mau, S. L., Some Recent Studies in Assumed Stress Hybrid Models, Advance in Computational Methods in Structural Mechanics and Design, J. T. Oden & Clough,R. W. Clough and Y. Yamamoto (ed.), UAH Press, 1972, pp. 87-106.
    109. Brezzi, F., On the Existence, Uniqueness and Approximation of Saddle Point Problems Arising from Lagrangian Multipliers, RAIRO Anal. Numer., Vol. 8, R-2, 1974,pp. 129-151.
    110. 胡海昌,广义变分原理在近似解中的合理应用,力学之报,1(1981),1-21页。
    111. 卞学鐄,论固体力学中的杂交元与混合元,北京航空学院学报,2(1982),1-15。
    112.Pian, T.H. H., Evolution of Assumed Stress Hybrid Finite Element,4th World Congress and Exhibition on Finite Element Methods, Interlaken, Switzerland, 17-21, Sept. 1984.
    113. Pian, T. H. H., Chen, D. P. & David Kang, A New Formulation of Hybrid/Mixed Finite Element , Computers & Structures Vol. 16, No. 1-4, 1983, pp.81-87.
    114.吴长春,狄生林,杂交元的优化设计,一个具有非协调位移试解的等参应力杂交元,中国科学技术大学,1985.
    115. Tang Limin (唐立民), Chen Wanji (陈万吉), Liu Yingxi (刘迎曦), QuasiConforming Element and Generalied Variational Illegalites, Proc. of Symposium on Finite Element Method, Science Press, Beijing, China,Gordon and Breach, Science Publisher, Inc., 1982,. pp. 353-369.
    116. Babuska, I., The Finite Element Method with Penalty, Tech. Note BN-710, The Institute for Fluid Dynamics and Applied Mathematic, Univ. of Maryland, August 1971.
    117. Zienkiewicz O. C., Constrained Variational Principles and penalty Function Methods in Finite Element Analysis, Lecture Notes in Mathematics, Conf. on the Numerical Solution of Differential Equations,G. A. Watson (ed.), Springer-Verlag, 1974, pp.207-214.
    118. Taylor, R. T. & Zienkiewicz, O. C., Complementary Energy with P nalty Function in Finite Element Analysis, R. Glowinski, E.Y. Rodi O. C. Zienkiewicz (ed.), John Wiley & Sons, 1979,pp.153-174.
    119. Malkus, D. S., Hughes, T. T. R., Mixed Finite Element MethodsReduced and Selective Integration Techniques: A Unification of Conceptes, Computer Methods in Applied Mechanics and Engineering,Vol. 15,No. 1, 1978, pp. 63-81.
    120.唐立民,刘迎曦, 多变量拟协调元方法与罚函数这不可压缩单元,合肥工业大学学报,4(1983).
    121. Hestenes, M. r., Multiplier and Gradient Methods, J. Optimization Theory & Appl., 4(1969), pp. 303-320
    122. Powell, M. J. D., A Method for Nonlinear Constraints in Minimization Problems, in " Optimization ", R Fletcher (ed.), Academic Press, 1969.
    123. Ciarlet, P.G., The Finite Element Method for Elliptic Problems, North-Holland, 1978, pp. 530.
    124. Xue, Wei-min (薛伟民), Existence,(?)niqueness, and Stablity Conditions for General Finite Element Methods in Linear Elasticity, Ph. D. Thesis, Georgia Institute of Technology, April 1984.
    125. Oden, J T. & Carey, G. F., Finite Elements Mathematical Aspects,Vol. 4 , Prentic-Hall, Inc., 1983.
    126.上海科学技术出版社,1984,205pp.
    127. Fletcher, R., A Class of Methods for Nonlinear Programming III,Rates of Convergence, in " Numerical Methods for Non-linear Optimization ", F. A. Lootsma (ed.), Academic Press, London, 1972, pp.157-175.
    128. Pian, T. H. H., Tong, P., Reissner's Principle in Finite Element Formulations, in " Mechanics Today ", Vol. 5, S. Nemat-Nasser (ed.),Pergamon Press, 1980, pp. 377-395.
    129.吴长春,纪振义,不可压缩材料分析的多变量元级三(?)去法,中国科学技术大学,1984。
    130. Cohn, M, Z. & Maier, G. (ed.), Engineering Plasticity by Mathamatical Programming, Proc. of the NATO Advanced Study Institute,Univ.of Waterloo, Aug. 2-12, 1977, Pergamon Press, 648pp.
    131. Maier, G. & Munro, J., Mathematical Programming Applications to Engineering Plastic Analysis, Appl. Mech. Rev., Vol. 35, No. 12,1982, pp. 1631-1643.
    132. Charnes, A., Lemke, C. E. & Zienkiewica, O. C., Virtual Work,Linear Programming and Plastic Limit Anslysis, Proc.of the Royal Society, London, A 251, 1959, pp. 110-116.
    133. Prager, W., Linear Programming and Structural Design, I. Limit Analysis ,Rand Corporation, Report P-1122 (1957),pp. 6-26.
    134. Hayes, D.J., Marcal, P. V., Deteination of Upper Bounds for Problems in Plane Stress Using Finite Element Techniques, Int. J.Mech. Sci., 9 (1967), pp.245-251.
    135. Lee, C. H. & kobayashi, S., New Solutions to Rigid-Plastic Beformarion Problems Using a Matrix Method, J. Eng. Industry, Vol. 95,1973, pp. 865-873.
    136. Belytschko, T. & Hodge, P. G., Jr., Plane Stress Limit Analysis by Finite Element, J. Eng. Mech. Div., ASCE, 96 (1970), pp. 931-944.
    137.Lysmer, J., Limit Analysis of Plane Problems in Solid Mechanics, J.Soil Mech. Fundations Div., ASCE, 96 (1970), pp. 1311-1334.
    138. Ranawerra, M. P. & Leckie, F. A., Bound Methods in Limit Analysis,in " Finite Element Techniques in structural Mechanics ", H. Tortenham & C. Brebbia (ed.), Southampton, Engl., Southampton Univ. Press,1970.
    139. Hutala, D. N., Finite Element Limit Analysis of Two-Dimensional Plane Structures, in " Limit Analysis Using Finit Elements ", Prec.Winter Ann. Mtg ASME, New York (Dec. 1976).
    140. Anderheggen, E. & H. Knopfel, Finite Elements Limit Analysis Using Linear Programming, Int. J. Solid Struct., 8 (1972), pp. 1413-1431.
    141. Laudiero, F., Limit Analysis of Plates with Piecewise Linear Yield Surface, Meccanica (June 1972).
    142. Faccioli, E. & Vitiello, E., A Finite Element Linear Programming Method for the Limit Analysis of Thin Plates, Int. J. Num. Meth. Eng., 5(1973).
    143. Lamblin, D., Guerlement, G., & Cinquini, C., Analyse Limite des Coques Cylindriques par la Programmation Lineaire, J. de Mecanique,20 (1981), pp. 379-398.
    144. Lamblin, D., Cinquini, C.& Guerlement,G., Application of Linear Programming to the Optimal Plastic Design of Circular Plates Subject (?)Meth.ppl. Mech.Eng.,13
    (1978), pp.233-243.
    145. 北原義之,小坂田宏造,藤牛進,鳴(?)良之助,系宗形设画法应用(?)太平面(?)塑性加工问题の解析,日本机械学会论文集,44卷,385号,(?)53-9,pp.3268-3276.
    146. Casciano, R. & Cascini, L., A Mixed Formulation and Nixed Finite Elements for Limit Analysis, Int. J. Num. Meth. Eng., 18(1982),pp.211-243.
    147. Christiansen,E., Limit Analusis as an Mathematical Programming Problem, Calcolo, 17(1980),pp.41-65.
    148. Christiansen, E., Limit Analysis for Plastic Plates, SIAM J. Math. Anal., 11(1980), pp.514-522.
    149. Christiansen, E., Matthies, H. & Strang, G., The Sadle Point of a Differential Program, in Energy Methods in Finite Element Analysis,R. Glowinsky, E. Roan & O. C. Zienkiewicz (ed.), John Wiley & Sons,1979, pp.309-318.
    150. Christiansen, E., Computation of Limit Loads, Int. J. Num. Meth. Eng., 17(1981), pp. 1547-1570.
    151. Christiansen, E., & Larsen, S., Computstions in Limit Analysis for Plastic Plates, Int. J. Num. Meth. Eng., 19(1983), pp, 169-184.
    152.陈铁云,沈伟琴,杆系结构极限分析的惩罚线性规划法,计算结构力学及其应用,第一卷,第二期,1984,1-10页。
    153. 龙驭球,有限元法概论,人民教育出版社,1980年。
    154. Johnson, C. & Scott, R., A Fibte Element Method for Problems in Perfect Plasticity Using Discontinuous Trial Functions, in "Nonlinear Finite Element Analysis in Structural Mechanics, Wunderlich, Sein (ed,), Springer-Verlag, 1981, pp. 307-324.
    155. Ang, A. H. & Lopez, L. A., Discrete Model Analysis of Elastic Plastic Plates, J. Eng. Mech. Div. ASCE, 94 (1968), pp. 271-293.
    156. Prager, W. & Hodge, P. G., Jr., Theory of Perfectly Plastic Solids,Wiley, New York, 1951.
    157. Spencer, A. J. M,, The solution of Plane Elastic/plastic Problems by Relaxation Methods, Appl. Sci. Res., sect. A, 12, 1964, pp.391-406.
    158. 徐利治,周蕴时,高维数值积分,科学出版社,1980年。
    159. Salzer, H. E., Some New Divided Difference Algorithms for Two Variables, in " On Numerical Approximation ", Wisconsin Univ. Press,1959, pp. 45-98.
    160. Davidon, W. C., Variable Metric Method for Minimization, AEC Res.and Development Report ANL-5990(Rev.), Novemble 1959.
    161. Casciaro, R. & Di Carlo, A., Formulazione dell'Analisi Limite delle Piastre Come Problema di Minimax, Mediante una Rappresentazione agli Elementi Finiti del Campo delle Ter sioni, Nota I, Giornale del Genio Civile, Fasc, 2, pp. 87-108, Fabbraio 1970.
    162. Matthies, H. & Strang, G., The Solution of Nonliear Finite Element Equations, Int. J. Num. Meth. Eng. Vol. 14, 1979, pp 1613-1626.
    163. Strang, G., Matthies, H. & Temam, R., Mathematical and Computational Methods in Plasticity, in " Variational Methods in Mechanics of Solids ", S. Nemat-Nasser (ed.), Pergamon Press, 1978, pp. 20-28.164. Fletcher, R., Anew Approach to Variable Metric Algorithms, Comput.J., 13 (1970), pp.317-322.
    165 Coldiar,(?) Without Line Searches Using Factorized Variable Metric Updating Formulas, Math. Prog.,13 (1977), pp.94-110.
    166. Einstein, A. (爱因斯坦), Essays in Science, Philosophical Library,1934, P.14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700