5'-磷酸腺苷诱导低温治疗急性痛风性关节炎的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨5’-磷酸腺苷(Adenosine 5'-Monophosphate,5'一AMP)诱导的低温对于急性痛风性关节炎的早期炎症反应的抑制作用。
     方法通过建立大鼠低温急性痛风性关节炎模型,分别检测大鼠踝关节滑膜组织病理切片,外周血白介素-1β(Interleukin-1β,IL-1β)和基质金属蛋白酶-9(Metall oproteinase-9,MMP-9)的水平以及关节滑膜组织核转录因子KB(Nuclear Factor-κappaB,NF-κB)通路的激活情况,来观察5’AMP是否能有效地抑制急性痛风性关节炎大鼠早期的炎症反应。结果5’-AMP诱导的低温能够有效地抑制急性痛风性关节炎早期的炎症反应。其作用表现在以下方面:1)大鼠踝关节肿胀度的明显减轻(p<0.001);2)大鼠踝关节滑膜组织的炎症细胞浸润、水肿、充血的明显减轻;3)外周血IL-1β(p<0.001)和MMP-9(p<0.001)水平的显著降低;4)关节滑膜组织NF-KB活性的显著抑制(p<0.001)。
     结论5’-AMP诱导的低温可以通过抑制NF-KB通路来抑制急性痛风性关节炎大鼠早期的炎症反应,为以后临床的治疗提供了理论和实验室依据。
Objectives:To investigate the effect of the hypothermia induced by Adenosine 5'-Monophosphate (5'-AMP) on gouty arthritis.
     Methods:Ankle joint injection with monosodium urate monohydrate (MSU) crystals in hypothermia rats model which was induced by 5'-AMP, and then observe the effect of hypothermia induced by 5'-AMP on acute gouty arthritis via detecting the swelling of rat ankle, serum level of Interleukin-1β(IL-1β) and metalloproteinase-9 (MMP-9), the synovium tissue of rat ankle and the Nuclear Factor-KappaB (NF-κB) activity.
     Results:The hypothermia induced by 5'-AMP has protective effects on acute gouty arthritis, which was demonstrated by the following criteria:1) a significant reduction of the ankle swelling (p<0.001); 2) a significant decrease in the occurrence of leukocyte infiltration and mild hemorrhage; and 3) a significant reduction in the presence of IL-1β(p<0.001) and MMP-9 (p<0.001).4) a significant inhibition in the Nuclear Factor-κappaB (NF-κB) activity (p<0.001).
     Conclusions:Hypothermia induced by 5'-AMP could inhibit acute inflammation reaction and protect the synovial tissue against acute injury in a rat acute gouty arthritis model.
引文
1. Alfred Baring Garrod (1819-1907). A Treatise on gout and rheumatic gout. PA: BiblioBazaar; 2010.2.
    2. Mccarty DJ, Hollander JL. Identification of urate crystals in gouty synovial fluid. Ann intern Med.1961; 54:452-60.
    3. Di Giovine FS, Malawista SE, Nuki G, et al. Interleukin-1 (IL-1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL-1. J Immunol.1987; 138:3213-8.
    4. Chapman PT, Yarwood H, Harrison AA, et al. Endothelial activation in monosodium urate monohydrate crystal-induced inflammation:in vitro and in vivo studies on the roles of tumor necrosis factor alpha and interleukin-1. Arthritis Rheum.1997; 40:955.
    5. Chen CJ, Shi Y, Hearn A, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammationstimulated by monosodium urate crystal. J Clin Invest.2006; 116:2262.
    6. Han HS, Karabiyikoglu M, Kelly S, et al. Mild hypothermia inhibits nuclear factor-κappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003; 23:589-98.
    7. Diestel A, Roessler J, Berger F, et al. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells. Cryobiology.2008; 57:216-22.
    8. Stewart CR, Landseadel JP, Gurka MJ, et al. Hypothermia increases interleukin-6 and interleukin-10 in juvenile endotoxemic mice. Pediatr Crit Care Med.2010; 11:109-16.
    9. Koda Y, Tsuruta R, Fujita M, et al. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res.2010; 1311: 197-205.
    10. Holzer M, Bernard SA, Hachimi-idrissi S, et al. Hypothermia for neuroprotection after cardiac arrest:systematic review and individual patient data meta-analysis. Crit Care Med.2005; 33:414-8.
    11. Tisherman SA. Hypothermia and injury. Curr Opin Crit Care.2004; 10: 512-9.
    12. Alam HB, Chen Z, Honma K, et al. The rate of induction of hypothermic arrest determines the outcome in a swine model of lethal hemorrhage. J Trauma.2004; 57:961-9.
    13. Damian MS, Ellenberg D, Gildemeister R, et al. Coenzyme Q10 combined with mild hypothermia after cardiac arrest:a preliminary study. Circulation. 2004; 110; 3011-6.
    14. Wu X, Kochanek PM, Cochran K, et al. Mild hypothermia improves survival after prolonged, traumatic hemorrhagic shock in pigs. J Trauma.2005; 59: 291-99.
    15. Kabon B, Bacher A, Spiss CK. Therapeutic hypothermia. Best Pract Res Clin Anaesthesiol.2003; 17:551-68.
    16. Zhang J, Kaasik K, Blackburn MR, et al. Constant darkness is a circadian metabolic signal in mammals. Nature.2006; 439:340-3.
    17. Lee CC. Is Human Hibernation Possible? Annu Rev Med.2008; 59:177-86.
    18. Tao Z, Zhao Z, Lee CC.5'-Adenosine Monophosphate Induced Hypothermia Reduces Early Stage Myocadia ischemic/reperfusion Injury in a Mouse Model. Am J Transl Res.2011; 3:351-61.
    19. Zhao Z, Miki T, Van Oort-Jansen A, et al. Hepatic gene expression profiling of 5'-AMP-induced hypometabolism in mice. Physiol Genomics.2011; 43:325-45.
    20. Zhang F, Wang S, Luo Y, et al. When hypothermia meets hypotension and hyperglycemia:the diverse effects of adenosine 5'-monophosphate on cerebral ischemia in rats. J Cereb Blood Flow Metab.2009; 29:1022-34.
    21. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science.2005; 308:518.
    22. Gordon C J. The therapeutic potential of regulated hypothermia. Emerg Med J. 2001; 18:81-89.
    23. Romanovsky AA, Shido O, Sakurada S, et al. Endotoxin shock-associated Hypothermia. How and why does it occur? Ann N Y Acad Sci.1997; 813: 733-7.
    24. Kurz A, Sessler DI, Narzt E, et al. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth.1995; 7:359-66.
    25. Leikin JB, Aks SE, Andrews S, et al. Environmental injuries. Dis Mon.1997; 43:809-916.
    26. Squire TL, Lowe ME, Bauer VW, et al. Pancreatic triacylglycerol lipase in a hibernating mammal. Ⅱ. Cold-adapted function and differential expression. Physiol Genomics.2003; 16:131-40.
    27. Barnes BM. Freeze avoidance in a mammal:body temperatures below 0℃ in an arctic hibernator. Science.1989; 244:1593-95.
    28. English TE, Storey KB. Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus. Arch Biochem Biophys.2000; 376:91-100.
    29. Churchill TA, Simpkin S, Wang LC, et al. Metabolic effects of cold storage on livers from euthermic and hibernating columbian ground squirrels. Cryobiology.1996; 33:34-40.
    30. Daniels IS, Zhang J, O'Brien WG 3rd, et al. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals. J Biol Chem.2010; 285:20716-23.
    31. Doherty JC, Kronon MT, Rotermund AJ Jr. The effects of short term cold storage upon ATP and 2,3-BPG levels in the blood of euthermic and hibernating thirteenlined ground squirrels Spermophilus tridecemlineatus. Comp. Biochem. Physiol Comp Physiol.1993; 1104:87-91.
    32. Braun KP, Brookman-Amissah S, Geissler K, et al. Whole-body cryotherapy in patients with inflammatory rheumatic disease. A prospective study. Med Klin (Munich).2009; 104:192-6.
    33. Mathews WB, Nakamoto Y, Abraham EH, et al. Synthesis and biodistribution of [11C]adenosine 5'-monophosphate ([11CJAMP). Mol Imaging Biol.2005; 7: 203-8.
    34. Mulquiney PJ, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations:computer simulation and metabolic control analysis. Biochem J.1999; 342:597-604.
    35. Swoap SJ, Rathvon M, Gutilla M. AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol.2007; 293:468-73.
    36. Stange K, Lagerkranser M, Rudehill A, Sollevi A. Effects of adenosine-induced hypotension on cerebral blood flow and metabolism in the pig. Acta Anaesthesiol Scand.1989; 33:199-203.
    37. Suzuki K, Uchida K, Nakanishi N, et al. Cilostazol activates AMP-activated protein kinase and restores endothelial function in diabetes. Am J Hypertens. 2008; 21:451-7.
    38. Akahoshi T, Namai R, Murakami Y, et al. Rapid induction of peroxisome proliferator-activated receptor gamma expression in human monocytes by monosodium urate monohydrate crystals. Athritis Rheum.2003; 48:231-9.
    39. Coderre TJ, Wall PD. Ankle joint urate arthritis (AJUA) in rats:an alternative animal model of arthritis to that produced by Freund's adjuvant. Pain.1987; 28: 379.
    40. Jones DH, Kong YY, Penninger JM. Role of RANKL and RANK in bone loss and Arthritis. Ann Rheum Dis.2002; 61:1132-9.
    41. Tchetverikov I, Ronday HK, Van EI B, et al. MMP profile in paired serum and synovia] fluid.samples of patients with rhemnatoid arthritis. Ann Rheum Dis. 2004; 63:881-3.
    42. Pascual E, Pedraz T. Gout. Curr Opin Rheumatol.2004; 16:282-6.
    43. Fan Z, Ban B, Yang H, et al. IL-1 beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NF-κappaB signaling pathways. Cytokine.2004; 28:17-24.
    44. Gruber BL, Sorbi D, Frech DL, et al. Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis:a potentially useful laboratory marker. Clin Immunol Immunopathol.1996; 78:161-71.
    45. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature.2006; 237-41.
    46. Guerne PA, Terkeltaub R, Zuraw B, et al. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum.1989; 32:1443-52.
    47. Terkeltaub R, Zachariae C, Santoro D, et al. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum.1991; 34; 894-903.
    48. Saren P, Welgus HG, Kovaneu PT, et al. TNF-alpha and IL-1 beta selectively induce expression of 92-KD gelatinase by humman macrophages. J Immunol. 1996; 157:4159-65.
    49. Church LD, Cook GP, McDermott MF. Primer:inflammasomes and interleukin Ibeta in inflammatory disorders. Nat Clin Pract Rheumatol.2008; 4:34-42.
    50. Martinon F, Glimcher LH. Gout:new insights into an old disease. J Clin Invest.2006; 116:2073-2075.
    51. So A, De Smedt T. Revaz S, et al. A pilot study of IL-1 inhibition by anakinra in acute gout. J Arthritis Research Therapy.2007; 9:R28. Power C, Henry S, Del Bigio MR, et al. Intracerebral Hemorrhage Iduces Macrophage Activation and Matrix Metalloproteinages. Ann Neurol.2003; 53: 731-42.
    53. Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry. Circulation Research.2003; 92:827-39.
    54. John C, Bhabesh C, et al. Direct inhibition of NF-κappa B blocks bone erosion associated with inflammatory arthritis. J Immunol.2003; 171:5547-53.
    55. Bond M, Chase AJ, Baker AH, et al. Inhibition of transcription factor NF-KappaB reduces matrixmetallo proteinase-1,-3 and -9 production by vacular smoothmuscule cells. Cardiovasc Res.2001; 50:556-65.
    56. Woessner JF Jr. Matrix metalloproteinase and their inhibitors in connective tissue remodeling. FASEB J.1991; 5:2145-54.
    57. Vondensteen DE, Proost P, Gvillet B, et al. Cleavage of denatured natural collagen type Ⅱ by neutrophil gelatinase B reveals enzyme specificity post-translational modifications in the substrate and the formation of remnant epitopes in rheumatoid arthritis. FASEB J.2002; 16:379-89.
    58. Barnes PJ, karin M. Nuclear factor Kappa B:a pivotal transcription factor in Chronic inflammatory diseases. New English Med.1997; 336:1066-71.
    59. Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-KappaB transcription factors:structural views. Oncogene.1999; 18:6845-52.
    60. Adebajo AO, Cawston TE, Hazleman BL. Rheumatoid factors in association with rheumatoid arthritis and infectious diseases in West Africans. J Rheumatol.1994; 21:968-9.
    61. Heissig B, Nishida C, Tashiro Y, et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol.2010; 25: 765-70.
    62. Ahrens D, Koch AE, Pope RM, et al. Expression of matrix metalloproteinase9 (96-KD gelatinase B) in human rheumatoid arthritis. Arthritis Rheum.1996; 39:1576-87.
    63. Jovanovic DV, Martel-Pelletier J, Di Battista JA, et al. Stimulation of 92-kd gelatinase (matrix metalloproteinase-9) production by interleukin-17 in human monocyte/macrophages:a possible role in rheumatoid arthritis. Arthritis Rheum.2000; 43:1134-44.
    64. Itoh T, Matsuda H, Tanioka M, et al. The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis. J Immunol. 2002; 169:2643-7.
    65. Sato H, Takino T, Okada Y, et al. A matrix metallproteinase expressed on the surface of invasive tumour cells. Nature.1994; 370:61-5.
    66. Thanos D, ManiatisT. NF-KappaB:a lesson in family values. Cell.1995; 80: 529-32.
    67. Hershko A, Ciechanover A. The ubiquitin system. Anna Rev Biochem.1998; 67:425-79.
    68. Yaron A, Gonen H, Alkalay I, et al. Inhibition of NF-κappa B cellular function via Sepcific targeting of the I-kappa-B-ubiquitin ligase. EMBO J.1 997; 16:6486-94.
    69. Siebenlist U, FranzosoG, Brown K. Structure, regulation and function of NF-κB. Ann Rev Cell Biol.1994; 10:405-55.
    70. Orrenius S, Nobel CS, Van den Dobbelsteen DJ, et al. Dithiocarbamates and the Redox regulation of cell death. Biochem Soc Tram.1996; 24:1032-8.
    71. Singal PK, Iliskovic N. Doxombicin-induced cardiomyopathy. N Engl J Med. 1998; 339:900-5.
    72. Baeuerle PA, Henkel T. Function and activation of NF-κappa B in the immune system. Annu Rev Immunol.1994; 12:141-79.
    73. Aloia RC, Raison JK. Membrane function in mammalian hibernation. Biochim Biophys Acta.1989; 988:123-46.
    74. Yatvin MB, Schmitz BJ, Dennis WH. Radiation killing of E. coli K1060:role of membrane fluidity, hypothermia and local anaesthetics. Int J Radiat Biol Relat Stud Phys Chem Med.1980; 37:513-9.
    75. Rawicz W, Smith BA, Mcintosh TJ, et al. Elasticity, Strength, and Water Permeability of Bilayers that Contain Raft Microdomain-Forming Lipids. Biophys J.2008; 94:4725-36.
    1. Yen HL, Cheng CH, Lin JW. Cervical myelopathy due to gouty tophi in the intervertebral disc space. Acta Neurochir (Wien).2002; 144:205-7.
    2. Fenton P, Young S, Prutis K. Gout of the spine:Two case reports and a review of the literature. J Bone Joint Surg Am.1995; 77:767-71.
    3. Ichida K, Hosoyamada M, Kimura H, et al. Urate transport via human PAH transporter hOATI and its gene structure. Kidney Int.2003; 63:143-55.
    4. Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature,2002; 417:447-52.
    5. Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan influence of URAT1 gene on urinary urate excretion. Jam Soc Nephrol.2004; 15; 164-73.
    6. Taniguchi A, Urano W, Yamanaka M, et al. A common mutation in an organic anion transporter gene, SLC22A12, is a suppressing factor for the development of gout. Arthritis Rheum,2005; 52:2576-7.
    7. Lipkowitz MS, Leal-Pinto E, Cohen BE, et al. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj J.2004; 19: 491-498.
    8. Van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4(NBCC4) is an efflux pump for the purine and metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol.2005; 288; 327-33.
    9. Weinberger A. Gout, uric acid metabolism, and crystal-induced inflammation. Curr Opin Rheumatol.1995; 7:359-63.
    10. Terkeltaub R, Baird S, Sears P, et al. The murine homolog of the interleukin-8 receptor CXCR-2 is essential for the occurrence of neutrophilic inflammation in air pouch model of acute urate crystal-induced gouty synovitis. Arthritis Rheum.1998; 41:900-9.
    11. Hansbroughn JF, Wikstrom T, Braide M, et al. Neurophil activation and tissue neutrophil sequestration in a rat model of the mal injury. J Surg Res.1996; 61: 17-22.
    12. Chosay JG, Essani NA, Dunn CJ, et al. Neutrophil margination and extravasation in sinusoids and venules of liver during endotoxin-induced injury. Am J Physiol.1997; 272:1195-1200.
    13. Berends C, Dijkhuizen B, de Monchy JG, et al. Inhibition of PAF-induced expression of CDllb and shedding of L-selection on human neutrophils and eosinophils by the type 1 selective PDE inhibitor, roliram. Eur Respir J.1997; 10:1000-7:
    14. Ruhul Amin AR, Senga T, Oo ML, et al. Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine. IL-1 beta:a role for the dual signalling pathways, Akt and Erk. Genes Cells.2003; 8:515-23.
    15. Fan Z, Ban B, Yang H, et al. IL-1 beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NF-κappaB signaling pathways. Cytokine.2004; 28:17-24.
    16. Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature.2006; 237-41.
    17. Guerne PA, Terkeltaub R, Zuraw B, et al. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum.1989; 32:1443-52.
    18. Terkeltaub R, Zachariae C, Santoro D, et al. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum.1991; 34:894-903.
    19. Saren P, Welgus HG, Kovaneu PT, et al. TNF-alpha and IL-1 beta selectively induce expression of 92-KD gelatinase by humman macrophages. J Immunol. 1996; 157:4159-65.
    20. Church LD,Cook GP, McDermott MF. Primer:inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol.2008; 4:34-42.
    21. So A, De Smedt T, Revaz S, et al. A pilot study of IL-1 inhibition by anakinra in acute gout. J A rthritis Research Therapy.2007; 9:28.
    22. Gruber BL, Sorbi D, Frech DL, et al. Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis:a potentially useful laboratory marker. Clin Immunol Immunopath.1996; 78:161-71.
    23. Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases:Structure, Function, and Biochemistry. Circulation Research.2003; 92:827-39.
    24. Clohisy JC, Roy BC, Biondo C, et al. Direct inhibition of NF-Kappa B blocks bone erosion associated with inflammatory arthritis. J Immunol.2003; 171: 5547-53.
    25. Bond M, Chase AJ, Baker AH, et al. Inhibition of transcription factor NF-Kappa B reduces matrixmetallo proteinase-1,-3 and -9 production by vacular smoothmuscule cells. Cardiovasc Res.2001; 50:556-65.
    26. Woessner JF Jr. Matrix metalloproteinase and their inhibitors in connective tissue remodeling. FASEB J.1991; 5:2145-54.
    27. Vondensteen DE, Proost P, Gvillet B, et al. Cleavage of denatured natural collagen type Ⅱ by neutrophil gelatinase-B reveals enzyme specificity post-translational modifications in the substrate and the formation of remnant epitopes in rheumatoid arthritis. FASEB J.2002; 16:379-89.
    28. Barnes PJ, karin M. Nuclear factor Kappa B:a pivotal transcription factor in Chronic inflammatory diseases. New English Med.1997; 336:1066-71.
    29. Opdenakker G, Van den Steen PE. Gelatinase B:a tuner and amplifier of immune functions. Trends in Immunology.2001; 22:571-9.
    30. Huhtala P, Tuuttila A, Chow LT, et al. Complete structure of the human gene for 92-kDa type IV collagenase. Divergent regulation of expression for the 92-and 72-kilodalton enzyme genes in HT-1080 cells. J Biol Chem.1991; 266:16485-90.
    31. Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-κappaB transcription factors:structural views. Oncogene.1999; 18:6845-52.
    32. Adebajo AO, Cawston TE, Hazleman BL. Rheumatoid factors in association with rheumatoid arthritis and infectious diseases in West Africans. J Rheumatol.1994; 21:968-9.
    33. Heissig B, Nishida C, Tashiro Y, et al. Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol.2010; 25: 765-70.
    34. Ahrens D, Koch AE, Pope RM, et al. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum.1996; 39: 1576-87.
    35. Jovanovic DV, Martel-Pelletier J, Di Battista JA, et al. Stimulation of 92-kd gelatinase (matrix metalloproteinase-9) production by interleukin-17 in human monocyte/macrophages:a possible role in rheumatoid arthritis. Arthritis Rheum.2000; 43:1134-44.
    36. Itoh T, Matsuda H, Tanioka M, et al. The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis. J Immunol. 2002; 169:2643-7.
    37. Sato H, Takino T. Okada Y, et al. A matrix metallproteinase expressed on the surface of invasive tumour cells. Nature.1994; 370:61-5.
    38. Thanos D, ManiatisT. NF-κappaB:a lesson in family values. Cell.1995; 80: 529-32.
    39. Sergei S, Makarov SS. NF-κB in rheumatoid arthritis:a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res.2001; 3: 200-6.
    40. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001; 107; 135-42.
    41. Thiele K, Bierhaus A, Autschbach F, el al. Cell specific effects of glucocorticoid treatment on the NF-κappaBp65/IκappaBalpha system in patients with Crohn's disease. Gut.1999; 45:693-704.
    42. Schulze-Tanzil G, de SP, Behnke B. Effects of the antirheumatic remedy hox alpha--a new stinging nettle leaf extract-On matrix metalloproteinases in human chondrocytes in vitro. Histol Histopathol.2002; 17:477-85.
    43. Takeba Y, Suzuki N, Kaneko A, et al. Endorphin and enkephalin ameliorate excessive synovial cell functions in patients with rheumatoid arthritis. J Rheumatol.200; 28:2176-83.
    44. Han Z, Boyle DL, Manning AM, et al. AP-1 and NF-κappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity. 1998; 28:197.
    45. Morris I, Varughese G, Mattingly P. Colchicine in acute gout. BMJ.2003; 327: 1275-6.
    46. Lange U, Schuman C, Schmidt KL. Current aspects of colchicines therapy--Classical indications and new therapeutic uses. Eur J Med Res.2001; 6; 150-60.
    47. Bakhiya A, Bahn A, Burckhardt G, et al. Human organic anion transporter 3(hOAT3) can operate as an exchanger and mediate secretory urate flux. Cell Physiol Biochem.2003; 13:249-56.
    48. Rampoldi L, Caridi G, Santon D, et al. Allelism of MCKD, FJHN and GCKD caused by impairment of uromodulin export dynamics. Hum Mol Genet.2003; 12: 3369-84.
    49. Meyer DM, Horton JW. Effect of moderate hypothermia in the treatment of canine hemorrhagic shock. Ann Surg.1988; 207:462-9.
    50. Kim KY, Ralph Schumacher H, Hunsche E, et al. A literature review of the epidemiology and trealment of acute gout. Clin Ther.2003; 25:1593-1617.
    51. Sakuma T, Nishimura T, Usude K, et al. Hypothermia inhibits the alveolar epithelial injury caused by hyposmotic albumin solution during preservation of the resected human lung. Surg Today.1997; 27:527-33.
    52. Rakieh C, Conaghan PG. Diagnosis and treatment of gout in primary care. Practitioner.2011; 255:17-20,2-3.
    53. Dessein PH, Shipton EA, Stanwix AE. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout:a pilot study. Ann Rheum Dis.2000; 59:539-543.
    54. Hong SB, Koh Y, Lee IC, et al. Induced hypothermia as a new approach to lung rest for the acutely injured lung. Crit Care Med.2005; 33:2049-55.
    55. Johnston WE, Vinten-Johansen J, Strickland RA, et al. Hypothermia with and without end-expiratory pressure in canine oleic acid pulmonary edema. Am Rev Respir Dis.1989; 140:110-7.
    56. Sarcia PJ, Scumpia PO, Moldawer LL, et al. Hypothermia induces interleukin-10 and attenuates injury in the lungs of endotoxemic rats. Shock.2003; 20:41-5.
    57. Huang PS, Tang GJ, Chen CH, et al. Whole-body moderate hypothermia confers protection from wood smoke-induced acute lung injury in rats:the therapeutic window. Crit Care Med.2006; 34:1160-7.
    58. Kira S, Daa T, Kashima K, et al. Mild hypothermia reduces expression of intercellular adhesion molecule-1 (ICAM-1)and the accumulation of neutrophils after acid-induced lung injury in the rat. Acta Anaesthesiol Scand.2005; 49: 351-9.
    59. Flachs J, Bookallil M, Clarke B. Extracorporeal oxygenation or hypothermia in respiratory failure. Lancet.1977; 309:489-90.
    60. Gundersen Y, Vaagenes P, Pharo A, et al. Moderate hypothermia blunts the inflammatory response and reduces organ injury after acute haemorrhage. Acta Anaesthesiol Scand.2001; 45:994-1001.
    61. Piatti PM, Monti F, Fermon I, et al. Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass:comparison to hypoclaoric high-carbohydlate diet. Metabolism.1994; 43:1481-7.
    62. Villar J, Slutsky AS. Effects of induced hypothermia in patients with septic adult respiratory distress syndrome. Resuscitation.1993; 26:183-92.
    63. Chang HY, Pan WH, Yeh WT, et al. Hyperuricemia and gout in Taiwan:results from the Nutritional and Health Survey in Taiwan(1993-96). J Rheumatol.2001; 28:1640-6.
    64. Moonka R, Gentilello L. Hypothermia induced by continuous arteriovenous hemofiltration as a treatment for adult respiratory distress syndrome:a case report. J Trauma.1996; 40; 1026-8.
    65. Han HS, Karabiyikoglu M, Kelly S, et al. Mild hypothermia inhibits nuclear factor-κappaB translocation in experimental stroke. J Cereb Blood Flow Metab. 2003; 23:589-98.
    66. Diestel A, Roessler J, Berger F, et al. Hypothermia downregulates inflammation but enhances IL-6 secretion by stimulated endothelial cells. Cryobiology.2008; 57:216-22.
    67. Stewart CR, Landseadel JP, Gurka MJ, et al. Hypothermia increases interleukin-6 and interleukin-10 in juvenile endotoxemic mice. Pediatr Crit Care Med.2010; 11:109-16.
    68. Koda Y, Tsuruta R, Fujita M, et al. Moderate hypothermia suppresses jugular venous superoxide anion radical, oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion rats. Brain Res.2010; 1311: 197-205.
    69. Holzer M, Bernard SA, Hachimi, IdrissiS, et al. Hypothermia for neuroprotection after cardiac arrest:systematic review and individual patient data meta-analysis. Crit Care Med.2005; 33:414-8.
    70. Tisherman SA. Hypothermia and injury. Curr Opin Crit Care.2004; 10:512-9.
    71. Alam HB, Chen Z, Honma K, et al. The rate of induction of hypothermic arrest determines the outcome in a swine model of lethal hemorrhage. J Trauma.2004; 57:961-9.
    72. Damian MS, Ellenberg D, Gildemeister R, et al. Coenzyme Q10 combined with mild hypothermia after cardiac arrest:a preliminary study. Circulation.2004; 110; 3011-6.
    73. Wu X, Kochanek PM, Cochran K, et al. Mild hypothermia improves survival after prolonged, traumatic hemorrhagic shock in pigs. J Trauma.2005; 59: 291-99.
    74. Kabon B, Bacher A, Spiss CK. Therapeutic hypothermia. Best Pract Res Clin Anaesthesiol.2003; 17:551-68.
    75. Wheeler AP, Bernard G R. Acute lung injury and the acute respiratory distress syndrome:a clinical review. Lancet.2007; 369:1553-64.
    76. English TE, Storey KB. Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus. Arch Biochem Biophys.2000; 376:91-100.
    77. Churchill TA, Simpkin S, Wang LC, et al. Metabolic effects of cold storage on livers from euthermic and hibernating Columbian ground squirrels. Cryobiology.1996; 33:34-40.
    78. Lee CC. Is Human Hibernation Possible? Annu Rev Med.2008; 59; 177-86.
    79. Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol.2004; 141:317-29.
    80. Zhang J, Kaasik K, Blackburn MR, et al. Constant darkness is a circadian metabolic signal in mammals. Nature.2006; 439:340-3.
    81. Tao Z, Zhao Z, Lee CC.5'-Adenosine Monophosphate Induced Hypothermia Reduces Early Stage Myocadia ischemic/reperfusion Injury in a Mouse Model. Am J Transl Res.2011; 3:351-61.
    82. Zhao Z, Miki T, Van Oort-Jansen A, et al. Hepatic gene expression profiling of 5'-AMP-induced hypometabolism in mice. Physiol Genomics.2011; 43:325-45.
    83. Zhang F, Wang S. Luo Y, et al. When hypothermia meets hypotension and hyperglycemia:the diverse effects of adenosine 5'-monophosphate on cerebral ischemia in rats. J Cereb Blood Flow Metab.2009; 29:1022-34.
    84. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science.2005; 308:518.
    85. Doherty JC, Kronon MT, Rotermund AJ Jr. The effects of short term cold storage upon ATP and 2,3-BPG levels in the blood of euthermic and hibernating thirteenlined ground squirrels Spermophilus tridecemlineatus. Comp. Biochem. Physiol Comp Physiol.1993; 1104:87-91
    86. Gordon C J. The therapeutic potential of regulated hypothermia. Emerg Med J. 2001; 18:81-89.
    87. Mathews WB, Nakamoto Y, Abraham EH, et al. Synthesis and biodistribution of [11C]adenosine 5'-monophosphate (11C]AMP). Mol Imaging Biol.2005; 7: 203-8.
    88. Mulquiney PJ, Kuchel PW. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations:computer simulation and metabolic control analysis. Biochem J.1999; 342:597-604.
    89. Stange K, Lagerkranser M, Rudehill A, Sollevi A. Effects of adenosine-induced hypotension on cerebral blood flow and metabolism in the pig. Acta Anaesthesiol Scand.1989; 33:199-203.
    90. Swoap SJ, Rathvon M, Gutilla M. AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol.2007; 293:R468-73.
    91. Suzuki K, Uchida K, Nakanishi N, et al. Cilostazol activates AMP-activated protein kinase and restores endothelial function in diabetes. Am J Hypertens. 2008; 21:451-7.
    92. Daniels IS, Zhang J, O'Brien WG 3rd, et al. A role of erythrocytes in adenosine monophosphate initiation of hypometabolism in mammals. J Biol Chem.2010; 285:20716-23.
    93. Braun KP, Brookman-Amissah S, Geissler K, et al. Whole-body cryotherapy in patients with inflammatory rheumatic disease. A prospective study. Med Klin (Munich).2009; 104:192-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700