股骨近端几何力学参数与髋部骨折及股骨近端骨髓MRS、R2~*值和骨质疏松相关性的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分女性股骨近端几何力学参数与髋部骨折的相关性研究
     目的探讨女性股骨近端几何力学参数随年龄及骨密度的变化及其对骨强度的影响和预测髋部骨折危险性的价值。材料与方法共收集髋部骨折的女性73人,年龄45~84岁,平均68.7±9.2岁;对照组女性625人,年龄45~85岁,平均66.6±9.3岁。进行双能X线股骨近端骨密度测量,骨折组选取骨折对侧股骨近端,对照组选取右侧股骨近端进行测量。在分析骨密度的同时,由HSA(Hip strength analysis)软件在DXA扫描图像基础上得出股骨近端几何力学参数,包括股骨颈横截面积(Cross-sectional area,CSA)、股骨颈横截面转动惯量(Cross-sectional moment of inertia,CSMI)、股骨颈宽度(Femoral neck width,FNW)、髋轴长(Hip axis length,HAL)、股骨颈干角(Neck shaft angle,NSA)及股骨颈强度指数(Femur strength index,FSI)。结果CSA、CSMI及FSI与年龄呈负相关,相关系数分别为(r=-0.463,P<0.01;r=-0.277,P<0.01;r=-0.087,P<0.05),CSA、CSMI及FSI在骨质疏松组低于骨量正常组,骨质疏松组FNW大于骨量正常组。CSA、CSMI及FSI在骨折组低于对照组,FNW在骨折组高于对照组,HAL在骨折组高于对照组,NSA在骨折组低于对照组。经Logistic回归分析,FSI、CSMI联合T分数预测髋部骨折危险性的ROC曲线下面积高于单独T分数的ROC曲线下面积(ROC曲线下面积分别为0.794,0.682,P<0.01)。结论在老龄化过程中,股骨近端骨强度的减低不仅与骨量损失有关,而且与其几何力学因素相关。T分数联合CSMI及FSI可以提高对髋部骨折危险性预测的效能。
     第二部分女性股骨近端磁共振波谱成像与骨质疏松的相关性研究
     目的探讨~1H MRS不同测量指标与DXA所测骨密度的相关性及其对骨质疏松的评估价值。材料与方法共收集112例女性志愿者(32~79岁,平均62.1±10.4岁)分别进行以下检查:右股骨近端双能X线(DXA)骨密度测量;右股骨近端常规扫描斜冠状位T_1WI、T_2WI及斜矢状位T_1WI。采用单体素PRESS(Point resolved spectroscopy)序列在斜冠状位平面上分别采集股骨颈、转子间及大转子~1H波谱,相应谱线采用SAGE 7.0软件分析并计算相关MRS定量指标,包括脂水比(Lipid/water ratio,LWR),脂肪含量(Fat fraction,FF),脂峰线宽(Line width,LW),不饱和指数(Unsatuaration index,UI)。每例受检者上述检查项目均在一日内完成。结果股骨颈及转子间LWR及FF均与年龄呈低度正相关(LWR:股骨颈r=0.297,转子间r=0.393,P<0.01;FF:股骨颈r=0.358,转子间r=0.378,P<0.01)。在经骨密度校正后,相关性仍然具有统计学意义(LWR:股骨颈r=0.205,转子间r=0.233,P<0.05;FF:股骨颈r=0.235,转子间r=0.253,P<0.05)。本研究显示股骨颈、股骨转子间及大转子LWR及FF均与骨密度呈中到低度负相关,相关系数分别为(LWR:-0.482,-0.401,-0.419,P<0.01;FF:-0.462,-0.333,P<0.01;-0.207,P<0.05)。在经年龄校正后,股骨近端LWR与骨密度相关性仍然存在,三个部位相关系数分别为(-0.397,-0.341,-0.344,P<0.01)。股骨颈及转子间FF与骨密度相关性经年龄校正后仍存在负相关(r分别为-0.415,P<0.01;-0.313,P=0.01),股骨大转子FF在经年龄校正后与骨密度未见相关性(r=-0.177,P=0.063)。本研究显示绝经后组LWR及FF较绝经前组增高。股骨颈及转子间LWR和FF在骨量正常组低于骨量减少及骨质疏松组,而骨量减少组和骨质疏松组间未见统计学差别。大转子LWR只在骨量正常组与骨质疏松组、骨量减少组与骨质疏松组间存在统计学差异,而在骨量正常与骨质减少组间未见统计学差别。FF在大转子区域与骨量变化未见相关性。股骨颈及转子间脂峰LW与年龄呈低度负相关(r分别为-0.302和-0.255,p<0.01),但是当将BMD引入相关分析后,两者相关性则不再具有统计学意义(股骨颈LW:r=-0.033,p=0.730,转子间LW:r=-0.031,p=0.748)。脂峰LW在绝经前组要高于绝经后组。股骨近端三个测量部位的脂峰LW均与BMD呈中度正相关(相关系数分别为股骨颈r=0.550,P<0.01;转子间r=0.417,P<0.01;大转子r=0.409,P<0.01),当控制年龄因素后,相关性仍有统计学意义(相关系数分别为股骨颈r=0.448,P<0.01:转子间r=0.350,P<0.01;大转子r=0.396,P<0.01)。本研究显示股骨颈及转子间UI随年龄增大呈现下降趋势(r分别为-0.374和-0.334,p<0.01),经BMD校正后相关性仍然具有统计学意义(股骨颈r=-0.258,P=0.005;转子间r=-0.215,P=0.025)。股骨颈及转子间UI与骨密度呈正相关(r分别为0.281,0.308,p<0.05),经年龄校正后,相关性依然存在(股骨颈r=0.203,P=0.021;转子间r=0.211;P=0.014)。大转子UI与年龄和BMD未见相关性。股骨颈及转子间UI在绝经前组高于绝经后组。股骨颈和转子间UI在骨量正常组要高于骨质疏松组,在骨量正常组与骨量减低组及骨量减低组与骨质疏松组间UI均未见统计学差异。大转子区域UI三个组间未见差别。右股骨近端三个测量部位LWR、FF及脂峰LW诊断骨质疏松ROC曲线下面积大小为0.728~0.846,股骨颈LWR、FF及脂峰LW诊断骨质疏松ROC曲线下面积高于转子间和大转子。结论股骨近端骨髓脂肪含量随年龄增长而逐步增加,股骨近端脂肪含量随骨密度减低而有逐渐增高的趋势。脂峰LW与年龄相关性不大,而与骨密度呈正相关。股骨近端骨髓中不饱和脂肪酸所占比例随年龄增长逐渐下降,并随骨密度减低而降低。LWR、FF及LW可以作为无创性评估骨密度的磁共振指标。
     第三部分女性股骨近端R2*值与骨质疏松的相关性研究
     目的探讨右股骨近端R2*测值与DXA所测骨密度的相关性及其对骨质疏松的评估价值。材料与方法共收集112例女性志愿者(32~79岁,平均62.1±10.4岁)分别进行以下检查:右股骨近端双能X线(DXA)骨密度测量;右股骨近端常规扫描斜冠状位T_1WI、T_2WI及斜矢状位T_1WI,并扫描斜冠状位MEGRE(Multi-echo gradient echo sequence)序列。利用R2*测量软件在最大斜冠状位平面上分别测量股骨颈、转子间及大转子R2*值。结果股骨颈、转子间及大转子R2*值与年龄呈中到低度负相关(r分别为-0.521,-0.285,-0.399,p<0.01),当引入骨密度作为协变量进行相关分析,股骨颈及转子间R2*与年龄相关性不再具有统计学意义,大转子R2*值与年龄仍呈低度负相关,相关系数减小(r=-0.199,p=0.030)。股骨近端三个测量部位R2*值与DXA所测骨密度呈中到高度正相关(股骨颈r=0.701,P<0.01;转子间r=0.492,P<0.01;大转子r=0.550,P<0.01),经年龄因素校正后,相关性依然有统计学意义(股骨颈r=0.572,p<0.01,转子间r=0.424,p<0.01,大转子r=0.453,p<0.01)。在绝经前组股骨近端三个测量部位的R2*值均高于绝经后组。在不同骨量组间的协方差分析中,股骨近端三个测量部位间的两两比较均具有统计学意义。股骨颈R2*值判定骨质疏松ROC曲线下面积为0.859,转子间为0.767,大转子为0.851。结论右股骨近端R2*值随骨密度下降有逐渐减低的趋势,与年龄相关性意义不大。右股骨近端R2*值可以作为无创性判定骨质疏松的指标,股骨颈R2*值判定骨质疏松的ROC曲线下面积最大。
PART ONE:Correlation of structural geometric properties of the proximal femur with hip fracture in women
     Objective:To evaluate the influence of age and bone mineral density on geometric structure of the proximal femur in women;to study the influence of hip geometry on hip strength and its value in predicting hip fracture.Material and methods:DXA measurements of the proximal femur were obtained from 698 women,73(age: 68.7±9.2) with prior hip fracture and 625(age:66.6±9.3) controls.In addition to the conventional densitometry measurements,structural variables were determined using the Hip Strength Analysis(HSA) program,including cross-sectional area(CSA), cross-sectional moment of inertia(CSMI),femoral neck width(FNW),hip axis length(HAL),neck shaft angle(NSA) and femur strength index(FSI).Results:CSA, CSMI and FSI were negatively correlated with age(r=-0.463,P<0.01;r=-0.227, P<0.01;r=-0.087,P<0.05;respectively).CSA,CSMI,FSI were significantly lower and FNW significantly higher in osteoporotic group compared with healthy group. CSA,CSMI,FSI were significantly lower and FNW significantly higher in the fracture group compared with controls.HAL was significantly longer and NSA significantly narrower in hip fracture group compared with controls.The fracture discrimination ROC curve for the logistic regression probability model incorporating FSI and CSMI was significantly larger than that for T score alone(0.794 vs.0.682, P<0.01),indicating that fracture discrimination improved when these femur structural variables were combined with BMD measurements.Conclusion:The reduction of the proximal femur strength in aging is not only influenced by bone loss,but also by the changed properties of its hip geometric structure.T score combining with CSMI and FSI may have a more effective capability of predicting hip fracture.
     PART TWO:Pilot study of correlation between MRS and osteoporosis in proximal femur in women
     Objective:The purpose of this research is to investigate the correlation between MRS variables and BMD in proximal femur;to evaluate the diagnostic value of MRS variables for osteoporosis.Materials and methods:Proton MRS and BMD measurement of femoral neck,intertrochanteric and trochanter region of the right proximal femur were performed in 112 female subjects(age:62.14±10.4)。The single voxel PRESS(Point resolved spectroscopy) sequence was used at 3.0T MR imaging. All data were analyzed at SAGE 7.0 program and LWR(Lipid/water ratio),FF(Fat fraction),lipid line width(LW) and lipid unsaturation index(UI) were calculated. BMD measurements of the hip were obtained with DXA.Results:LWR and FF of the neck and intertrochanteric region had significant correlation with age(neck:LWR: r=0.293,FF:r=0.397,P<0.01;intertrochanteric:LWR:r=0.358,FF:r=0.378,P<0.01). The correlation of LWR and FF of the two measured regions in proximal femur with age remained significant after adjustment for BMD(neck:LWR:r=0.205,FF:r=0.233, P<0.05;intertrochanteric:LWR:r=0.235,FF:r=0.253,P<0.05).LWR and FF of the three measured regions were negatively correlated with BMD(LWR:r=-0.482,-0.401, -0.419,P<0.01;FF:r=-0.462,-0.333,P<0.01;r=-0.207,P<0.05),and the significance remained after adjustment for age except for FF of trochanter region(LWR: r=-0.397,-0.341,-0.344,P<0.01;FF:r=-0.415,P<0.01;r=-0.313,P--0.01;r=-0.177, P=0.063).LWR and FF had significant difference between pre-and postmenopausal subgroups with these variables higher in premenopausal women.LWR and FF were significantly lower in healthy group compared with osteopenic and osteoporotic group for neck and intertrochanteric region.No significant difference was observed between osteopenic and osteoporotic groups in these two regions.LWR for trochanter was significantly higher in osteoporotic group compared with healthy and osteopenic groups while no significant disparity was obtained between healthy and osteopenic groups.FF for trochanter had no significant disparity in all three subgroups.Lipid LW of neck and intertrochanteric region was negatively correlated with age(r=-0.302, -0.255,p<0.01),but the correlation became insignificant after adjustment for BMD(neck region:r=-0.033,p=0.730,intertrochanteric region:r=-0.031,p=0.748). Lipid LW in premenopausal group was significantly higher compared with postmenopausal group.Lipid LW of three measured regions were positively significant with BMD(neck region:r=0.550,P<0.01;intertrochanteric region:r=0.417, P<0.01;trochanter region:r=0.409,P<0.01),and the correlation still remained significant after adjustment for age(neck region:r=0.448,P<0.01;intertrochanteric region:r=0.350,P<0.01;trochanter region:r=0.396,P<0.01).UI of neck and intertrochanteric region were negatively significant with age factor(r=-0.374,-0.334, p<0.01;respectively) and the correlation remained significant after adjusted for BMD factor(neck region:r=-0.258,P=0.005;intertrochanteric region:r=-0.215,P=0.025).It showed positive correlation between UI of neck and intertrochanteric region and BMD factors(r=0.281,0.308,p<0.05;respectively) and the correlation remained significant after the age factor was controlled as one partial variable(neck region: r=0.203,P=0.021;intertrochanteric region;r=0.211;P=0.014).It showed no significant correlation between UI of trochater region and age as well as BMD.UI of neck and intertrocanteric region were significantly lower in postmenopausal group compared with premenopausal group.UI of neck and intertrochanteric region were significantly lower in osteoporotic group compared with healthy group.There were no significant disparity between healthy and osteopenic group as well as osteopenic and osteoporotic group for UI of neck and intertrochanteric region.No significant difference was observed for UI of trochanteric region among all three groups.ROC curve area of LWR,FF,lipid LW of the three measured regions for osteoporosis discrimination ranged from 0.728~0.859.ROC curve area of LWR,FF and lipid LW for neck region were larger compared with those of introchanteric and trochanter region.Conclusion:The marrow fat content of proximal femur is positively correlated with age and negatively correlated with BMD.Lipid LW was positively correlated with BMD and has no significant correlation with age.UI of proximal femur has negative correlation with age and positive correlation with BMD.LWR,FF and lipid LW can be used as noninvasive MR variables in evaluation of BMD as well as in determination of osteoporosis.
     PART THREE:Assessment for osteoporosis with R2~* characteristics in proximal femur in women
     Objective:To investigate the correlation of R2* measurement with BMD obtained from DXA in proximal femur,to evaluate the diagnostic value of R2~* for osteoporosis. Material and methods:T2~* map of the proximal femur were obtained at 3.0T MR in 112 women(age:62.1±10.4).A multi-echo gradient echo sequence called MEGRE was used in this study.R2~* values were measured in three regions of interest:femoral neck,intertrochanteric region and trochanter.BMD measurements of the hip were obtained with DXA.Results:The R2~* values of all three regions were negatively correlated to age(femoral neck region:r=-0.521,P<0.01;intertrochantetic region: r=-0.285,P<0.01;trochanter region:r=-0.399,P<0.01).After adjusted for BMD, insignificant correlation was obtained on femoral neck region and intertrochanteric region,while trochanter region still showed significant correlation to age,only to have a lower correlation coefficient(r=-0.199,P<0.030).The R2~* value of all three measurement regions were significantly correlated to BMD(neck region:r=0.701, P<0.01;intertrochantetic region:r=0.492,P<0.01;trochanter region:r=0.550,P<0.01), even so after adjustment for age(neck region:r=0.572;p<0.01,intertrochantetic region:r=0.424,p<0.01;trochanter:r=0.453,p<0.01).Mean R2~* values were significantly higher in premenopausal group compared with postmenopausal group. Significant difference of R2~* values between all three groups as regard to healthy women,osteopenic women and osteoporotic women were obtained in three proximal femur measurement regions.The ROC curve area for osteoporosis determination was 0.859 for neck region,0.767 for intertrochanteric region and 0.851 for trochanteric.
     Conclusion:The R2~* values of proximal femur were significantly correlated with BMD,but not to age,indicating that it is a MR variable for noninvasive detection of changes in BMD.The R2~* value of neck region has the largest ROC curve area for discrimination value for osteoporosis compared with intertrochanteric region and trochanter.
引文
[1]Kanis J A,Melton L J,Christiansen C,et al.The diagnosis of osteoporosis.[J].J Bone Miner Res,1994,9(8):1137-1141.
    [2]Freedman K B,Kaplan F S,Bilker W B,et al.Treatment of osteoporosis:are physicians missing an opportunity?[J].J Bone Joint Surg Am,2000,82-A(8):1063-1070.
    [3]Conde F A,Aronson W J.Risk factors for male osteoporosis.[J].Urol Oncol,2003,21(5):380-383.
    [4]Nurmi I,Narinen A,Luthje P,et al.Cost analysis of hip fracture treatment among the elderly for the public health services:a l-year prospective study in 106 consecutive patients.[J].Arch Orthop Trauma Surg,2003,123(10):551-554.
    [5]Khasraghi F A,Lee E J,Christmas C,et al.The economic impact of medical complications in geriatric patients with hip fracture.[J].Orthopedics,2003,26(1):49-5353.
    [6]Cummings S R,Black D M,Nevitt M C,et al.Bone density at various sites for prediction of hip fractures.The Study of Osteoporotic Fractures Research Group.[J].Lancet,1993,341(8837):72-75.
    [7]Aloia J F,Mcgowan D,Erens E,et al.Hip fracture patients have generalized osteopenia with a preferential deficit in the femur.[J].Osteoporos Int,1992,2(2):88-93.
    [8]Alho A,Hoiseth A,Husby T.Bone-mass distribution in the femur.A cadaver study on the relations of structure and strength.[J].Acta Orthop Scand,1989,60(1):101-104.
    [9]Leichter I,Margulies J Y,Weinreb A,et al.The relationship between bone density,mineral content,and mechanical strength in the femoral neck.[J].Clin Orthop Relat Res,1982(163):272-281.
    [10]Chung H W,Wehrli F W,Williams J L,et al.Three-dimensional nuclear magnetic resonance microimaging of trabecular bone.[J].J Bone Miner Res,1995,10(10):1452-1461.
    [11]Hwang S N,Wehrli F W,Williams J L.Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength.[J].Med Phys,1997,24(8):1255-1261.
    [12]Beck T J,Ruff C B,Bissessur K.Age-related changes in female femoral neck geometry:implications for bone strength.[J].Calcif Tissue Int,1993,53 Suppl 1:41-46.
    [13]Beck T J,Ruff C B,Warden K E,et al.Predicting femoral neck strength from bone mineral data.A structural approach.[J].Invest Radiol,1990,25(1):6-18.
    [14]Crabtree N J,Kroger H,Martin A,et al.Improving risk assessment:hip geometry,bone mineral distribution and bone strength in hip fracture cases and controls.The EPOS study.European Prospective Osteoporosis Study.[J].Osteoporos Int,2002,13(1):48-54.
    [15]Martin R B,Burr D B.Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry.[J].J B iomech,1984,17(3):195-201.
    [16]赵程,王继芳,王震昊.骨密度结合股骨近端几何参数预测老年髋部骨折[J].中国骨质疏松杂志,2005,11(2):186-188.
    [17]唐海,罗先正,任素梅,等.股骨颈骨密度和股骨颈轴长与老年髋部骨折的关系[J].中华骨科杂志,2000,20(04):222-225.
    [18]包丽华,徐兆强,林华.等.髋部骨密度和几何结构与老年妇女髋部骨折关系的研究[J].江苏医药,2002,28(08):572-573.
    [19]Raya J G,Dietrich O,Reiser M F,et al.Techniques for diffusion-weighted imaging of bone marrow.[J].Eur J Radiol,2005,55(1):64-73.
    [20]Hopkins J A,Wehrli F W.Magnetic susceptibility measurement of insoluble solids by NMR:magnetic susceptibility of bone.[J].Magn Reson Med,1997,37(4):494-500.
    [21]Wehrli F W,Ford J C,Haddad J G.Osteoporosis:clinical assessment with quantitative MR imaging in diagnosis.[J].Radiology,1995,196(3):631-641.
    [22]Stampa B,Kuhn B,Liess C,et al.Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo.[J].Top Magn Reson Imaging,2002,13(5):357-363.
    [23]Pothuaud L,Porion P,Lespessailles E,et al.A new method for three-dimensional skeleton graph analysis of porous media:application to trabecular bone microarchitecture.[J].J Microsc,2000,199(Pt 2):149-161.
    [24]Jara H,Wehrli F W,Chung H,et al.High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo.[J].Magn Reson Med,1993,29(4):528-539.
    [25]Selby K,Majumdar S,Newitt D C,et al.Investigation of MR decay rates in microphantom models of trabecular bone.[J].J Magn Reson Imaging,1996,6(3):549-559.
    [26]嵇鸣,叶春涛,苗华栋,等.高分辨MR T2弛豫时间在骨质疏松跟骨检查中的价值[J].中国医学影像技术,2006,22(11):1752-1755.
    [27]Griffith J F,Yeung D K,Antonio G E,et al.Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density:MR evaluation.[J].Radiology,2006,241(3):831-838.
    [28]Demmler K,Otte P,Bartl R,et al.[Osteopenia,marrow atrophy and capillary circulation.Comparative studies of the human iliac crest and 1st lumbar vertebra][J].Z Orthop Ihre Grenzgeb,1983,121(3):223-227.
    [29]Griffith J F,Yeung D K,Antonio G E,et al.Vertebral bone mineral density,marrow perfusion,and fat content in healthy men and men with osteoporosis:dynamic contrast-enhanced MR imaging and MR spectroscopy.[J].Radiology,2005,236(3):945-951.
    [30]Schellinger D,Lin C S,Lim J,et al.Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry:their ratio as a new indicator of bone weakening.[J].AJR Am J Roentgenol,2004,183(6):1761-1765.
    [31]Shih T T,Chang C J,Hsu C Y,et al.Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine.[J].Spine,2004,29(24):2844-2850.
    [32]Yeung D K,Griffith J F,Antonio G E,et al.Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation:a proton MR spectroscopy study.[J].J Magn Reson Imaging,2005,22(2):279-285.
    [1] 余卫,秦明伟,徐苓,等. 正常人股骨近端骨密度变化(附445例DXA测量分析)[J].中华放射学杂志,1998, 32(1):23-26.
    [2] Kanis J A, Melton L J, Christiansen C, et al. The diagnosis of osteoporosis.[J]. J Bone Miner Res,1994,9(8):1137-1141.
    [3] Binkley N, Bilezikian J P, Kendler D L, et al. Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference.[J]. J Clin Densitom,2006,9(1):4-14.
    
    [4] Einhorn T A. Bone strength: the bottom line.[J]. Calcif Tissue Int,1992,51(5):333-339.
    [5] Leichter I, Margulies J Y, Weinreb A, et al. The relationship between bone density, mineral content, and mechanical strength in the femoral neck.[J]. Clin Orthop Relat Res,1982(163):272-281.
    [6] Alho A, Hoiseth A, Husby T. Bone density and bone strength--an ex vivo study on cadaver femora.[J]. Rev Chir Orthop Reparatrice Appar Mot, 1988,74 Suppl 2:333-334.
    [7] Ruff C B, Hayes W C. Cross-sectional geometry of Pecos Pueblo femora and tibiae-a biomechanical investigation: I. Method and general patterns of variation.[J]. Am J Phys Anthropol,1983,60(3):359-381.
    [8] Yoshikawa T, Turner C H, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry.[J]. J Bone Miner Res,1994,9(7):1053-1064.
    [9] Faulkner K G, Cummings S R, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.[J]. J Bone Miner Res,1993,8(10):1211-1217.
    [10] Lin J T, Lane J M. Osteoporosis: a review.[J]. Clin Orthop Relat Res,2004(425):126-134.
    [11] Melton L J. Adverse outcomes of osteoporotic fractures in the general population.[J]. J Bone Miner Res,2003,18(6):1139-1141.
    [12] Johnell O, Kanis J A. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture.[J]. Osteoporos Int,2004,15(11):897-902.
    [13] Johnell O, Kanis J A, Oden A, et al. Mortality after osteoporotic fractures.[J]. Osteoporos Int,2004,15(1):38-42.
    [14] Kanis J A, Johnell O, Oden A, et al. Epidemiology of osteoporosis and fracture in men.[J]. Calcif Tissue Int,2004,75(2):90-99.
    [15] Khasraghi F A, Lee E J, Christmas C, et al. The economic impact of medical complications in geriatric patients with hip fracture.[J]. Orthopedics,2003,26(1):49-5353.
    [16] Nurmi I, Luthje P, Narinen A, et al. [Treatment outcome and overall costs of femoral neck fractures][J].Duodecim,2003,119(2):123-130.
    [17] Nurmi I, Narinen A, Luthje P, et al. Cost analysis of hip fracture treatment among the elderly for the public health services: a 1-year prospective study in 106 consecutive patients.[J]. Arch Orthop Trauma Surg,2003,123(10):551-554.
    [18] Woolf A D, Pfleger B. Burden of osteoporosis and fractures in developing countries.[J]. Curr Osteoporos Rep.2005,3(3):84-91.
    [19] Woolf A D, Pfleger B. Burden of major musculoskeletal conditions.[J]. Bull World Health Organ,2003,81(9):646-656.
    [20] Johnell O, Kanis J A. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures.[J]. Osteoporos Int,2006.17(12): 1726-1733.
    [21] Youm T, Koval K J, Zuckerman J D. The economic impact of geriatric hip fractures.[J]. Am J Orthop,1999,28(7):423-428.
    [22] Mizrahi J, Margulies J Y, Leichter I, et al. Fracture of the human femoral neck: effect of density of the cancellous core.[J]. J Biomed Eng,1984,6(1):56-62.
    [23] Husby T, Alho A, Hoiseth A, et al. Strength of femoral neck fracture fixation. Comparison of six techniques in cadavers.[J]. Acta Orthop Scand,1987,58(6):634-637.
    [24] Alho A, Husby T, Hoiseth A. Bone mineral content and mechanical strength. An ex vivo study on human femora at autopsy.[J]. Clin Orthop Relat Res, 1988,227:292-297.
    [25] Alho A, Hoiseth A, Husby T. Bone-mass distribution in the femur. A cadaver study on the relations of structure and strength.[J]. Acta Orthop Scand,1989,60(1):101-104.
    [26] Husby T, Hoiseth A, Alho A, et al. Rotational strength of the femoral neck. Computed tomography in cadavers.[J]. Acta Orthop Scand,1989,60(3):288-292.
    
    [27] Elliott M E, Binkley N. Evaluation and measurement of bone mass.[J]. Epilepsy Behav,2004,5 Suppl 2:16-23.
    [28] Watts N B. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA).[J]. Osteoporos Int,2004,15(11):847-854.
    [29] Aloia J F, Mcgowan D, Erens E, et al. Hip fracture patients have generalized osteopenia with a preferential deficit in the femur.[J]. Osteoporos Int,1992,2(2):88-93.
    [30] Cummings S R, Black D M, Nevitt M C, et al. Bone density at various sites for prediction of hip fractures.The Study of Osteoporotic Fractures Research Group.[J]. Lancet,1993,341(8837):72-75.
    [31] Ross P D, Davis J W, Vogel J M, et al. A critical review of bone mass and the risk of fractures in osteoporosis.[J]. Calcif Tissue Int,1990,46(3):149-161.
    [32] Cummings S R, Nevitt M C, Browner W S, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group.[J]. N Engl J Med,1995,332(12):767-773.
    [33] Beck T J, Ruff C B, Warden K E, et al. Predicting femoral neck strength from bone mineral data. A structural approach.[J]. Invest Radiol,1990,25(1):6-18.
    [34] Beck T J, Ruff C B, Bissessur K. Age-related changes in female femoral neck geometry: implications for bone strength.[J]. Calcif Tissue Int,1993,53 Suppl 1:41-46.
    [35] Beck T J, Looker A C, Ruff C B, et al. Structural trends in the aging femoral neck and proximal shaft:analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data.[J]. J Bone Miner Res,2000,15(12):2297-2304.
    [36] Beck T J, Oreskovic T L, Stone K L, et al. Structural adaptation to changing skeletal load in the progression toward hip fragility: the study of osteoporotic fractures.[J]. J Bone Miner Res,2001,16(6):1108-1119.
    [37] Crabtree N J, Kroger H, Martin A, et al. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study.[J]. Osteoporos Int,2002,13(1):48-54.
    [38] Sartoris D J, Sommer F G, Kosek J, et al. Dual-energy projection radiography in the evaluation of femoral neck strength, density, and mineralization.[J]. Invest Radiol,1985,20(5):476-485.
    [39] Sartoris D J. Sommer F G, Marcus R, et al. Bone mineral density in the femoral neck: quantitative assessment using dual-energy projection radiography.[J]. AJR Am J Roentgenol,1985,144(3):605-611.
    [40] Martin R B, Burr D B. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry.[J]. J Biomech,1984,17(3):195-201.
    
    [41] Turner C H. Three rules for bone adaptation to mechanical stimuli.[J]. Bone,1998,23(5):399-407.
    [42] Turner C H. Bone strength: current concepts.[J]. Ann N Y Acad Sci,2006,1068:429-446.
    [43] Hammer A. Triangular structure of the proximal femur.[J]. Clin Anat,2002,15(3):210-216.
    [44] Phillips J R, Williams J F, Melick R A. Prediction of the strength of the neck of femur from its radiological appearance. [J]. Biomed Eng, 1975,10(10):367-372.
    [45] Robling A G, Hinant F M, Burr D B, et al. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts.[J]. J Bone Miner Res,2002,17(8):1545-1554.
    [46] Warden S J, Burr D B, Brukner P D. Stress fractures: pathophysiology, epidemiology, and risk factors.[J].Curr Osteoporos Rep,2006,4(3):103-109.
    [47] Warden S J, Hurst J A, Sanders M S, et al. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance.[J]. J Bone Miner Res,2005,20(5):809-816.
    [48] Currey J D. Physical characteristics affecting the tensile failure properties of compact bone.[J]. J Biomech, 1990,23(8):837-844.
    
    [49] Hvid I, Jensen J. Cancellous bone strength at the proximal human tibia.[J]. Eng Med,1984,13(1):21-25.
    [50] Hvid I, Jensen J, Nielsen S. Bone strength measurements at the proximal tibia. Penetration tests and epiphyseal compressive strength.[J]. Int Orthop,1986,10(4):271-275.
    
    [51] Pauwels F. [Developmental effects of the functional adaptation of bone][J]. Anat Anz,1976,139(3):213-220.
    [52] Rodriguez J P, Montecinos L, Rios S, et al. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation.[J]. J Cell Biochem,2000,79(4):557-565.
    [53] Burstein A H, Reilly D T, Martens M. Aging of bone tissue: mechanical properties.[J]. J Bone Joint Surg Am,1976,58(1):82-86.
    [54] Crabtree N J, Kroger H, Martin A, et al. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study.[J]. Osteoporos Int,2002,13(1):48-54.
    [55] Lanyon L, Skerry T. Postmenopausal osteoporosis as a failure of bone's adaptation to functional loading: a hypothesis.[J]. J Bone Miner Res,2001,16(11): 1937-1947.
    [56] Ensrud K E, Cauley J, Lipschutz R, et al. Weight change and fractures in older women. Study of Osteoporotic Fractures Research Group.[J]. Arch Intern Med,1997,157(8):857-863.
    [57] Ensrud K E, Lipschutz R C, Cauley J A, et al. Body size and hip fracture risk in older women: a prospective study. Study of Osteoporotic Fractures Research Group.[J]. Am J Med,1997,103(4):274-280.
    [58] Meyer H E, Falch J A, O N T, et al. Height and body mass index in Oslo, Norway, compared to other regions of Europe: do they explain differences in the incidence of hip fracture? European Vertebral Osteoporosis Study Group.[J]. Bone, 1995,17(4):347-350.
    [59] Meyer H E, Tverdal A, Falch J A. Body height, body mass index, and fatal hip fractures: 16 years' follow-up of 674,000 Norwegian women and men.[J]. Epidemiology,1995,6(3):299-305.
    [60] Center J R, Nguyen T V, Pocock N A, et al. Femoral neck axis length, height loss and risk of hip fracture in males and females.[J]. Osteoporos Int,1998,8(1):75-81.
    [61] Petit M A, Beck T J, Lin H M, et al. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women's Health Srudy.[J]. Bone,2004,35(3):750-759.
    [62] Martin R B, Atkinson P J. Age and sex-related changes in the structure and strength of the human femoral shaft.[J]. J Biomech, 1977,10(4):223-231.
    [63] Ruff C B, Hayes W C. Sex differences in age-related remodeling of the femur and tibia.[J]. J Orthop Res,1988,6(6):886-896.
    [64] Beck T J, Stone K L, Oreskovic T L, et al. Effects of current and discontinued estrogen replacement therapy on hip structural geometry: the study of osteoporotic fractures.[J]. J Bone Miner Res,2001.16(11):2103-2110.
    [65] Garn S M. The course of bone gain and the phases of bone loss.[J]. Orthop Clin North Am,1972,3(3):503-520.
    [66] Ruff C B, Hayes W C. Cross-sectional geometry of Pecos Pueblo femora and tibiae-a biomechanical investigation: II. Sex, age, side differences.[J]. Am J Phys Anthropol,1983,60(3):383-400.
    [67] Ruff C B, Hayes W C. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging.[J]. Science,1982,217(4563):945-948.
    [68] Bergot C, Bousson V, Meunier A, et al. Hip fracture risk and proximal femur geometry from DXA scans.[J].Osteoporos Int,2002,13(7):542-550.
    [69] Michelotti J, Clark J. Femoral neck length and hip fracture risk.[J]. J Bone Miner Res, 1999,14(10): 1714-1720.
    [70] Pande I,O N T, Pritchard C, et al. Bone mineral density, hip axis length and risk of hip fracture in men: results from the Cornwall Hip Fracture Study.[J]. Osteoporos Int,2000,11(10):866-870.
    [71] Beck T J, Ruff C B, Scott W W, et al. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data.[J]. Calcif Tissue Int, 1992,50(1):24-29.
    [72] Parfitt A M, Mathews C H, Villanueva A R, et al. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss.[J]. J Clin Invest, 1983,72(4): 1396-1409.
    [73] Brown J P, Delmas P D, Arlot M, et al. Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosis.[J]. J Clin Endocrinol Metab,1987,64(5):954-959.
    [74] Foldes J, Parfitt A M, Shih M S, et al. Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis.[J]. J Bone Miner Res,1991,6(7):759-766.
    [75] Balena R, Shih M S, Parfitt A M. Bone resorption and formation on the periosteal envelope of the ilium: a histomorphometric study in healthy women.[J]. J Bone Miner Res,1992,7( 12):1475-1482.
    [76] Ahlborg H G, Johnell O, Turner C H. et al. Bone loss and bone size after menopause.[J]. N Engl J Med,2003,349(4):327-334.
    [77] Seeman E. Periosteal bone formation—a neglected determinant of bone strength.[J]. N Engl J Med,2003,349(4):320-323.
    [78] Yang R S, Wang S S, Liu T K. Proximal femoral dimension in elderly Chinese women with hip fractures in Taiwan.[J]. Osteoporos Int,1999,10(2):109-113.
    [79] Pande I, O N T, Pritchard C, et al. Bone mineral density, hip axis length and risk of hip fracture in men:results from the Cornwall Hip Fracture Study.[J]. Osteoporos Int,2000,11(10):866-870.
    [80] Dretakis E K, Papakitsou E, Kontakis G M, et al. Bone mineral density, body mass index, and hip axis length in postmenopausal Cretan women with cervical and trochanteric fractures.[J]. Calcif Tissue Int,1999,64(3):257-258.
    [81] Alonso C G, Curiel M D, Carranza F H, et al. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis.[J]. Osteoporos Int,2000,11(8):714-720.
    [82] Leichter I, Margulies J Y, Weinreb A, et al. The relationship between bone density, mineral content, and mechanical strength in the femoral neck.[J]. Clin Orthop Relat Res,1982(163):272-281.
    [83] Gallagher J C, Goldgar D, Moy A. Total bone calcium in normal women: effect of age and menopause status.[J]. J Bone Miner Res,1987.2(6):491-496.
    [84] Riggs B L, Wahner H W, Seeman E, et al. Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes.[J]. J Clin Invest,1982,70(4):716-723.
    [85] Bergot C, Bousson V, Meunier A, et al. Hip fracture risk and proximal femur geometry from DXA scans.[J].Osteoporos Int,2002,13(7):542-550.
    [86]Boonen S,Koutri R,Dequeker J,et al.Measurement of femoral geometry in type Ⅰ and type Ⅱ osteoporosis:differences in hip axis length consistent with heterogeneity in the pathogenesis of osteoporotic fractures.[J].J Bone Miner Res,1995,10(12):1908-1912.
    [87]Gnudi S,Ripamonti C,Gualtieri G,et al.Geometry of proximal femur in the prediction of hip fracture in osteoporotic women.[J].Br J Radiol,1999,72(860):729-733.
    [88]Faulkner K G,Wacker W K,Barden H S,et al.Femur strength index predicts hip fracture independent of bone density and hip axis length.[J].Osteoporos Int,2006,17(4):593-599.
    [89]Griffith J F,Yeung D K,Antonio G E,et al.Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density:MR evaluation.[J].Radiology,2006,241(3):831-838.
    [90]唐海,罗先正,任素梅,等.股骨颈骨密度和股骨颈轴长与老年髋部骨折的关系[J].中华骨科杂志,2000,20(04):222-225.
    [91]Nakamura T,Turner C H,Yoshikawa T,et al.Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans?[J].J Bone Miner Res,1994,9(7):1071-1076.
    [92]Gnudi S,Ripamonti C,Lisi L,et al.Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women.[J].Osteoporos Int,2002,13(1):69-73,
    [93]Slemenda C W,Turner C H,Peacock M,et al.The genetics of proximal femur geometry,distribution of bone mass and bone mineral density.[J].Osteoporos Int,1996,6(2):178-182.
    [94]Michelotti J,Clark J.Femoral neck length and hip fracture risk.[J].J Bone Miner Res,1999,14(10):1714-1720.
    [95]Ferris B D,Kennedy C,Bhamra M,et al.Morphology of the femur in proximal femoral fractures.[J].J Bone Joint Surg Br,1989,71(3):475-477.
    [96]Gluer C C,Cummings S R,Pressman A,et al.Prediction of hip fractures from pelvic radiographs:the study of osteoporotic fractures.The Study of Osteoporotic Fractures Research Group.[J].J Bone Miner Res,1994,9(5):671-677.
    [1]江森.女性生殖系统生理[M]妇产科学,第四版.ed;乐杰,北京:人民卫生出版社,1999:,18-33.
    [2]余卫,秦明伟,徐苓,等.正常人股骨近端骨密度变化(附445例DXA测量分析)[J].中华放射学杂志,1998,32(1):23-26.
    [3]Kanis J A,Melton L J,Christiansen C,et al.The diagnosis of osteoporosis.[J].J Bone Miner Res,1994,9(8):1137-1141.
    [4]Binkley N,Bilezikian J P,Kendler D L,et al.Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference.[J].J Clin Densitom,2006,9(1):4-14.
    [5]Hilaire L,Wehrli F W,Song H K.High-speed spectroscopic imaging for cancellous bone marrow R(2)~*mapping and lipid quantification.[J].Magn Resort Imaging,2000,18(7):777-786.
    [6]Guillen Md R A.Rapid simultanuous determination by proton NMR of unsaturation and composition of acyl groups in vegetable oils.[J].Eur J Lipid Sci Technol,2003,105(11):688-696.
    [7]Shih T T,Chang C J,Hsu C Y,et al.Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine.[J].Spine,2004,29(24):2844-2850.
    [8]Osteoporosis prevention,diagnosis,and therapy.[J].JAMA,2001,285(6):785-795.
    [9]Lentle B C,Prior J C.Osteoporosis:What a clinician expects to learn from a patient's bone density examination.[J].Radiology,2003,228(3):620-628.
    [10]Osteoporosis:review of the evidence for prevention,diagnosis and treatment and cost-effectiveness analysis.Introduction.[J].Osteoporos Int,1998,8 Suppl 4:7-80.
    [11]Bammer R,Schoenberg S O.Current concepts and advances in clinical parallel magnetic resonance imaging.[J].Top Magn Reson Imaging,2004,15(3):129-158.
    [12]Amano Y,Kumazaki T.Proton MR imaging and spectroscopy evaluation of aplastic anemia:three bone marrow patterns.[J].J Comput Assist Tomogr,1997,21(2):286-292.
    [13]Schick F,Bongers H,Jung W I,et al.Volume-selective proton MRS in vertebral bodies.[J].Magn Reson Med,1992,26(2):207-217.
    [14]Schick F,Forster J,Einsele H,et al.Magnetization transfer in hemopoietic bone marrow examined by localized proton spectroscopy.[J].Magn Reson Med,1995,34(6):792-802.
    [15]Schick F,Einsele H,Weiss B,et at.Assessment of the composition of bone marrow prior to and following autologous BMT and PBSCT by magnetic resonance.[J].Ann Hematol,1996,72(6):361-370.
    [16]Mulkern R V,Meng J,Bowers J L,et al.In vivo bone marrow lipid characterization with line scan Carr-Purcell-Meiboom-Gill proton spectroscopic imaging.[J].Magn Reson Imaging,1997,15(7):823-837.
    [17]Jung C M,Kugel H,Schulte O,et al.[Proton-MR spectroscopy of the spinal bone marrow.An analysis of physiological signal behavior][J].Radiologe,2000,40(8):694-699.
    [18]Schellinger D,Lin C S,Fertikh D,et al.Normal lumbar vertebrae:anatomic,age,and sex variance in subjects at proton MR spectroscopy--initial experience.[J].Radiology,2000,215(3):910-916.
    [19]Kugel H,Jung C,Schulte O,et al.Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow.[J].J Magn Resort Imaging,2001,13(2):263-268.
    [20]Shih T T,Chang C J,Hsu C Y,et al.Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine.[J].Spine,2004.29(24):2844-2850.
    [21]Kugel H,Jung C,Schulte O,et al.Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow.[J].J Magn Resort Imaging,2001,13(2):263-268.
    [22]Koo K H,Dussault R,Kaplan P.et al.Age-related marrow conversion in the proximal metaphysis of the femur: evaluation with Tl-weighted MR imaging.[J]. Radiology,1998,206(3):745-748.
    [23] Justesen J, Stenderup K, Ebbesen E N, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis.[J]. Biogerontology,2001,2(3):165-171.
    [24] Dunnill M S, Anderson J A, Whitehead R. Quantitative histological studies on age changes in bone.[J]. J Pathol Bacteriol, 1967,94(2):275-291.
    [25] Rozman C, Feliu E, Berga L, et al. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study.[J]. Exp Hematol,1989,17(1):34-37.
    [26] Verma S, Rajaratnam J H, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis.[J]. J Clin Pathol,2002,55(9):693-698.
    [27] Yeung D K, Griffith J F, Antonio G E, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study.[J]. J Magn Reson Imaging,2005,22(2):279-285.
    [28] Griffith J F, Yeung D K, Antonio G E, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation.[J]. Radiology,2006,241(3):831-838.
    [29] Schellinger D, Lin C S, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening.[J]. AJR Am J Roentgenol,2004,183(6): 1761-1765.
    [30] Martin R B, Zissimos S L. Relationships between marrow fat and bone turnover in ovariectomized and intact rats.[J]. Bone,1991,12(2):123-131.
    [31] Parhami F, Garfinkel A, Demer L L. Role of lipids in osteoporosis.[J]. Arterioscler Thromb Vasc Biol.2000,20(11):2346-2348.
    [32] Ouchi N, Kihara S, Funahashi T, et al. Obesity, adiponectin and vascular inflammatory disease.[J]. Curr Opin Lipidol,2003,14(6):561-566.
    [33] Gimble J M, Robinson C E, Wu X, et al. The function of adipocytes in the bone marrow stroma: an update.[J].Bone,1996,19(5):421-428.
    [34] Verma S, Rajaratnam J H, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis.[J]. J Clin Pathol,2002,55(9):693-698.
    [35] Sekiya I, Larson B L, Vuoristo J T. et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs).[J]. J Bone Miner Res,2004,19(2):256-264.
    [36] Rodriguez J P, Montecinos L, Rios S, et al. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation.[J]. J Cell Biochem,2000,79(4):557-565.
    [37] Weisberg S P, Mccann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue.[J]. J Clin Invest,2003,112(12):1796-1808.
    [38] Majumdar S, Thomasson D, Shimakawa A, et al. Quantitation of the susceptibility difference between trabecular bone and bone marrow: experimental studies.[J]. Magn Reson Med, 1991,22(1): 111-127.
    [39] Ishijima H, Ishizaka H, Horikoshi H. et al. Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex.[J]. AJR Am J Roentgenol,1996,167(2):355-358.
    [40] Schick F, Bongers H, Jung Wi E A. Pronton relaxation times in human red bone marrow by volume-selective magnetic resonance spectroscopy.[J]. Appl Magn Reson,1993,3(2):947-963.
    [41] Wehrli F W, Ford J C, Artie M, et al. Trabecular structure: preliminary application of MR interferometry.[J].Radiology,1991.179(3):615-621.
    [42] Schick F, Seitz D, Machann J, et al. Magnetic resonance bone densitometry. Comparison of different methods based on susceptibility.[J]. Invest Radiol,1995,30(4):254-265.
    [43] Weinstein R S, Hutson M S. Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging.[J]. Bone,1987,8(3):137-142.
    [44] Dooms G C, Fisher M R, Hricak H, et al. Bone marrow imaging: magnetic resonance studies related to age and sex.[J]. Radiology,1985,155(2):429-432.
    [45] Wehrli F W, Hopkins J A, Hwang S N, et al. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.[J]. Radiology,2000,217(2):527-538.
    [46] Machann J, Schick F, Seitz D, et al. [Examination of trabecular bone structures of the foot skeleton with MRI imaging][J]. Biomed Tech (Berl),1998,43(7-8):202-209.
    [47] Chi Y, Gupta R K. Alterations in membrane fatty acid unsaturation and chain length in hypertension as observed by 1H NMR spectroscopy.[J]. Am J Hypertens,1998,11(3 Pt 1):340-348.
    [48] Noula C, Bonzom P, Brown A, et al. 1H-NMR lipid profiles of human blood platelets; links with coronary artery disease.[J]. Biochim Biophys Acta,2000,1487(1):15-23.
    [49] Plumb M S, Aspden R M. High levels of fat and (n-6) fatty acids in cancellous bone in osteoarthritis.[J]. Lipids Health Dis,2004,3:12.
    [50] Sun D, Krishnan A, Zaman K, et al. Dietary n-3 fatty acids decrease osteoclastogenesis and loss of bone mass in ovariectomized mice.[J]. J Bone Miner Res,2003,18(7):1206-1216.
    [51] Maurin A C, Chavassieux P M, Vericel E, et al. Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation.[J]. Bone,2002,31(1):260-266.
    [52] Weiss L A, Barrett-connor E, Von M D. Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study.[J]. Am J Clin Nutr,2005,81(4):934-938.
    [53] Shen C L, Yeh J K, Rasty J, et al. Improvement of Bone Quality in Gonad-Intact Middle-Aged Male Rats by Long-Chain n-3 Polyunsaturated Fatty Acid.[J]. Calcif Tissue Int,2007,80(4):286-293.
    [54] Moore S G, Dawson K L. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging.[J]. Radiology, 1990,175( 1 ):219-223.
    [55] Kricun M E. Red-yellow marrow conversion: its effect on the location of some solitary bone lesions.[J]. Skeletal Radiol,1985,14(1):10-19.
    [56] Koo K H, Dussault R, Kaplan P, et al. Age-related marrow conversion in the proximal metaphysis of the femur: evaluation with T1-weighted MR imaging.[J]. Radiology,1998,206(3):745-748.
    [1]江森.女性生殖系统生理[M]妇产科学,第四版.ed;乐杰,北京:人民卫生出版社,1999:,18-33.
    [2]余卫,秦明伟,徐苓,等.正常人股骨近端骨密度变化(附445例DXA测量分析)[J].中华放射学杂志,1998,32(1):23-26.
    [3]Kanis J A,Melton L J,Christiansen C,et al.The diagnosis of osteoporosis.[J].J Bone Miner Res,1994,9(8):1137-1141.
    [4]Binkley N,Bilezikian J P,Kendler D L,et al.Official positions of the International Society for Clinical Densitometry and Executive Summary of the 2005 Position Development Conference.[J].J Clin Densitom,2006,9(1):4-14.
    [5]Chung H W,Wehrli F W,Williams J L,et al.Three-dimensional nuclear magnetic resonance microimaging of trabecular bone.[J].J Bone Miner Res,1995,10(10):1452-1461.
    [6]Hwang S N,Wehrli F W,Williams J L.Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength.[J].Med Phys,1997,24(8):1255-1261.
    [7]Jara H,Wehrli F W,Chung H,et al.High-resolution variable flip angle 3D MR imaging of trabecular microstrncture in vivo.[J].Magn Reson Med,1993,29(4):528-539.
    [8]Majumdar S,Genant H K,Grampp S,et al.Correlation of trabecular bone structure with age,bone mineral density,and osteoporotic status:in vivo studies in the distal radius using high resolution magnetic resonance imaging.[J].J Bone Miner Res,1997,12(1):111-118.
    [9]Stampa B,Kuhn B,Liess C,et al.Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo.[J].Top Magn Reson Imaging,2002,13(5):357-363.
    [10]Wehrli F W,Ford J C,Haddad J G.Osteoporosis:clinical assessment with quantitative MR imaging in diagnosis.[J].Radiology,1995,196(3):631-641.
    [11]Hopkins J A,Wehrli F W.Magnetic susceptibility measurement of insoluble solids by NMR:magnetic susceptibility of bone.[J].Magn Reson Med,1997,37(4):494-500.
    [12]Selby K,Majumdar S,Newitt D C,et al.Investigation of MR decay rates in microphantom models of trabecular bone.[J].J Magn Reson Imaging,1996,6(3):549-559.
    [13]Chung H,Wehrli F W,Williams J L,et al.Relationship between NMR transverse relaxation,trabecular bone architecture,and strength.[J].Proc Natl Acad Sci U S A,1993,90(21):10250-10254.
    [14]Jergas M D,Majumdar S,Keyak J H,et al.Relationships between young modulus of elasticity,ash density,and MRI derived effective transverse relaxation T2~* in tibial specimens.[J].J Comput Assist Tomogr,1995,19(3):472-479.
    [15]Fransson A,Grampp S,Imhof H.Effects of trabecular bone on marrow relaxation in the tibia.[J].Magn Reson Imaging,1999,17(1):69-82.
    [16]Grampp S,Majumdar S,Jergas M,et al.Distal radius:in vivo assessment with quantitative MR imaging,peripheral quantitative CT,and dual X-ray absorptiometry.[J].Radiology,1996,198(1):213-218.
    [17]Jergas M D,Majumdar S,Keyak J H,et al.Relationships between young modulus of elasticity,ash density,and MRI derived effective transverse relaxation T2~* in tibial specimens.[J].J Comput Assist Tomogr,1995,19(3):472-479.
    [18]Davis C A,Genant H K,Dunham J S.The effects of bone on proton NMR relaxation times of surrounding liquids.[J].Invest Radiol,1986,21(6):472-477.
    [19]Rosenthal H,Thulborn K R,Rosenthal D I,et al.Magnetic susceptibility effects of trabecular bone on magnetic resonance imaging of bone marrow.[J]. Invest Radiol,1990,25(2):173-178.
    [20] Sebag G H, Moore S G. Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton.[J]. Radiology, 1990,174(3 Pt 1):855-859.
    [21] Majumdar S, Genant H K. In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence.[J]. J Magn Reson Imaging,1992,2(2):209-219.
    [22] Grampp S, Majumdar S, Jergas M, et al. Distal radius: in vivo assessment with quantitative MR imaging,peripheral quantitative CT, and dual X-ray absorptiometry.[J]. Radiology,1996,198(l):213-218.
    [23] Link T M, Majumdar S, Augat P, et al. Proximal femur: assessment for osteoporosis with T2* decay characteristics at MR imaging.[J]. Radiology, 1998,209(2):531-536.
    [24] Sugimoto H, Kimura T, Ohsawa T. Susceptibility effects of bone trabeculae. Quantification in vivo using an asymmetric spin-echo technique.[J]. Invest Radiol,1993,28(3):208-213.
    [25] Wehrli F W, Ford J C, Haddad J G. Osteoporosis: clinical assessment with quantitative MR imaging in diagnosis.[J]. Radiology,1995,196(3):631-641.
    [26] Wehrli F W, Hopkins J A, Hwang S N, et al. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.[J]. Radiology,2000,217(2):527-538.
    [27] Wehrli F W, Hilaire L, Fernandez-seara M, et al. Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status.[J]. J Bone Miner Res,2002,17(12):2265-2273.
    [28] Maris T G, Damilakis J, Sideri L, et al. Assessment of the skeletal status by MR relaxometry techniques of the lumbar spine: comparison with dual X-ray absorptiometry.[J]. Eur J Radiol,2004,50(3):245-256.
    [1] Kanis J A, Melton L J, Christiansen C, et al. The diagnosis of osteoporosis.[J]. J Bone Miner Res,1994,9(8):1137-1141.
    
    [2] A J E. Dual-energy X-ray absorptiometry.[M] Radiology of osteoporosis., G S, Berlin:Springer,2003:,87-88.
    
    [3] Barnett E, Nordin B E. The radiological diagnosis of osteoporosis: a new approach.[J]. Clin Radiol,1960,11:166-174.
    
    [4] Nielsen S P. The metacarpal index revisited: a brief overview.[J]. J Clin Densitom,2001,4(3):199-207.
    
    [5] Singh M, Nagrath A R, Maini P S. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis.[J]. J Bone Joint Surg Am,1970,52(3):457-467.
    
    [6] Singh M, Riggs B L, Beabout J W, et al. Femoral trabecular-pattern index for evaluation of spinal osteoporosis.[J]. Ann Intern Med,1972,77(1):63-67.
    
    [7] Jhamaria N L, Lai K B, Udawat M, et al. The trabecular pattern of the calcaneum as an index of osteoporosis.[J]. J Bone Joint Surg Br, 1983,65(2): 195-198.
    
    [8] Genant H K, Wu C Y, Van K C, et al. Vertebral fracture assessment using a semiquantitative technique.[J]. J Bone Miner Res,1993,8(9):1137-1148.
    
    [9] Yang S O, Hagiwara S, Engelke K, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study.[J]. Radiology, 1994,192(3):857-859.
    [10] Trouerbach W T, Birkenhager J C, Schmitz P I, et al. A cross-sectional study of age-related loss of mineral content of phalangeal bone in men and women.[J]. Skeletal Radiol, 1988,17(5):338-343.
    [11] Trouerbach W T, Birkenhager J C, Collette B J, et al. A study on the phalanx bone mineral content in 273 normal pre- and post-menopausal females (transverse study of age-dependent bone loss).[J]. Bone Miner,1987,3(l):53-62.
    [12] Matsumoto C, Kushida K, Yamazaki K, et al. Metacarpal bone mass in normal and osteoporotic Japanese women using computed X-ray densitometry.[J]. Calcif Tissue Int,1994,55(5):324-329.
    [13] Ross P. Huang C, Davis J, et al. Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound.[J]. Bone,1995,16(3):325-332.
    [14] Cameron J R, Sorenson J. MEASUREMENT OF BONE MINERAL IN VIVO: AN IMPROVED METHOD.[J]. Science,1963,142:230-232.
    [15] Sorenson J A, Cameron J R. A reliable in vivo measurement of bone-mineral content.[J]. J Bone Joint Surg Am,1967.49(3):481-497.
    [16] Kelly T L, Crane G, Baran D T. Single X-ray absorptiometry of the forearm: precision, correlation, and reference data.[J]. Calcif Tissue Int, 1994,54(3):212-218.
    [17] Wanner H W, Eastell R, Riggs B L. Bone mineral density of the radius: where do we stand?[J]. J Nucl Med,1985,26(11):1339-1341.
    [18] Vogel J M, Anderson J T. Rectilinear transmission scanning of irregular bones for quantification of mineral content.[J]. J Nucl Med,1972,13(1):13-18.
    [19] Vogel J M, Wasnich R D, Ross P D. The clinical relevance of calcaneus bone mineral measurements: a review.[J]. Bone Miner,1988.5(1):35-58.
    [20] Mazess Rb B. Single- and dual- photon absorptiometry for bone measurements in osteoporosis.[M] Ostoporosis Update., G H, San Francisco, California, USA.:Radiologyu Research and Education Foundation., 1987:,77-83.
    [21] Wahner H W, Dunn W L, Brown M L, et al. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine.[J]. Mayo Clin Proc,1988,63(11):1075-1084.
    [22] Borders J, Kerr E, Sartoris D J, et al. Quantitative dual-energy radiographic absorptiometry of the lumbar spine: in vivo comparison with dual-photon absorptiometry.[J]. Radiology, 1989,170(1 Pt 1):129-131.
    [23] Lilley J, Walters B G, Heath D A, et al. In vivo and in vitro precision for bone density measured by dual-energy X-ray absorption.[J]. Osteoporos Int,1991,1(3):141-146.
    [24] Genant H K, Engelke K, Fuerst T, et al. Noninvasive assessment of bone mineral and structure: state of the art.[J]. J Bone Miner Res,1996,11(6):707-730.
    [25] Ho C P, Kim R W, Schaffler M B, et al. Accuracy of dual-energy radiographic absorptiometry of the lumbar spine: cadaver study.[J]. Radiology,1990,176(1):171-173.
    [26] Drinka P J, Desmet A A, Bauwens S F, et al. The effect of overlying calcification on lumbar bone densitometry.[J]. Calcif Tissue Int, 1992,50(6):507-510.
    [27] Frye M A, Melton L J, Bryant S C, et al. Osteoporosis and calcification of the aorta.[J]. Bone Miner,1992,19(2):185-194.
    [28] Yu W, Gluer C C, Fuerst T, et al. Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women.[J]. Calcif Tissue Int, 1995,57(3): 169-174.
    [29] Finkelstein J S, deary R L, Butler J P, et al. A comparison of lateral versus anterior-posterior spine dual energy x-ray absorptiometry for the diagnosis of osteopenia.[J]. J Clin Endocrinol Metab,1994,78(3):724-730.
    [30] Yu W, Gluer C C, Grampp S, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography.[J]. Osteoporos Int,1995,5(6):433-439.
    [31] Jergas M, Breitenseher M, Gluer C C, et al. Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine.[J]. Osteoporos Int,1995,5(3):196-204.
    [32] Del R L, Pons F, Huguet M, et al. Anteroposterior versus lateral bone mineral density of spine assessed by dual X-ray absorptiometry.[J]. Eur J Nucl Med,1995,22(5):407-412.
    [33] Blake G M, Jagathesan T, Herd R J, et al. Dual X-ray absorptiometry of the lumbar spine: the precision of paired anteroposterior/lateral studies.[J]. Br J Radiol,1994,67(799):624-630.
    [34] Kanis J A, Gluer C C. An update on the diagnosis and assessment of osteoporosis with densitometry.Committee of Scientific Advisors, International Osteoporosis Foundation.[J]. Osteoporos Int,2000,11(3):192-202.
    [35] Faulkner K G, Mcclung M R, Schmeer M S, et al. Densitometry of the radius using single and dual energy absorptiometry.[J]. Calcif Tissue Int,1994,54(3):208-211.
    [36] Laval-jeantet A M, Bergot C, Williams M, et al. Dual-energy X-ray absorptiometry of the calcaneus:comparison with vertebral dual-energy X-ray absorptiometry and quantitative computed tomography.[J]. Calcif Tissue Int,1995,56(1):14-18.
    [37] Kroger H, Kotaniemi A, Vainio P, et al. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry.[J]. Bone Miner,1992,17(1):75-85.
    [38] Sievanen H, Kannus P, Nieminen V, et al. Estimation of various mechanical characteristics of human bones using dual energy X-ray absorptiometry: methodology and precision.[J]. Bone, 1996,18( 1 Suppl):17-27.
    [39] Lu P W, Cowell C T, Lloyd-jones S A. et al. Volumetric bone mineral density in normal subjects, aged 5-27 years.[J]. J Clin Endocrinol Metab,1996,81(4):1586-1590.
    [40] Steiger P, Cummings S R, Genant H K, et al. Morphometric X-ray absorptiometry of the spine: correlation in vivo with morphometric radiography. Study of Osteoporotic Fractures Research Group.[J]. Osteoporos Int,1994,4(5):238-244.
    [41] Hedlund L R, Gallagher J C. Vertebral morphometry in diagnosis of spinal fractures.[J]. Bone Miner,1988,5(1):59-67.
    [42] Faulkner K G, Cummings S R, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.[J]. J Bone Miner Res,1993,8(10):1211-1217.
    [43] Faulkner K G, Wacker W K, Barden H S, et al. Femur strength index predicts hip fracture independent of bone density and hip axis length.[J]. Osteoporos Int,2006,17(4):593-599.
    [44] Grampp S, Henk C B, Imhof H. CT and MR assessment of osteoporosis.[J]. Semin Ultrasound CT MR,1999,20(1):2-9.
    [45] Jones C D, Laval-jeantet A M, Laval-jeantet M H, et al. Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis.[J]. Bone,1987,8(4):201-206.
    [46] Yu W, Gluer C C, Grampp S, et al. Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography.[J]. Osteoporos Int,1995,5(6):433-439.
    [47] Block J E, Smith R, Glueer C C, et al. Models of spinal trabecular bone loss as determined by quantitative computed tomography.[J]. J Bone Miner Res,1989,4(2):249-257.
    [48] Kalender W A, Klotz E, Suess C. Vertebral bone mineral analysis: an integrated approach with CT.[J].Radiology, 1987,164(2) :419-423.
    [49] Genant H K, Steiger P, Block J E, et al. Quantitative computed tomography: update 1987.[J]. Calcif Tissue Int,1987,41(4): 179-186.
    [50] 余卫,秦明伟,张燕, et al. 腰椎退行性骨关节病对骨密度测定的影响[J].中华放射学杂志,2002,36(03):245-248.
    [51] Gluer C C, Genant H K. Impact of marrow fat on accuracy of quantitative CT.[J]. J Comput Assist Tomogr, 1989,13(6): 1023-1035.
    [52] Gluer C C, Reiser U J, Davis C A, et al. Vertebral mineral determination by quantitative computed tomography (QCT): accuracy of single and dual energy measurements.[J]. J Comput Assist Tomogr, 1988,12(2):242-258.
    [53] Van K C, Grashuis J L, Steenbeek J C, et al. Evaluation of postprocessing dual-energy methods in quantitative computed tomography. Part 2. Practical aspects.[J]. Invest Radiol,1990,25(8):882-889.
    [54] Pacifici R, Rupich R, Griffin M, et al. Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis.[J]. J Clin Endocrinol Metab,1990,70(3):705-710.
    [55] Genant H K, Cann C E, Ettinger B, et al. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy.[J]. Ann Intern Med,1982,97(5):699-705.
    [56] Guglielmi G, Grimston S K, Fischer K C, et al. Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT.[J]. Radiology,1994,192(3):845-850.
    [57] Sartoris D J, Andre M, Resnik C S, et al. Trabecular bone density in the proximal femur: quantitative CT assessment. Work in progress.[J]. Radiology,1986,160(3):707-712.
    [58] Genant H K, Boyd D. Quantitative bone mineral analysis using dual energy computed tomography.[J].Invest Radiol, 1977,12(6):545-551.
    [59] Prevrhal S, Engelke K G H. Peripheral Quantitative Computed Tomography.[M] Radiology of osteoporosis.,G S, Berlin:Springer,2003:, 116-117.
    [60] Ruegsegger P, Durand E P, Dambacher M A. Differential effects of aging and disease on trabecular and compact bone density of the radius.[J]. Bone,1991,12(2):99-105.
    [61] Grampp S, Jergas M, Lang P, et al. Quantitative CT assessment of the lumbar spine and radius in patients with osteoporosis.[J]. AJR Am J Roentgenol, 1996,167(1): 133-140.
    [62] Ruegsegger P, Durand E, Dambacher M A. Localization of regional forearm bone loss from high resolution computed tomographic images.[J]. Osteoporos Int,1991,1(2):76-80.
    [63] Smith D A, Hosie C J, Deacon A D, et al. Quantitative gamma-ray computed tomography of the radius in normal subjects and osteoporotic patients.[J]. Br J Radiol,1990,63(754):776-782.
    [64] Spadaro J A, Werner F W, Brenner R A, et al. Cortical and trabecular bone contribute strength to the osteopenic distal radius.[J]. J Orthop Res, 1994,12(2):211-218.
    [65] Keyak J H, Rossi S A, Jones K A, et al. Prediction of femoral fracture load using automated finite element modeling.[J]. J Biomech,1998,31(2):125-133.
    [66] Sode M, Keyak J, Bouxsein M E A. Assessment of femoral neck torsional strength indices.[J]. J Bone Miner Res,2004,19(suppl):S238.
    [67] Lang T F, Li J, Harris S T, et al. Assessment of vertebral bone mineral density using volumetric quantitative CT.[J]. J Comput Assist Tomogr,1999,23(1): 130-137.
    [68] Lang T F, Keyak J H, Heitz M W, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength.[J]. Bone,1997,21(1):101-108.
    [69] Crawford R P, Cann C E, Keaveny T M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.[J]. Bone,2003,33(4):744-750.
    [70] Faulkner K G, Cann C E, Hasegawa B H. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis.[J]. Radiology,1991,179(3):669-674.
    [71] Crawford R P, Rosenberg W S, Keaveny T M. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions.[J]. J Biomech Eng,2003,125(4):434-438.
    [72] Genant H K, Jiang Y. Advanced imaging assessment of bone quality.[J]. Ann N Y Acad Sci,2006,1068:410-428.
    [73] Chevalier F, Laval-jeantet A M, Laval-jeantet M, et al. CT image analysis of the vertebral trabecular network in vivo.[J]. Calcif Tissue Int,1992,51(1):8-13.
    [74] Gordon C L, Lang T F, Augat P, et al. Image-based assessment of spinal trabecular bone structure from high-resolution CT images.[J]. Osteoporos Int,1998,8(4):317-325.
    [75] Durand E P, Ruegsegger P. High-contrast resolution of CT images for bone structure analysis.[J]. Med Phys,1992,19(3):569-573.
    [76] Muller R, Harm M. Vogel M, et al. Morphometric analysis of noninvasively assessed bone biopsies:comparison of high-resolution computed tomography and histologic sections.[J]. Bone,1996,18(3):215-220.
    [77] Muller R, Hildebrand T, Hauselmann H J, et al. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT.[J]. J Bone Miner Res,1996,11(11):1745-1750.
    [78] Khosla S, Melton L J, Robb R A, et al. Relationship of volumetric BMD and structural parameters at different skeletal sites to sex steroid levels in men.[J]. J Bone Miner Res,2005,20(5):730-740.
    [79] Feldkamp L A, Goldstein S A, Parfltt A M, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography.[J]. J Bone Miner Res, 1989,4( 1 ):3-11.
    [80] Goulet R W, Goldstein S A, Ciarelli M J, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone.[J]. J Biomech,1994,27(4):375-389.
    [81] Engelke K, Song S M, Gluer C C, et al. A digital model of trabecular bone.[J]. J Bone Miner Res,1996,11(4):480-489.
    [82] Ruegsegger P, Koller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture.[J]. Calcif Tissue Int,1996,58(1):24-29.
    [83] Jiang Y, Zhao J, Liao E Y, et al. Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies.[J]. J Bone Miner Metab,2005,23 Suppl:122-131.
    [84] Miao D, He B, Jiang Y, et al. Osteoblast-derived PTHrP is a potent endogenous bone anabolic agent that modifies the therapeutic efficacy of administered PTH 1-34.[J]. J Clin Invest,2005,115(9):2402-24l 1.
    [85] Takeshita S, Namba N, Zhao J J, et al. SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteodasts.[J]. Nat Med,2002,8(9):943-949.
    [86] Bergo M O, Gavino B, Ross J, et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and aprelamin A processing defect.[J]. Proc Natl Acad Sci U S A,2002,99(20):13049-13054.
    [87] Lane Ne, Balooch M, Zhao J E A. Glucocorticoids induce changes around the osteocyte lacunae that reduces bone strength and bone mineral content independent of apoptosis: preliminary data from a glucocirticoid-induced bone loss model in male mice.[J]. J Bone Miner Res,2004,19(suppl):434-435.
    [88] Jiang Y, Zhao Jj, Mangadu R E A. Asswssment of 3D cortical and trabecular bone microstructure and erosion on micro CT images of a murine model of arthritis.[J]. J Bone Miner Res,2004,19(suppl):S474.
    [89] Jiang Y, Zhao J J, Mitlak B H, et al. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure.[J]. J Bone Miner Res,2003,18(11): 1932-1941.
    [90] Peyrin F, Salome M, Cloetens P, et al. Micro-CT examinations of trabecular bone samples at different resolutions: 14, 7 and 2 micron level.[J]. Technol Health Care,1998,6(5-6):391-401.
    [91] Borah B, Dufresne T E, Ritman E L, et al. Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography.[J]. Bone,2006,39(2):345-352.
    [92] Neff M, Dambacher M, Haemmerle S E A. 3D evaluation of bone microarchitecture in humans using high resolution pQCT: a new in vivo, noninvasive and time saving procedure.[J]. J Bone Miner Res,2004,19(suppl):S236.
    [93] Pistoia W, Van R B, Lochmuller E M, et al. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images.[J].Bone,2002,30(6):842-848.
    [94] Borah B, Gross G J, Dufresne T E, et al. Three-dimensional microimaging (MRmicroI and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis.[J]. Anat Rec,2001,265(2):101-110.
    [95] Davis C A, Genant H K, Dunham J S. The effects of bone on proton NMR relaxation times of surrounding liquids.[J]. Invest Radiol,1986,21(6):472-477.
    [96] Rosenthal H, Thulborn K R, Rosenthal D 1, et al. Magnetic susceptibility effects of trabecular bone on magnetic resonance imaging of bone marrow.[J]. Invest Radiol, 1990,25(2): 173-178.
    [97] Sebag G H, Moore S G. Effect of trabecular bone on the appearance of marrow in gradient-echo imaging of the appendicular skeleton.[J]. Radiology. 1990,174(3 Pt 1):855-859.
    [98] Majumdar S, Genant H K. In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence.[J]. J Magn Reson Imaging, 1992,2(2):209-219.
    [99] Sugimoto H, Kimura T. Ohsawa T. Susceptibility effects of bone trabeculae. Quantification in vivo using an asymmetric spin-echo technique.[J]. Invest Radiol,1993,28(3):208-213.
    [100] Wehrli F W. Ford J C, Haddad J G. Osteoporosis: clinical assessment with quantitative MR imaging in diagnosis.[J]. Radiology, 1995,196(3):631-641.
    [101] Wehrli F W, Hopkins J A, Hwang S N, et al. Cross-sectional study of osteopenia with quantitative MR imaging and bone densitometry.[J]. Radiology,2000,217(2):527-538.
    [102] Wehrli F W, Hilaire L, Fernandez-seara M, et al. Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status.[J]. J Bone Miner Res,2002,17(12):2265-2273.
    [103] Maris T G, Damilakis J, Sideri L, et al. Assessment of the skeletal status by MR relaxometry techniques of the lumbar spine: comparison with dual X-ray absorptiometry.[J]. Eur J Radiol,2004,50(3):245-256.
    [104] Chung H, Wehrli F W, Williams J L, et al. Relationship between NMR transverse relaxation, trabecular bone architecture, and strength.[J]. ProcNatl Acad Sci U S A,1993,90(21):10250-10254.
    [105] Jergas M D, Majumdar S, Keyak J H, et al. Relationships between young modulus of elasticity, ash density, and MRI derived effective transverse relaxation T2* in tibial specimens.[J]. J Comput Assist Tomogr,1995,19(3):472-479.
    [106] Fransson A, Grampp S, Imhof H. Effects of trabecular bone on marrow relaxation in the tibia.[J]. Magn Reson Imaging, 1999,17( 1 ):69-82.
    [107] Chung H W, Wehrli F W, Williams J L, et al. Three-dimensional nuclear magnetic resonance microimaging of trabecular bone.[J]. J Bone Miner Res,1995,10(10):1452-1461.
    [108] Hwang S N, Wehrli F W, Williams J L. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength.[J]. Med Phys,1997,24(8):1255-1261.
    [109] Kapadia R D, High W B, Soulleveld H A, et al. Magnetic resonance microscopy in rat skeletal research.[J].Magn Reson Med,1993,30(2):247-250.
    [110] Simmons C A, Hipp J A. Method-based differences in the automated analysis of the three-dimensional morphology of trabecular bone.[J]. J Bone Miner Res,1997,12(6):942-947.
    [111] Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics.[J]. Osteoporos Int,1996,6(5):376-385.
    [112] Majumdar S, Genant H K. Grampp S. et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging.[J].J Bone Miner Res,1997,12(1):111-118.
    [113] Jara H, Wehrli F W, Chung H, et al. High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo.[J]. Magn Reson Med,1993,29(4):528-539.
    [114] Stampa B, Kuhn B, Liess C, et al. Characterization of the integrity of three-dimensional trabecular bone microstructure by connectivity and shape analysis using high-resolution magnetic resonance imaging in vivo.[J].Top Magn Reson Imaging,2002,13(5):357-363.
    [115] Wehrli F W, Hwang S N, Ma J, et al. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing.[J]. Radiology,1998,206(2):347-357.
    [116] Wehrli F W, Gomberg B R. Saha P K, et al. Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis.[J]. J Bone Miner Res,2001,16(8): 1520-1531.
    [117] Newitt D C, Majumdar S, Van R B. et al. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius.[J]. Osteoporos Int,2002,13(1):6-17.
    [118] Pothuaud L, Laib A, Levitz P, et al. Three-dimensional-line skeleton graph analysis of high-resolution magnetic resonance images: a validation study from 34-microm-resolution microcomputed tomography.[J]. J Bone Miner Res,2002,17( 10): 1883-1895.
    [119] Jiang Y, Zhao J. Geusens P. et al. Femoral neck trabecular microstructure in ovariectomized ewes treated with calcitonin: MRI microscopic evaluation.[J]. J Bone Miner Res,2005,20(1):125-130.
    [120] Castillo M, Kwock L, Scatliff J, et al. Proton MR spectroscopy in neoplastic and non-neoplastic brain disorders.[J]. Magn Reson Imaging Clin N Am,1998,6(1):1-20.
    [121] Kadota T, Horinouchi T, Kuroda C. Development and aging of the cerebrum: assessment with proton MR spectroscopy.[J]. AJNR Am J Neuroradiol,2001,22(1):128-135.
    [122] Burtscher I M, Stahlberg F, Holtas S. Proton (1H) MR spectroscopy for routine diagnostic evaluation of brain lesions.[J]. Acta Radiol,1997,38(6):953-960.
    [123] Adamson A J, Rand S D, Prost R W, et al. Focal brain lesions: effect of single-voxel proton MR spectroscopic findings on treatment decisions.[J]. Radiology,1998,209(1):73-78.
    [124] Amano Y, Kumazaki T. Proton MR imaging and spectroscopy evaluation of aplastic anemia: three bone marrow patterns.[J]. J Comput Assist Tomogr,1997,21(2):286-292.
    [125] Schick F, Bongers H, Jung W I, et al. Volume-selective proton MRS in vertebral bodies.[J]. Magn Reson Med,1992,26(2):207-217.
    [126] Schick F, Einsele H, Lutz O, et al. Lipid selective MR imaging and localized 1H spectroscopy of bone marrow during therapy of leukemia. [J]. Anticancer Res, 1996,16(3B): 1545-1551.
    [127] Demmler K, Burkhardt R. Relations between fatty tissue, cancellous bone and vascular pattern of the iliac bone in aplastic anaemia.[J]. Bibl Haematol,1978,45:109-117.
    [128] Demmler K, Otte P, Bartl R, et al. [Osteopenia, marrow atrophy and capillary circulation. Comparative studies of the human iliac crest and 1st lumbar vertebra][J]. Z Orthop Ihre Grenzgeb,1983,121(3):223-227.
    [129] Lotz J C, Gerhart T N, Hayes W C. Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study.[J]. J Comput Assist Tomogr,1990,14(1): 107-114.
    [130] Yeung D K, Griffith J F, Antonio G E, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study.[J]. J Magn Reson Imaging,2005,22(2):279-285.
    [131] Shih T T, Chang C J, Hsu C Y, et al. Correlation of bone marrow lipid water content with bone mineral density on the lumbar spine.[J]. Spine,2004,29(24):2844-2850.
    [132] Schellinger D, Lin C S, Lim J, et al. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening.[J]. AJR Am J Roentgenol.2004,183(6): 1761 -1765.
    [133] Chan J H. Peh W C, Tsui E Y, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients.[J]. Br J Radiol,2002,75(891):207-214.
    [134] Spuentrup E, Buecker A, Adam G, et al. Diffusion-weighted MR imaging for differentiation of benign fracture edema and tumor infiltration of the vertebral body.[J]. AJR Am J Roentgenol,2001,176(2):351-358.
    [135] Yeung D K, Wong S Y, Griffith J F. et al. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging.[J]. J Magn Reson Imaging,2004,19(2):222-228.
    [136] Griffith J F, Yeung D K, Antonio G E. et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation.[J]. Radiology,2006,241(3):831-838.
    [137] Siegel 1 M, Anast G T, Fields T. The determination of fracture healing by measurement of sound velocity across the fracture site.[J]. Surg Gynecol Obstet,1958,107(3):327-332.
    [138] Gluer C C, Wu C Y, Jergas M, et al. Three quantitative ultrasound parameters reflect bone structure.[J].Calcif Tissue Int,1994,55(l):46-52.
    [139] McCarthy R N, Jeffcott L B. Mccartney R N. Ultrasound speed in equine cortical bone: effects of orientation,density, porosity and temperature.[J]. J Biomech,1990.23(11):1139-1143.
    [140] Malavolta N, Mule R, Frigato M. Quantitative ultrasound assessment of bone.[J]. Aging Clin Exp Res,2004,16 Suppl(3):23-28.
    [141] Schott A M, Hans D. Sornay-rendu E, et al. Ultrasound measurements on os calcis: precision and age-related changes in a normal female population.[J]. Osteoporos Int, 1993,3(5):249-254.
    [142] Waud C E, Lew R, Baran D T. The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women.[J]. Calcif Tissue Int, 1992,51 (6):415-418.
    [143] Stegman M R, Heaney R P, Recker R R, et al. Velocity of ultrasound and its association with fracture history in a rural population.[J]. Am J Epidemiol,1994,139(10):1027-1034.
    [144] Lee S C, Coan B S, Bouxsein M L. Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone.[J]. Bone,1997,21(1):119-125.
    [145] Heaney R P, Avioli L V, Chesnut C H, et al. Osteoporotic bone fragility. Detection by ultrasound transmission velocity.[J]. JAMA,1989,261(20):2986-2990.
    [146] Orgee J M, Foster H, Mccloskey E V, et al. A precise method for the assessment of tibial ultrasound velocity.[J]. Osteoporos Int, 1996,6(1): 1-7.
    [147] Faulkner K G, Mcclung M R, Coleman L J, et al. Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites.[J]. Osteoporos Int, 1994,4( 1 ):42-47.
    [148] Gluer C C, Vahlensieck M, Faulkner K G, et al. Site-matched calcaneal measurements of broad-band ultrasound attenuation and single X-ray absorptiometry: do they measure different skeletal properties?[J]. J Bone Miner Res, 1992,7(9): 1071 -1079.
    [149] Salamone L M. Krall E A, Harris S. et al. Comparison of broadband ultrasound attenuation to single X-ray absorptiometry measurements at the calcaneus in postmenopausal women.[J]. Calcif Tissue Int,1994,54(2):87-90.
    [150] Herd R J, Ramalingham T, Ryan P J, et al. Measurements of broadband ultrasonic attenuation in the calcaneus in premenopausal and postmenopausal women.[J]. Osteoporos Int, 1992,2(5):247-25 3.
    [151] Gluer C C, Wu C Y, Genant H K. Broadband ultrasound attenuation signals depend on trabecular orientation:an in vitro study.[J]. Osteoporos Int,1993,3(4):185-191.
    [152] Toyras J, Kroger H, Jurvelin J S. Bone properties as estimated by mineral density, ultrasound attenuation,and velocity.[J]. Bone,1999,25(6):725-731.
    [153] Baran D T, McCarthy C K, Leahey D, et al. Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study.[J]. Osteoporos Int,1991,1(2):110-113.
    
    [154] Zagzebski J A, Rossman P J, Mesina C, et al. Ultrasound transmission measurements through the os calcis.[J]. Calcif Tissue Int,1991,49(2): 107-111.
    [155] Massie A, Reid D M, Porter R W. Screening for osteoporosis: comparison between dual energy X-ray absorptiometry and broadband ultrasound attenuation in 1000 perimenopausal women.[J]. Osteoporos Int, 1993,3(2): 107-110.
    [156] Schott A M, Weill-engerer S, Hans D, et al. Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density.[J]. J Bone Miner Res,1995,10(2):243-249.
    [157] Peretz A, De M V. Moris M, et al. Evaluation of quantitative ultrasound and dual X-Ray absorptiometry measurements in women with and without fractures.[J]. J Clin Densitom, 1999,2(2): 127-133.
    [158] Gluer C C, Cummings S R, Bauer D C, et al. Osteoporosis: association of recent fractures with quantitative US findings.[J]. Radiology, 1996,199(3):725-732.
    [159] Bouxsein M L, Radloff S E. Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone.[J]. J Bone Miner Res,1997,12(5):839-846.
    [160] Gnudi S, Ripamonti C, Malavolta N. Quantitative ultrasound and bone densitometry to evaluate the risk of nonspine fractures: a prospective study.[J]. Osteoporos Int,2000,11(6):518-523.
    [161] Gnudi S, Ripamonti C. Quantitative ultrasound at the phalanxes discriminates osteoporotic women with vertebral but not with hip fracture.[J]. Ultrasound Med Biol,2004,30(3):357-361.
    [162] Thompson P, Taylor J, Fisher A, et al. Quantitative heel ultrasound in 3180 women between 45 and 75 years of age: compliance, normal ranges and relationship to fracture history.[J]. Osteoporos Int,1998,8(3):211-214.
    [163] Gonnelli S, Cepollaro C, Montagnani A, et al. Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study.[J]. Osteoporos Int,2002,13(5):415-421.
    [164] Sahota O, San P, Cawte S A, et al. A comparison of the longitudinal changes in quantitative ultrasound with dual-energy X-ray absorptiometry: the four-year effects of hormone replacement therapy.[J]. Osteoporos Int,2000,11(1):52-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700