氟负离子储存—发射功能材料及其在Si和SiO_2蚀刻中应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜材料的制备及其性能研究是材料化学和材料物理领域的重要研究课题之一。氟负离子在半导体蚀刻、薄膜材料的制备及其改性、大气化学、生物化学和负离子质谱技术等领域具有重要的应用背景。本论文合成了氟负离子存储.发射功能材料[Ca_(24)Al_(28)O_(64)]~(4+)·(F~-)_(3.36)(O~((2-))_(0.32)(缩写成C12A7-F~-);首次研究了该材料的结构特征、负离子存储特性、负离子发射特性、高纯氟负离子源的建立技术;深入研究了C12A7-F~-材料的负离子存储-发射机理;利用该功能材料和建立的高纯氟负离子源,进行了F~-离子对硅和二氧化硅蚀刻应用研究。主要的研究结果如下:
     (1)C12A7-F~-的制备和结构特征。1350℃时,在氩气气氛下高温焙烧CaCO_3、γ-Al_2O_3和CaF_2,然后在780℃和氟气气氛下退火处理来制得C12A7-F~-材料。场发射扫描电子显微镜(FESEM)、BET-孔径分析和X射线衍射(XRD)测试表明C12A7-F~-材料的属于I(?)3d空间群,晶格常数为1.1969±0.0002 nm。比表面和平均孔径分别为1.073 m~2/g和42.6(?)。另外经长时间发射后结构并没有发生明显变化。
     (2)F~-离子发射特性。利用时间飞行质谱测量了C12A7-F~-材料的发射特性,包括温度效应,引出场效应,发射分支比,表观活化能的计算和发射稳定性等内容。实验结果显示,F~-离子为最主要的发射离子,其强度随着温度和引出场的增加而增加.得到的各离子的表观活化能随着电场的增加而下降,并基本符合肖特基公式。
     (3)F~-离子存储特性。采用电子顺磁共振(EPR)、离子色谱(IC)和喇曼谱(RS)等方法表征C12A7-F~-材料的存储特性,表明该材料中的负离子物种主要是F~-负离子((1.96±0.25)×10~(21)cm~(-3)),伴随少量的O~(2-)和极少量的O~-和O_2~-,这也与TOF检测的C12A7-F~-材料表面负离子发射情况基本吻合。
     (4)F~-离子形成和发射机理。C12A7-F~-材料中的F~-离子是在焙烧过程中初步生成,然后在退火处理中经电荷交换反应进一步增强。在发射过程中,内部的F~-离子通过电场增强的热扩散过程迁移到样品表面,然后再脱附到气相中。实验中观测到的少量的O~-离子和电子发射主要来源于O~(2-)离子的解离.
     (5)F~-离子束。测量了C12A7-F~-材料的绝对发射电流密度。利用TOF质谱实时校正得到的发射分支比和总电流,计算各种离子的绝对电流。其中,F~-离子的绝对发射电流密度可以达到μA/cm~2量级。在样品背面注入氟气的情况下,C12A7-F~-材料可以持续稳定地发射μA/cm~2量级的F~-离子流.
     (6)F~-离子束对硅和二氧化硅的蚀刻。利用该功能材料和建立的高纯氟负离子源,进行了F~-离子对硅和二氧化硅蚀刻应用研究。同时利用FESEM和X射线光电子能谱(XPS)等表征方法对蚀刻前后样品表面形貌和组分变化进行了测试。表明F~-离子束对硅片和二氧化硅具良好的蚀刻效果。
     研究表明,该负离子存储-发射功能材料C12A7-F~-具有高选择性存储氟负离子,高纯度发射氟负离子的能力;在电催化注入时所发射的高纯和高稳定性的氟负离子束可用来建立高纯氟负离子源。另外,该氟负离子束有望用于蚀刻和材料表面改性等领域。
Atomic fluorine anion(F~-) is a monovalent anion(or monovalent negative ion) through the attachment of an electron to atomic fluorine.As one of the important chemical intermediates,atomic fluorine anion is potentially useful in many fields such as semiconductor etching,filming,and material modifications,etc.This dissertation presents the synthesized of F~- anions storage-emission material [Ca_(24)Al_(28)O_(64)]~(4+).(F~-)_(3.36)(O~(2-))_(0.32)(C12A7-F~-).Its structural characteristics,anion storage and emission characteristics were observed.C12A7-F~- can be used as a high pure F~- anion source.The anion storage-emission mechanisms of C12A7-F~- was further revealed.The high pure F~- anion source was found to be useful for the etching of Si and SiO_2.The major conclusions have been summarized as follows:
     (1) Synthesis and structure characterization of C12A7-F~-.The C12A7-F~- sample synthesized by sintering CaF_2,CaCO_3 andγ-Al_2O_3 at 1350℃for 8 hours under flowing Ar atmosphere,then annealing at 780℃under flowing F_2/Ar mixture (F_2:Ar=5:95) atmosphere for 10 hours.The field emission scanning electron microscopy(FESEM),BET and X-ray diffraction(XRD) measurements indicated that C12A7-F~- belongs to I(?)3d space group with a lattice constant of 11.969±0.002(?).The BET surface area and average pore diameter are about 1.073 m~2/g and 42.6(?),respectively.No obvious structural damage was found after running the emission.
     (2) Anions emission feature.The emission features of C12A7-F~-,including temperature effects,the applied extraction field effects,the emission branch ratio and the apparent activation energy,the emission stability have been investigated by using time-of-flight mass spectrometry.It is showed that the F~- is the dominating emitted anion,and its emission intensity increases with the increase of the temperature and the extraction field.The apparent activation energies of anions decrease with the increase of the extraction field which can be approximately described Schottky formula.
     (3) Anions storage feature.The ion chromatography(IC),electron paramagnetic resonance(EPR) and Raman spectroscopy(RS) measurements indicated that the anionic species stored in the C 12A7-F~- material was dominated by the F~- anions ((1.96±0.25)×10~(21) cm~(-3)),accompanied by small amount of oxygen-containing anions,which also agrees with the distribution of the emitted anions via the TOF observations.The chemical formula of present material is approximately described as[Ca_(24)Al_(28)O_(64)]~(4+)·(F~-)_(3.36)(O~(2-))_(0.32)(abbreviated as C12A7-F~-).
     (4) Anions emission mechanism.In the sintered process,the encaged F~- and O~(2-) anions are formed simultaneously and the concentration of the encaged F~- anions are enhanced by substituting the F~- anions for O~(2-) anions during the subsequent annealing process.The F~- emission is attributed to the encaged F~- anions in C12A7-F~- migrating from the bulk onto the sample surface by field-enhanced thermal diffusion,and then desorbing to the gas phase.The minor O~- and electron emission are mainly generated from the dissociation of residual O~(2-).
     (5) F~- emission current.The emission current densities from the C12A7-F~- sample are also measured.With the emission branch ration obtained by TOF-MS spectra, the emission current densities of different anions are estimated.The F~- emission current density could reach aμA/cm~2 level.When supplying fluorine gas and electrons,a sustainable and stable F-~ emission beam can be obtained.
     (6) Etching of Si and SiO_2 by F~-.Particularly,the atomic fluorine anions were found to be useful for the etching of Si and SiO_2,evaluated by the morphological alterations via a field emission scanning electron microscope(FESEM),the surface composition's changes using X-ray photoelectron spectroscopy(XPS).
     It could be concluded that C12A7-F~- can be used as a good F~- anions storage and emitter material for its stability and the ability to emit high-pure F~- flux,which is useful for the etching or surface modification for the semiconductor materials or other materials.
引文
[1] J. G Dillard, Chem. Rev., 73, 589 (1973).
    [2] G. E. Caledonia, Chem. Rev., 75, 333 (1975).
    
    [3] J. Lee, and J.J. Grabowski. Chem. Rev. 92,1611 (1992).
    
    [4] A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995).
    
    [5] S. Aldridge, and A. J. Downs, Chem. Rev., 101, 3305 (2001).
    
    [6] J. C. Rienstra-Kiracofe, G. S. Techumper, H. F. Schaefer III, S. Nandi, and G. B.Ellison, Chem. Rev., 102,231 (2002).
    [7] M. Born, S. Ingemann, and N. M. M. Nibbering, Mass Spectrom. Rev. 16, 181(1997).
    [8] O. V. Boltalina, D. B. Ponomarev, and L. N. Sidorov, Mass Spectrom. Rev. 16,333 (1997).
    
    [9] K. Takashima, and J. M. Riveros, Mass Spectrom. Rev. 17,409 (1998).
    [10] U. Boesi, and W. J. Knott, Mass Spectrom. Rev. 17, 275 (1998).
    
    [11] J. Ishikawa, Rev. Sci. Instrum. 67,1410 (1996).
    
    [12] J. Ishikawa, H. Tsuji, Y. Toyota, Y. Gotoh, K. Matsuda, M. Tanjyo, and S. Sakai,Nucl. Instrum. Methods Phys. Res. B 96, 7 (1995).
    [13] J. Ishikawa, Surf. Coat. Technol. 65, 64 (1994).
    [14] J. Ishikawa, Rev. Sci. Instrum. 65,1290 (1994).
    [15] J. Ishikawa, Rev. Sci. Instrum. 71, 1036 (2000).
    [16] M. Tanaka, and K. Amemiya, Rev. Sci. Instrum. 71,1125 (2000).
    
    [17] S. G. Neophytides, D. Tsiplakides, P. Stonehart, M. M. Jaksic, and C. G.Vayenas, Nature 370, 6484 (1994).
    [18] K. Aika, J.H. Lunsford, J. Phys. Chem. 81,1393 (1977.
    [19] C. G. Vayenas, S. Bebelis, and S. Ladas, Nature 343,625 (1990).
    [20] C. G. Vayenas, and D. Tsiplakides, Surf. Sci. 467,23 (2000).
    [21]C.G.Vayenas,A.Ioannides,S.Bebelis,J.Catal.129,67(1991).
    [22]C.G.Vayenas,S.Bebelis,I.V.Yentekakis,H.G.Lintz,Catal.Today 11,303(1992).
    [23]D.Y.Wang,A.S.Nowick,J.Electrochem.Soc.128,55(1981).
    [24]D.L.Astolfi,and F.C.Mayville,Tetrahedron Lett.44,9223(2003).
    [25]石强,舒惠芳,钟林生,吴楚材,林业科学40,36(2004).
    [26]邵海荣,贺庆棠,世界林业分析12,19(2000).
    [27]赵瑞祥.中国疗养医学2002年02期.
    [28]H.Kawano,H.Nagayasu,N.Serizawa,H.Ohta,M.Takeda,M.Wada,and M.Sasao,Rev.Sci.Instrum.67,1190(1996).
    [29]H.Kawano,N.Serizawa,A.Tanaka,M.Wada,and M.Sasao,Rev.Sci.Instrum.69,953(1998).
    [30]H.Kawano,A.Tanaka,S.Sugimoto,T.Iseki,Y.Zhu,M.Wada,and M.Sasao,Rev.Sci.Instrum.71,853(2000).
    [31]C.G.Vayenas,M.M.Jaksic,S.I.Bebelis and S.G.Neophytides,In:John O'M.Bockris(Ed.),the Electrochemical Activation of Catalytic Reactions in Modern Aspects of Electrochemistry,Plenum Press,New York,1996
    [32]S.G.Nephytides,D.Tsplakides,C.G.Vayenas.J.Catal,178(1998) 414.
    [33]Y.Torimoto,A.Harano,T.Suda,M.Sadakata,Jpn.J.Appl.Phys.36(1997)L238.
    [34]Y.Torimoto,T.Nishioka,M.Sadakata.J.Chem.Eng.Japan 33(2000) 557.
    [35]M.Nishioka,Y.Torimoto,H.Kashiwagi,Q.X.Li,M.Sadakata.J.Catal.215(2003) 1.
    [36]G.A.Rankin,and F.E.Wright,Am.J.Sci.39,1(1915).
    [37]W.Bu|¨ssem,A.Eitel,Z Kristallogr.95,175(1936).
    [38]R.W.Nurse,J.H.Welch,and A.J.Majumdar,Trans.Br.Ceram.Soc.64,323(1965).
    [39]A.K Chatterjee,and G.I.Zhmoidin,J.Mater.Sci.7,93(1972).
    [40] B. Hallstedt,J. Am. Ceram. Soc. 73,15 (1990).
    
    [41] A. A. Lemonidou, I. A. Vasalos. Appl. Catal. 54 (1989) 119.
    
    [42] K. K. Pant, and D. Kunzru, Chem. Eng. J. 70,47 (1998).
    
    [43] R. Mukhopadhyay, and D. kunzru, Ind. Eng. Chem. Res. 32,1914 (1993).
    
    [44] V. A. Kumar, K. K. Pant, and D. Kunzru, Appl. Catal. A: Gen. 162,193 (1997).
    
    [45] K. K. Pant, and D. Kunzru, Ind. Eng. Chem. Res. 36,2059 (1997).
    
    [46] K. K. Pant, and D. Kunzru, Chem. Eng. J. 87, 219 (2002).
    
    [47] M. A. Goula, A. A. Lemonidou, W. Grunert, and M. Baerns, Catal. Today 32,149(1996).
    [48] S. W. Yang, J. N. Kondo, K. Hayashi, M. Hirano, K. Domen, and H. Hosono,Appl. Catal. A: Gen. 277, 239 (2004).
    [49] H. Kawano, N. Serizawa, A. Tanaka, M. Wada, and M. Sasao, Rev. Sci. Instrum.69,953(1998).
    [50] H. E. K.Matimba, A. M. Crabbendam, S. Ingemann, and N. M. M. Nibbering, Int.J. Mass Spectrom. Ion Proc. 114, 85 (1992).
    [51] H. Kawano, A. Tanaka, S. Sugimoto, T. Iseki, Y. Zhu, M. Wada, and M. Sasao,Rev. Sci. Instrum. 71, 853 (2000).
    [52] T. Ito, T. Sekino, N. Moriai, and T. Tokuda. J. Chem. Soc. Faraday Trans. 77,2181(1981).
    
    [53] R. Gonzalez, and Y. chen,J. Phys.: Condens. Matter 14, R1143 (2002).
    [54] J. H. Lunsford,Adv. Catal. 22, 265 (1972).
    [55] M. Che, and A. J. Tench,Adv. Catal. 32,1 (1983).
    [56] J. S. Valentine. Active Oxygen in Biochimistry; Blackie Academic &Professional: London, UK, 1995.
    
    [57] K. Aika, and J. H. Lunsford. J. Phys. Chem. 81,1393 (1977).
    [58] M. Henchman, P. M. Hierl, and J. F. Paulson, J. Am. Chem. Soc. 107, 2812 (1985).
    [59] K. Hayashi; M. Hirano, S. Matsuishi, and H. Hosono, J. Am. Chem. Soc. 124,738 (2002).
    [60] Li QX, Torimoto Y, Sadakata M. 2005. Negative charged oxygen atomic generator. Patent No.: WO/2005/115913.
    [61] Li QX, Torimoto Y, Sadakata M. 2004. Negative charged oxygen atomic generator. Japan Patent, No.: JP2004-160374.
    [62] Li QX, Hayashi K, Nishioka M, et al. 2002. Absolute emission current density of O~- from 12CaO·7Al_2O_3 crystal. Appl. Phys. Lett. 80:4259-4261.
    [63] Li QX, Hosono H, Hirano M, et al. 2003. High-intensity atomic oxygen radical anion emission mechanism from 12CaO·7Al_2O_3 crystal surface. Surf. Sci.527:100-112.
    [64] Li QX, Hayashi K, Nishioka M, et al. 2002. Reproducibility of O~- negative ion emission from C12A7 crystal surface. Jpn. J. Appl. Phys. 41:L530-L532.
    
    [65] T. Dong, J. Li, F. Huang, et al. 2005. One-step synthesis of phenol by O~- and OH~- emission material. Chem. Commun. 21:2724-2726.
    [66] A.M. Gao, X.F. Zhu, H. J. Wang, et al. 2006. Reduction features of NO over a potassium-doped C12A7-O~- catalyst. J. Phys. Chem. B. 110:11854-11862.
    [67] L. Wang, L. Gong, E. Zhao, et al. 2007. Inactivation of Escherichia coli by O~- water. Lett. Appl. Microbiol. 45:200-205.
    [68] L.C. Li, L. Wang, Z. Yu, et al. 2007. Inactivation of bacillus subtilis by atomic oxygen radical anion. Plas. Sci. Technol., 9:119-124.
    [69] Wang, L.; Song, C. F.; Sun, J. Q.; Torimoto, Y.; Sadakata, M.; Q. X. Li. Prog Biochem Biophys, 2007, 34(12), 1288.
    [70] Z.X. Wang, Y. Pan, T. Dong, et al. 2007. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O~--based catalysts. Appl.Catal. A. 320:24-34.
    [71]T.Dong,Z.X.Wang,L.X.Yuan,et al.2007.Hydrogen production by steam reforming of ethanol on potassium-doped 12CaO'7Al_2O_3 catalyst.Catal.Lett.119:29-39.
    [72]Z.X.Wang,T.Dong,L.X.Yuan,et al.2007.Characteristics of bio-oil-syngas and its utilization in fischer-tropsch synthesis.Energy Fuels,21:2421-2432.
    [73]Wang,L.;Yan,L.F.;Zhao,P.T.;Torimoto,Y.;Sadakata,M.;Li,Q.X.Appl.Surf Sci.2008,254,4191.
    [74]Wang,L.;Song,C.F.;Sun,J.Q.;Hou,Y.;Li,X.G.;Li,Q.X.Chinese Phys.B,2008,17,1.
    [75]J.Li,F.Huang,L.Wang,et al.2005.High Density Hydroxyl Anions in a Microporous Crystal:[Ca24A128064]~(4+).4(OH~-).Chem.Mater.17:2771-2774.
    [76]J.Li,F.Huang,L.Wang,et al.2005.Mechanistic features for hydroxyl anion emission from the modified 12CaO·7Al_2O_3 surface.J.Phys.Chem.B.109:14599-14603.
    [77]K.Hayashi,S.Matsuishi,T.Kamiya,M.Hirano,and H.Hosono,Nature 419,462(2002).
    [78]F.Huang,J.Li,H.Xian,et al.2005.Substitution of H~- for O~- and H~- emissions of 12CaO·7Al_2O_3.Appl.Phys.Lett.86:114101-1-3.
    [79]F.Huang,J.Li,L.Wang,et al.2005.Features and Mechanism of H~- Anion Emission from 12CaO·7Al_2O_3 Surface.J.Phys.Chem.B.109:12032-12037.
    [80]S.Matsuishi,Y.Toda,Mo Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Tanaka,and H.Hosono,Science 301,626(2003).
    [81]N.F.Mott and E.A.Davis,Electronic Process in Non-Crystalline Materials,2nd ed.(Oxford University Press,Oxford,1979).
    [82]李正中,固体理论(第二版)(高等教育出版社,北京,2002).14.
    [83]F.J.Dyson.Phys.Rev.98,349(1955).
    [84]Y.Toda,S.Matsuishi,K.Hayashi,K.Ueda,T.Kamiya,M.Hirano,H.Hosono, Adv. Mater. 16, 685 (2004).
    [85] Jeevaratnam J, Glasser FP, Glasser LSD. 1964. Anion substitution and structure of 12CaO·7Al_2O_3. J. Am. Ceram. Soc. 47:105-106.
    [86] Iwata T, Haniuda M, Fukuda K. 2008. Crystal structure of Ca_(12)Al_(14)O_(32)Cl_2 and luminescence properties of Ca_(12)Al_(14)O_(32)Cl_2:Eu~(2+) J. Solid State Chem. 181:51-55.
    [87] Hayashi, K.; Sushko, P. V.; Ramo, D. M.; Shluger, A. L.; Watauchi, S.; Tanaka, I.;Matsuishi, S.; Hirano, M.; Hosono, H. J. Phys. Chem. B. 2007, 111, 1946.
    [88] Williams, P. P., Proc. 5th Inter. Symp. on the Chem. of Cem., Tokyo, 1968, Vol. I,366.
    
    [89] Williams P. P. J. Am. Ceram. Soc. 1968, 51 (9), 531.
    [90] Williams P. P., Acta Cryst. Sec. B, 1973,29, 1550.
    
    [91] Yu Q. J. Shuichi S. Feng X. J. Mi J. X. Cem. Concr. Res. 1997, 27 (9), 1439.
    [92] Sango, H. J. Eur. Ceram. Soc. 2006,26, 803.
    [93] Odler, I. Abdul-Maula, S. J. Am. Ceram. Soc. 1980, 63 (11-12), 654.
    [94] Wang, S. B. Ding, W. C. J. Chin. Ceram. Soc. 1988,16 (4), 305.
    [95] Sango, H. Miyakawa, T. Kasai, J. J. Chem. Soc. Jpn., 1990, 3, 305.
    [96] Park, C. K. Cem. Concr. Res. 1998,28,1357.
    [1] Picard A, Turban G, Grolleau B. 1986. Plasma diagnostics of a SF_6 radiofrequency discharge used for the etching of silicon. J. Phys. D: Appl. Phys.19:991-1005. Printed in Great Britain.
    [2] Lin Y, Overzet LJ. 1993. Negative and positive ions from CF_4 and CF_4/O_2 rf discharges in etching Si. Appl. Phys. Lett. 62:675-677.
    [3] Shindo H, Sawa Y, Horiike Y. 1995. Silicon etching employing negative ion in SF_6 plasma. Jpn. J. Appl. Phys. 34:L925-L928.
    [4] Shibayama T, Shindo H, Horiike Y. 1996. Silicon etching by alternating irradiations of negative and positive ions. Plasma Sources Sci. Technol.5:254-259.
    [5] Ishikawa J, Tsuji H, Shibutani K, et al. 1998. Comparison of silicon etching properties between F~- negative ion and SF_3~+ positive ion-beam etchings. 12th Int.Conf. Ion Implant. Technol. Proc. 2:716-719.
    [6] Lau WM, Bello I, Sayer M, et al. 1994. Fluorine ion etching of lead zirconate-titanate thin films. Appl. Phys. Lett. 64:300-302.
    [7] Choi CJ, Kwon OS, Seol YS. 1998. Negative ion formation in SiO_2 etching using a pulsed ICP plasma. 15C-6-60,215-216.
    [8] Rauthan CMS, Virdi GS, Pathak BC, et al. 1998. Improvement in buried silicon nitride silicon-on-insulator structures by fluorine-ion implantation. J. Appl. Phys.83:3668-3677.
    [9] Hanamoto K, Sasaki M, Miyashita T, et al. 1997. Effect of fluorine ion implantation on the microstructure and microhardness of AISI 440C stainless steel. Nucl. Instrum. Methods Phys. Res. B, 129:228-232.
    [10] Ishikawa J. 1996. Negative-ion sources for modification of materials (invited).Rev. Sci. Instrum., 67:1410-1415.
    [11] Clark DJ. 1977. Recent progress in heavy ion sources. IEEE Transactions on Nuclear Science. 74:1064-1069.
    [12] Ishikawa J. 1996. Negative-ion sources for modification of materials (invited).Rev. Sci. Instrum. 67:1410-1415.
    [13] Ishikawa J. Rev. 2000. Applications of heavy-negative-ion sources for materials science (invited). Sci. Instrum. 71:1036-1041
    [14] Grisham LR. 2002. Evaluation of negative-ion-beam driver concepts for heavyion fusion. PPPL-3643..
    [15] Sant'Anna M, Zappa F, Santos ACF, et al. 2004. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion.Plasma Phys. Control. Fusion. 46:1009-1019.
    [16] Leonard D, Bertrand P, Shi MK, et al. 1999. Plasma Surface Modification of Fluoropolymers Studied by ToF-SIMS. Martinu, Plasmas and Polymers,4:97-111.
    [17] Solovev S, Kusmierek DO, Madey TE. 2004. Negative ion formation in electron-stimulated desorption of CF_2Cl_2 coadsorbed with polar NH_3 on Ru(0001). J. Chem. Phys. 120 :968-978.
    [18] Harrison AG. 1983. Chemical lonization Mass Spectrometry; CRC Press Inc.:Boca Raton, FL.
    [19] Jauberteau JL, Meeusen GJ, Haverlag M, et al. 1989. Photodetachment effect in a radio frequency plasma in CF_4. Appl. Phys. Lett. 55:2597-2599.
    [20] Kawai R, Mieno T. 1997. Effective Production of negative ions around magnetized CF4 plasma column. Jpn. J. Appl. Phys. 36:L1123-L1125.
    [21] Takada N, Hayashi D, Sasaki K, et al. 1997. Diagnostics of fluorine negative ions by laser photodetachment combined with a heated probe in high-density CF_4 plasma. Jpn. J. Appl. Phys. 36:L1702-L1705.
    [22] Stoffels WW, Stoffels E, Tachibana K. 1998. Polymerization of fluorocarbons in reactive ion etching plasmas. J. Vac. Sci. Technol. A. 16:87-98.
    [23] IMTIAZ MA, MIENO T. 2007. Radial diffusion of negative ions produced by magnetized string-type CF4 plasma. Jpn. J. Appl. Phys. 46:382-384.
    [24] Hebner GA, Abraham IC. 2001. Characterization of electron and negative ion densities in fluorocarbon containing inductively driven plasmas. J. Appl. Phys.90:4929-4937.
    [25] Kono A. 2002. Negative ions in processing plasmas and their effect on the plasma structure. Appl. Surf. Sci. 192:115-134.
    [26] Georgieva V, Bogaerts A, Gijbels R. 2003. Numerical study of Ar/CF_4/N_2 discharges in single- and dual-frequency capacitively coupled plasma reactors. J.Appl. Phys. 94:3748-3756.
    [27] Pupysheva AA, Surikov VT. 2004. Application of negative ions in inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B. 59:1021 -1031.
    [28] Booth JP, Corr CS, Curley GA, et al. 2006. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Appl. Phys. Lett. 88:151502-1-3.
    [29] Curley GA, Maric D, Booth JP, et al. 2007. Negative ions in single and dual frequency capacitively coupled fluorocarbon plasmas. Plasma Sources Sci.Technol. 16:S87-S93
    [30] Kroesen GMW, Stoffels WW, Stoffels E, et al. 1994. Negative ions and particle formation in low-pressure halocarbon discharges. Plasma Sources Sci. Technol.3:246-251.
    [31]李江。2005.OH~-和H~-离子存储与发射材料的研究(D):[博士]。合肥:中国科学技术大学。
    [32]黄凡。2004.氢负离子发射材料12CaO·7Al_2O_3.H~-的制备及其发射性能的研究(D):[硕士]。合肥:中国科学技术大学。
    [33]Li QX,Torimoto Y,Sadakata M.2005.Negative charged oxygen atomic generator.Patent No.:WO/2005/115913.
    [34]Li QX,Torimoto Y,Sadakata M.2004.Negative charged oxygen atomic generator.Japan Patent,No.:JP2004-160374.
    [35]Li QX,Hayashi K,Nishioka M,et al.2002.Absolute emission current density of O~-from 12CaO·7Al_2O_3 crystal.Appl.Phys.Lett.80:4259-4261.
    [36]Li QX,Hosono H,Hirano M,et al.2003.High-intensity atomic oxygen radical anion emission mechanism from 12CaO·7Al_2O_3 crystal surface.Surf.Sci.527:100-112.
    [37]Li QX,Hayashi K,Nishioka M,et al.2002.Reproducibility of O~- negative ion emission from C12A7 crystal surface.Jpn.J.Appl.Phys.41:L530-L532.
    [38]Schottky W.Physik.Zeitschr.1914,15,872.
    [1] Williams PP, Acta Cryst. Sec. B, 1973,29, 1550.
    
    [2] Vincent MG, Jeffery JW. 1978. The crystal structure of pentacalcium trialuminate,5CaO·3A12O3. Acta Crystallogr. B. 34:1422-1428.
    [3] Mondal P, Jeffery JW. 1975. The crystal structure of triealeium aluminate,Ca3Al2O6. Acta Crystallogr. B. 31:689-697.
    [4] Zhmoidin GI, Chatterjee AK. 1984. Conditions and mechanism of interconvertibility of compounds 12CaO·7Al_2O_3 and 5CaO·3Al_2O_3. Cem. Concr.Res. 14:386-396.
    [5] Palacios L, De La TorreAG, Bruque S, et al. 2007. Crystal structures and in-situ formation study of mayenite electrides. Inorg. Chem. 46:4167-4176.
    [6] Lunsford JH. Adv. Catal. 1972, 22,265-344.
    [7] Che M, Tench AJ. Adv. Catal. 1983.32,1.
    [8] Soria, J; Martinez-Arias A, Conesa JC, et al. 1991. Effect of chlorine impurities on the properties of CeO_2. Surf. Sci. 251/252:990-994.
    [9] Hayashi K, Hirano M, Matsuishi S, et al. 2002. Microporous crystal 12CaO·7Al_2O_3 encaging abundant O~- radicals. J. Am. Chem. Soc. 124:738-739.
    [10] Hayashi, K.; Li, Q.; Nishioka, M.; Matsuishi, S.; Torimoto, Y.; Hirano, M.;Sadakata, M.; Hosono, H. Electrochem. Solid-State Lett. 2002, 5, J13.
    
    [11] Hayashi K, Matsuishi S, Ueda N, et al. 2003. Maximum incorporation of oxygen radicals, O~- and O_2~-, into 12CaO·7Al_2O_3 with a nanoporous structure. Chem.Mater. 15:1851-1854.
    
    [12] Yang SW, Kondo JN, Hayashi K, et al. 2004. Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al_2ZO_3. Chem. Mater. 16:104-110.
    [13] Li J, Huang F, Wang L, et al. 2005. High Density Hydroxyl Anions in a Microporous Crystal: [Ca24A128O64]~(4+)·4(OH~-). Chem. Mater. 17:2771-2774.
    [14] McMillan P, Piriou B. 1983. Raman spectroscopy of calcium aluminate glasses and crystals. J. Non-Cryst. Solids. 55:221-242.
    [15] Hayashi K, Matsuishi S, Hirano M, et al. 2004. Formation of oxygen radicals in 12CaO·7Al_2O_3: instability of extraframework oxide ions and uptake of oxygengas. J. Phys. Chem. B. 108:8920-8925.
    
    [16] Hayashi K, Ueda N, Hirano M, et al. 2004. Effect of stability and diffusivity of extra-framework oxygen species on the formation of oxygen radicals in 12CaO·7Al_2O_3. Solid State Ionics. 173:89-94.
    [17] Hayashi K, Matsuishi S, Kamiya T, et al. 2002. Light-induced conversion of an insulating refractory oxide into a persistent electronic conductor. Nature,419:462-465.
    [18] Li J, Huang F, Wang L, et al. 2005. Mechanistic features for hydroxyl anion emission from the modified 12CaO·7Al_2O_3 surface. J. Phys. Chem.B.109:14599-14603.
    [19] Kim SW, Toda Y, Hayashi K, et al. 2006. Synthesis of a room temperature stable 12CaO·7Al_2O_3 electride from the melt and its application as an electron field emitter. Chem. Mater. 18:1938-19444.
    [20] Miyakawa M, Hirano M, Kamiya T, et al. 2007. High electron doping to a wide band gap semiconductor 12CaO·7Al_2O_3 thin film. Appl. Phys. Lett.90:182105-1-3.
    [21] Matsuishi S, Toda Y, Miyakawa M, et al. 2003. High-density electron anions in a nanoporous single crystal: [Ca_(24)Al_(28)O_(64)]~(4+)·(4e~-). Science. 301:626-629.
    [22] Jeevaratnam J, Glasser FP, Glasser LSD. 1964. Anion substitution and structure of 12CaO·7Al_2O_3. J. Am. Ceram. Soc. 47:105-106.
    [23] Nurse, R. W.; Welch, J. H.; Majumdar, A. J. Trans. Br. Ceram. Soc. 1965, 64,323-332.
    [24] Bartl H, Scheller BT. 1970. Structure of 12CaO·7Al_2O_3. Neues Jahrb. Mineral.Monatsh. 35:547-552.
    [25] Imlach JA, Glasser LSD, Glasser FP. 1971. Excess oxygen and the stability of "12CaO.7Al_2O_3". Cem. Concr. Res. 1:57-61.
    [26] Hosono H, Abe Y. 1987. Occurrence of superoxide radical ion in crystalline 12CaO·7Al_2O_3 prepared via solid-state reactions. Inorg. Chem. 26:1192-1195.
    [27] Kim SW, Miyakawa M, Hayashi K,et al. 2005. Simple and efficient fabrication of room temperature stable electride: melt-solidification and glass ceramics. J.Am. Chem. Soc. 127:1370-1371.
    [28] Kurashige K, Toda Y, Matstuishi S, et al. 2006. Czochralski growth of 12CaO·7Al_2O_3 crystals. Crystal Growth & Design. 6:1602-1605.
    [29] Kim SW, Matsuishi S, Miyakawa M, et al. 2007. Fabrication of room temperature-stable 12CaO·7Al_2O_3 electride: a review. J Mater Sci: Mater Electron. 18:S5-S14.
    [30] Li QX, Hayashi K, Nishioka M, et al. 2002. Absolute emission current density of O~- from 12CaO·7Al_2O_3 crystal. Appl. Phys. Lett. 80:4259-4261.
    [31] Li QX, Hosono H, Hirano M, et al. 2003. High-intensity atomic oxygen radical anion emission mechanism from 12CaO·7Al_2O_3 crystal surface. Surf. Sci.527:100-112.
    [32] Li QX, Hayashi K, Nishioka M, et al. 2002. Reproducibility of O~- negative ion emission from C12A7 crystal surface. Jpn. J. Appl. Phys. 41:L530-L532.
    [1] Clark DJ. 1977. Recent progress in heavy ion sources. IEEE Transactions on Nuclear Science. 74:1064-1069.
    [2] Ishikawa J. 1996. Negative-ion sources for modification of materials (invited).Rev. Sci. Instrum. 67:1410-1415.
    [3] Ishikawa J. Rev. 2000. Applications of heavy-negative-ion sources for materials science (invited). Sci. Instrum. 71:1036-1041
    [4] Grisham LR. 2002. Evaluation of negative-ion-beam driver concepts for heavyion fusion. PPPL-3643..
    [5] Sant'Anna M, Zappa F, Santos ACF, et al. 2004. Electron-detachment cross sections of halogen negative-ion projectiles for inertial confinement fusion.Plasma Phys. Control. Fusion. 46:1009-1019.
    [6] Jauberteau JL, Meeusen GJ, Haverlag M, et al. 1989. Photodetachment effect in a radio frequency plasma in CF_4. Appl. Phys. Lett. 55:2597-2599.
    [7] Kawai R, Mieno T. 1997. Effective Production of negative ions around magnetized CF4 plasma column. Jpn. J. Appl. Phys. 36:L1123-L1125.
    [8] Takada N, Hayashi D, Sasaki K, et al. 1997. Diagnostics of fluorine negative ions by laser photodetachment combined with a heated probe in high-density CF_4 plasma. Jpn. J. Appl. Phys. 36:L1702-L1705.
    [9] Stoffels WW, Stoffels E, Tachibana K. 1998. Polymerization of fluorocarbons in reactive ion etching plasmas. J. Vac. Sci. Technol. A. 16:87-98.
    [10] IMTIAZ MA, MIENO T. 2007. Radial diffusion of negative ions produced by magnetized string-type CF4 plasma. Jpn. J. Appl. Phys. 46:382-384.
    [11] Hebner GA, Abraham IC. 2001. Characterization of electron and negative ion densities in fluorocarbon containing inductively driven plasmas. J. Appl. Phys.90:4929-4937.
    [12] Kono A. 2002. Negative ions in processing plasmas and their effect on the plasma structure. Appl. Surf. Sci. 192:115-134.
    [13] Georgieva V, Bogaerts A, Gijbels R. 2003. Numerical study of Ar/CF_4/N_2 discharges in single- and dual-frequency capacitively coupled plasma reactors. J.Appl. Phys. 94:3748-3756.
    [14] Pupysheva AA, Surikov VT. 2004. Application of negative ions in inductively coupled plasma-mass spectrometry. Spectrochimica Acta Part B. 59:1021-1031.
    [15] Booth JP, Corr CS, Curley GA, et al. 2006. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Appl. Phys. Lett. 88:151502-1-3.
    [16] Curley GA, Maric D, Booth JP, et al. 2007. Negative ions in single and dual frequency capacitively coupled fluorocarbon plasmas. Plasma Sources Sci.Technol. 16:S87-S93
    [17] Kroesen GMW, Stoffels WW, Stoffels E, et al. 1994. Negative ions and particle formation in low-pressure halocarbon discharges. Plasma Sources Sci. Technol.3:246-251.
    [18] Picard A, Turban G, Grolleau B. 1986. Plasma diagnostics of a SF_6 radiofrequency discharge used for the etching of silicon. J. Phys. D: Appl. Phys.19:991-1005. Printed in Great Britain.
    [19] Lin Y, Overzet LJ. 1993. Negative and positive ions from CF4 and CF_4/O_2 rf discharges in etching Si. Appl. Phys. Lett. 62:675-677.
    [20] Shindo H, Sawa Y, Horiike Y. 1995. Silicon etching employing negative ion in SF_6 plasma. Jpn. J. Appl. Phys. 34:L925-L928.
    [21] Shibayama T, Shindo H, Horiike Y. 1996. Silicon etching by alternating irradiations of negative and positive ions. Plasma Sources Sci. Technol.5:254-259.
    [22] Ishikawa J, Tsuji H, Shibutani K, et al. 1998. Comparison of silicon etching properties between F~- negative ion and SF_3~+ positive ion-beam etchings. 12th Int. Conf. Ion Implant. Technol. Proc. 2:716-719.
    [23] Choi CJ, Kwon OS, Seol YS. 1998. Negative ion formation in SiO_2 etching using a pulsed ICP plasma. 15C-6-60,215-216.
    [24] Rauthan CMS, Virdi GS, Pathak BC, et al. 1998. Improvement in buried silicon nitride silicon-on-insulator structures by fluorine-ion implantation. J. Appl. Phys.83:3668-3677.
    [25] Hanamoto K, Sasaki M, Miyashita T, et al. 1997. Effect of fluorine ion implantation on the microstructure and microhardness of AISI 440C stainless steel. Nucl. Instrum. Methods Phys. Res. B, 129:228-232.
    [26] Ishikawa J. 1996. Negative-ion sources for modification of materials (invited).Rev. Sci. Instrum., 67:1410-1415.
    [27] Lau WM, Bello I, Sayer M, et al. 1994. Fluorine ion etching of lead zirconate-titanate thin films. Appl. Phys. Lett. 64:300-302.
    [28] Wang LY, Li YD. 2007. Luminescent coordination compound nanospheres for water determination. Small. 3:1218-1221.
    [29] Barone ME, Graves DB. 1995. Chemical and physical sputtering of fluorinated silicon. J. Appl. Phys. 77:1263-1274.
    [30] Zhu XP, Yukawa T, Hirai M, et al. 2006. X-ray photoelectron spectroscopy characterization of oxidated Si particles formed by pulsed ion-beam ablation.Appl. Surf. Sci. 252:5776-5872.
    [31] Hanamoto K, Yoshimoto H, Hosono T, et al. 1998. Anomalous depth profile of implanted fluorine ions in SiO_2/Si. Nucl. Instr. Meth. Phys. Res. B. 140:124-128.
    
    [32] Aygun G, Atanassova E, Kostov K, et al. 2006. XPS study of pulsed Nd:YAG laser oxidized Si. J. Non-Cryst. Solids. 352:3134-3139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700