利用城市垃圾焚烧飞灰煅烧水泥熟料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞灰是城市生活垃圾经高温焚烧后在烟气净化装置中收集到的残余物,富集高毒性的重金属离子和二嗯英类有机污染物,被国家列入危险废弃物名录,规定需进行固化/稳定化后准予安全填埋。但飞灰的安全填埋不仅占用土地,成本高且厂址难寻,而且不能完全排除二次污染的潜在威胁,已成为制约飞灰综合利用的技术瓶颈。因此,寻找适合我国国情的飞灰无害化处置与资源化利用的基础研究与应用技术已成为近年来探索热点之一。
     利用水泥回转窑处理危险工业废弃物在工业发达国家已有近30年的历史,它不仅能够利用废弃物生产熟料,而且能彻底销毁有毒有害的危险废弃物,被全球公认为是利用率高,范围广和效果好的处理危险废弃物的行业之一。
     本论文采用XRD和f-CaO等现代分析测试手段探讨利用飞灰配料煅烧水泥熟料的可行性。在验证其可行性后,研究飞灰掺量对烧成熟料性能的影响,确定出飞灰最大掺量。然后采用XRD、SEM及IR等分析测试手段研究利用飞灰烧制水泥熟料的性能及其水化性能,并探讨含重金属离子水泥熟料的水化机理。最后通过熟料对重金属离子的固化率和熟料水化后重金属离子的浸出毒性评价飞灰制品对环境的影响。在这些实验的基础上,得出主要结论如下:
     1.利用飞灰配料烧成的水泥熟料矿物特征衍射峰与普通硅酸盐水泥熟料完全相似,没有发现其它新的特征衍射峰。利用飞灰配制的水泥生料易烧性好,熟料中f-CaO含量基本在2%以下,达到水泥企业出厂熟料中f-CaO需控制的范围要求。
     2.煅烧温度和飞灰掺量对水泥生料易烧性影响显著:随着煅烧温度的提高,水泥熟料中f-CaO含量逐渐减少;随着飞灰掺量的增加,水泥熟料中f-CaO含量先减小后增大。当飞灰掺量为5.2%时,水泥熟料矿物组成和空白样相比变化不大;当飞灰掺量达到10.9%时,水泥熟料中C3S矿物相对含量明显增大,f-CaO含量最低,易烧性最好。
     3.掺有10.9%飞灰的水泥熟料与空白样相比,早期强度有所降低而后期强度略有提高。从XRD和SEM可以看出,掺有10.9%的飞灰熟料后期水化更充分,试样中残留的硅酸盐矿物较少,生成的水化产物C-S-H较多,浆体结构更加致密。
     4.重金属氧化物的掺杂对水泥熟料水化影响显著,PbO的掺入显著降低熟料中硅酸盐矿物的含量,阻止水化反应进程;Cr2O3阻止C2S向C3S的转变,提高熟料中C2S含量但降低C3S的含量,促进后期水化;Ni2O3的掺入提高熟料中硅酸盐矿物相对含量,促进早期水化。
     5.在实验室条件下烧制水泥熟料对重金属离子的固化率高达80%左右,其中铅的固化率略低且烧成熟料中检测不到Ni。利用飞灰烧制的水泥水化28d后毒性浸出浓度远远低于国家规定危险废弃物浸出液最高允许的排放标准,对环境几乎没有影响。
The Fly Ash is residue collected from the gas refining equipment when the Municipal Solid Wastes are sintering at high temperature. Because it contains virulent heavy metal ions and dioxin-like organic pollutants, it is listed as hazardous waste, which need to be solidification/stabilization before satisfying the standard of security landfill. However, the safety of landfill not only occupies the land and costs more, but also doesn't completely rule out the potential threat of secondary contamination, as a bottleneck restricting the utilization of fly ash. Therefore, the reseach for disposal and application technology of fly ash fitting China's national conditions has become a hot topic in recent years.
     There are nearly 30 years for disposaling of hazardous industrial waste in cement klin in the industrialized countries. It is not only able to make use of waste, but also can completely elimination of toxic waste, which has been widely considered as a high utilization, broad scope and good effect of disposal of hazardous waste industry.
     First, we consider the feasibility of using the fly ash sintered the cement clinker byXRD、SEM、f-CaO and other modern analytical methods. After we make it sure, We study the influence of the content of fly ash to the sinterd clinker and confirm its largest dosage. Second, we research on the properties of sinterd clinker by using XRD、SEM、IR and so on, and discuss the curing mechanism of heavy metal ions in the hydration. Finally, we measure how much the clinker solidify heavy metal ions and leaching toxicity of heavy metal ions when it hydrates, and evaluate the environmental impact of fly ash product. In these experiments, some main conclusions can be considerated as follows:
     1. They are similar to the characteristic peaks in both the Ordinary Portland cement clinker and the sintered cement clinker by using fly ash. And there are any new peaks in samples. The burnability of samples are very good, because the content of f-CaO of the samples are all less then 2%, which are in the range of requirements that should be controlled in cement factory.
     2. Both calcination temperature and fly ash dosage play great influence on the burnability of the samples:with the calcination temperature increased, the content of f-CaO of samples are decreased; With the fly ash dosage increased, the content of f-CaO of samples are decreased first and increased later. As the content of fly ash is up to 5.2%, the cement clinker composition changes little; However, the content of C3S of the sample is larger than that of blank sample, and the content of f-CaO of the sample is the lowest, when it raise to 10.9%.
     3. Comparing with the blank sample, the early strength of the sample mixed with 10.9%fly ash is dropped slightly, but the late strength are increased. From XRD and SEM we can see, the sample, which the content of fly ash is 10.9%, hydrates more fully late than the blank sample. There are less silicate mineral but more C-S-H in hydration product, and the mortar is more compact.
     4. Metal oxide doping plays a great important role on the hydration of the cement clinker. PbO significantly reduced the relative content of silicate minerals in cement clinker and prevent hydration process; Cr2O3 prevents C2S from transforming to C3S, so it increases the content of C2S but decreases that of C3S in cement clinker, which promote the post-hydration; Ni2O3 can increase the relative content of silicate minerals in cement clinker, and promote early hydration.
     5. Under laboratory conditions, the solidification rate of heavy metal irons are up to 80%in cement clinkers. The curing rate of Pb is slightly low and Ni cann't be tested in cement clinkers. When the sample hydrates after 28d, the leaching toxicity is far less than the maximum allowable discharge standards, indicating it has little impact on the environment.
引文
[1]逄磊,倪桂才,闫光绪等.城市生活垃圾的危害及污染综合防治对策.环境科学动态,2004(2):15-16
    [2]张岩.垃圾焚烧飞灰中重金属的渗滤特性及飞灰固化处理的实验研究.[硕士学位论文].浙江:浙江大学工程热物理,2005
    [3]王丰春,田新珊,蔡广宇.城市垃圾处理方法综述.电力环境保护.2003,(19)1.46-48.
    [4]田文栋,魏小林,黎军等.北京市城市生活垃圾特性分析.环境科学学报,2000,20(4):435-438
    [5]王志刚,陈新庚,陈炳禄等.广州市城市生活垃圾管理系统规划.环境污染与防治,2001,23(1):4-7
    [6]李建新,张美琴,严建华,池涌.垃圾焚烧残余物资源化利用途径分析.热力发电,2005,(12):55-58.
    [7]占子玉,刘阳生.垃圾焚烧飞灰处置与资源化利用研究进展.四川环境.2008(2):61-65
    [8]池东华.垃圾焚烧飞灰在水泥中的固化稳定化研究.[博士学位论文].东华大学环境工程,2004
    [9]生活垃圾焚烧污染控制标准.国家环境保护总局文件[M].环发[2000]46号,2000.
    [10]杨雷.水泥工业处理含重金属的危险废物的技术研究.[博士学位论文].武汉:武汉理工大学材料系,2007
    [11]丁世敏,封享华,王里奥,胡武洪.垃圾焚烧飞灰处理处置研究进展.环境工程.2009,35(5):26-27
    [12]黄本生,刘清才,王里奥.垃圾焚烧飞灰综合利用研究进展.环境污染治理技术与设备.2003,4(9):12-15
    [13]宋玉,张国卿,杨瑾.垃圾焚烧飞灰的稳定化处置与资源化利用研究进展.污染防治技术,2006,19(5):31-35
    [14]Y. C. Zhao, L. J. Song, G. J. Li. Chemical stabilization of MSWI fly ashes. J. Hazard. Mate., 2002,95:47-63
    [15]S.Wang,C. Vipulanandan. Solidification/stabilization of Cr(VI) with cement Leachability and XRD analyses. Cement and Concrete Research,2000,30:385-389
    [16]C.Lin, J.Chen. An NMR and XRD study of solidification/stabilization of chromium with Portland cement and β-C2S. J Hazard Mater,1996,48:137-147
    [17]张亚梅,孙伟.掺重金属氧化物水泥浆体的性能和结构.建筑材料学报,2002,5(3):274-278
    [18]蒋建国,许鑫,张妍.城市垃圾焚烧飞灰的硅酸盐水泥稳定化效果研究.环境科学.2006,27(12):2564-2569
    [19]张清,陈德珍,王正宇,龚百勋,吴立.垃圾焚烧飞灰预处理后水泥固化实验研究.有色冶金设计与研究.2007,28(2~3):113-116
    [20]Shin-iehi Sakai,Masakatsu Hiralka.Mu-nicipal Solid Waste Incinerator Residue Recycling by Thermal Processes it.Ash Management,2000(20):249-258.
    [21]Pai-Haung Shih,Juu-En Chang,et. Replacement of raw mix in cement production by municipal solid waste incineration ash.Cement and concrete research..2003(33):1831-1836.
    [22]罗春晖,刘振鸿,何琛.城市生活垃圾焚烧飞灰的稳定化技术[J].东华大学学报(自然科学版),2004,30(2):130
    [23]E.Mulder, Pre-treatment of MSWI fly ash for useful application. Waste Management. 1996,16(1)181-184
    [24]C.Collivignarelli,S.Sorlini. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Management.2002(22)909-912
    [25]Xingbao Gao,Wei Wang,Tunmin Ye,Feng Wang,Yuxin Lan. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate. Journal of Environmental Management,2008(88):293-299
    [26]J.D.Hamernik, G.C.Frantz. A study on cement made by partially replacing cement raw materials with MSWA and calcium carbide waste. ACI Mater.J.,1991,88:294-301
    [27]T.Mangialardi.Sintering of MSW fly ash for reuse as a concrete aggregate. J.Hazard.Mater.1998,87:225-239
    [28]Rokhvarger A E. Environmental and Waste Management Issuse in the Ceramic Industry[J]. Ceramic Transactions, The American Ceramic Society, OH,1994,45:25-135
    [29]R.Gutman. Recycling of MSWIA by thermal separation and citrification, in:Proceeding of the 95 Conference on Recovery, Recycling and Reintergating, EMPA, Switzerland,1995,4:9-11
    [30]M.L.Elliott,etal. Environmental and waste management issues in the ceramic indusry, Ceramic Transactions,The American Ceramic Society,OH,1993,39:83-90
    [31]张海英,赵由才,祁景玉.生活垃圾焚烧飞灰在饰面砖中的资源化应用技术.环境工程,2006,24(5):56-59
    [32]Bierman, P. M. and C. J. Rosen. Phosphate and trace metal availability from sewage-sludge incinerator ash. Journal of Environmental Quality,1994,23(4):822—830
    [33]Yang G C C, Yang T Y. Symthesis of Zeolites from Municipal Incinerator Fly Ash[J]. J Hazard Mater,1998,62(1):75
    [34]Hwa T J, Jeyaseelan S. Conditioning of Oily Sludges with MSWIA[J]. Water Sci Technol,1997,35:231-238
    [35]WENGERAK,FAROUK B. Analysis of material recovery in plasma arcmelting of solid wastes:a computational study[J]. Air& Waste Manage Assoc.1999,(49):279-288
    [36]马保国,黄祥等.城市垃圾焚烧飞灰配制水泥熟料的研究.武汉理工大学学报.2009,31(8):51-54
    [37]刘娟,李润东,王雷等.利用垃圾焚烧飞灰生产水泥熟料实验研究.沈阳航空工业学院学报,2007,24(4):86-88
    [38]殷慧,董必钦,丁铸,邢锋.水泥胶凝体系水化进程研究.第十届全国水泥和混凝土化学及应用技术会议.2007(11):1-9
    [39]国家环境保护局.GB5086.2-1997.中华人民共和国国家标准-固体废物浸出毒性防范水平振荡法.北京:1997-12-22
    [40]G Kakali, V. Kasselouri, G. Parissakis. Hydration and strength development of cement produced from raw mixes containting MoO3, Nb2O3, WO3 and ZrO2. Cement and Concrete Research, Volume 19, Issue 6, November 1989, Pages 968-972
    [41]管宗甫,陈益民,秦守婉.杂质离子对随酸盐水泥熟料烧成影响的研究进展.硅酸盐学报,2003,31(8):795-799
    [42]F. R. D. Andrade, V. Maringolo, Y. Kihara. Incorporation of V, Zn and Pb into the crystalline phases of Portant clinker. Cement and Concrete Research,1996,26:377-385
    [43]K. Kolovos, S. Tsivilis, G Kakali. SEM examination of clinkers containing foreign elemens. Cement and Concrete Composites, Volume 27, Issue 2, February 2005, Pages 163-170
    [44]马保国,黄祥等.F、S、P矿化剂对水泥熟料烧成及性能的影响.材料导报,2007,21(12):5-7
    [45]张联盟.黄学辉.宋晓岚.材料科学基础.武汉:武汉理工大学出版社2004:495-498
    [46]李坚利.水泥工艺学.武汉:武汉工业大学出版社.1999:20
    [47]杨南如,岳文海.无机非金属材料图谱手册.武汉:武汉工业大学出版社,2000(11):79
    [48]郭随华,陈益民,管宗甫等.铝率及液相性质对高硅酸三钙含量硅酸盐水泥熟料烧成过程的影响.硅酸盐学报.2004,32(3):340-345
    [49]施惠生.利用城市垃圾焚烧飞灰煅烧水泥熟料初探.水泥.2004(11):1-4
    [50]张联盟,黄学辉,宋晓岚.材料科学基础.武汉:武汉理工大学出版社,2005,529-534
    [51]王英姿,吴波,陈亚明.锻烧制度对硅酸盐水泥熟料显微结构影响的电镜分析.电子显微学报.2003,22(6):592-593
    [52]王岩,林伦.硅酸盐水泥熟料的光学显微结构特征的研究.天津城市建设学院学报.2002,8(2):104-106
    [53]Yousuf M, Mollah A, Parga J R, etal. An infrared spectroscopic examination of cement-based solidification/stabilization systems-Portland types V and IP with zinc. J Environ Sci Health, 1992,A27(6):1503-1519
    [54]J, R, Conner. Chemical Fixation and Solidification of Hazardous Wastes Van Nostrand-Reinhold, New York,1990:293-298
    [55]崔素萍,兰明章,张江等.废弃物中重金属元素在水泥熟料形成过程中的作用及其固化机理.硅酸盐学报.2004,32(10):1264-1270
    [56]D.Stephan, R.Mallmann, etal. High intakes of Cr, Ni, and Zn in clinker Part I. Influence on burning process and formation of phases. Cement and Concrete Research.29(1999):1949-1957
    [57]M.Murat, F.Sorrentino. EFFECT OF LARGE ADDITIONS OF Cd, Pb, Cr, Zn TO CEMENT RAW MEAL ON THE COMPOSITION AND THE PROPERTIES OF THE CLINKER AND CEMENT. Cement and Concrete Research,1996(26):377-385
    [58]江虹.红外分析在水泥化学中的应用.贵州化工.2001,26(4):30-31
    [59]向新.活化硅酸盐类水泥的研制与微观结构研究.武汉理工大学硕士论文
    [60]尧璟云,白瑞英,余其俊等.硅酸盐水泥硬化体中Pb的存在形态.第十届全国水泥和混凝土化学及应用技术会议.2007
    [61]兰明章,王彩云,崔素萍.Cd2+对熟料矿物及水泥水化产物影响的研究.水泥,2008,11:8-10
    [62]李建新,严建华,倪明江等.垃圾焚烧飞灰中重金属稳定化处理.热力发电,2003(12):35-40
    [63]张江.水泥熟料固化危险工业废弃物中重金属元素的研究:[硕士学位论文].北京:北京工业大学,2004
    [64]国家环境保护总局.国家质量监督检验检疫总局.GB5085.3-2007.中华人民共和国国家标准.危险废物鉴别标准浸出毒性鉴别.北京:中国环境科学出版社,2007-04-25
    [65]施惠生,岳鹏.利用城市垃圾焚烧飞灰开发新型生态水泥混合材.水泥工程,2003,6:8-12
    [66]蓝俊康,王焰新.利用复合水泥固化Pb2+的机理探讨.硅酸盐通报,2005,4:10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700