内聚营养源SRB污泥固定化连续处理含锌废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含锌废水来源广泛,具有持久性、毒性大等危害,对环境及人类容易造成严重危害。该类废水治理方法很多,生物法主要是通过生物有机体或其代谢产物与金属离子之间作用而达到净化的目的,具有低成本、环境友好等优点。硫酸盐还原菌(SRB)在处理高硫酸盐有机废水、矿山酸性废水、电镀废水等方面取得了较大进展,具有“以废治废”、处理重金属种类多、处理彻底、处理潜力大等特点。但也存在营养源不能被生物充分利用,导致出水COD偏高,重金属离子对SRB毒害作用影响处理效果等缺陷。
     本研究提出内聚营养源SRB污泥固定化技术。将SRB所需碳源固定在小球内部,并构造出SRB生长良好的内部环境,不仅克服了重金属离子对SRB的毒害,而且通过碳源内聚避免了有机物的污染,因此它在重金属废水低廉高效处理方面体现了较大的应用潜力。本论文在热力学理论计算的基础上,采用包埋法,以驯化15d后的活性污泥为包埋对象,系统地考察了进水SO42-浓度、pH、固定化小球与废水质量比及水力滞留时间等因素对含锌废水处理效果的影响,并测定了连续运行系统对各种污染物处理效果以考察其稳定性,同时对SO42-还原动力学、除锌机理以及传质过程进行了理论研究。
     (1)根据化学热力学平衡原理,绘制了Zn2+-S2-H2O系溶解平衡pC-pH关系图,Zn2+-S2-H2O系热力学平衡研究表明:Zn(OH)2固相在pH值在9.41时,最低溶解度10-5.61mol/L;ZnS固相在pH值为8.36时,最小溶解度为10-7.69mol/L;当S2->Zn2+(mol/L)时,pH在0-14范围内只生成ZnS沉淀,不会产生Zn(OH)2物质。
     (2)通过对包埋载体材料的筛选,确定以聚乙烯醇(PVA)为骨架添加少量活性炭、海藻酸钠、SiO2.Fe粉,并采用正交试验和单因素试验选择与优化包埋条件,确定的最佳条件为:PVA用量为12%,海藻酸钠用量为0.1%,SiO2用量为4%,污泥用量25%,交联剂pH值为6.5。在此条件下制得的固定化小球处理效果较为理想,在进水Zn2+浓度为200mg/L时,其去除率可达92.5%。
     (3)连续化处理废水试验表明:进水SO42-浓度4151mg/L,Zn2+浓度100mg/L,pH为5.9,固定化小球与废水质量比为1:2,水力滞留时间(HRT)为4h,Zn2+去除率达98%以上,出水Zn2+低于2mg/L,COD低于100mg/L,达到《污水综合排放标准》(GB8978-1996)。Zn2+稳定达标时间为13h;固定化小球经五次再生使用,出水Zn2+均稳定达标12-14h。通过对沉淀机理分析可知,锌离子去除主要通过生成ZnS沉淀,吸附机理去除次之,过程中不会产生Zn(OH)2沉淀。
     (4)利用稳态法得出:SO42-催化还原速率与SO42-浓度的函数关系曲线遵循米氏方程式规律,当CSO42-<3259mg/L,SO42-还原遵循酶反应动力学一级反应,反应速率与进水SO42-浓度成正比;当CsO42->3259mg/L,遵循酶反应动力学零级反应,反应速率为与硫酸根浓度无关。
     (5)由固定化小球表面电位测定可知:废水pH在4-7范围时,小球表面电位为正值,小球表面带正电荷,废水中Zn2+离子被排斥,S042-通过小球表面进入内部被还原,还原产物S2-离子穿出小球表面与废水中Zn2+产生ZnS沉淀,Zn2+去除率达98%以上,经4次再生试验Zn2+去除率仍保持在98%左右,固定化小球可以重复使用。当废水pH在8-10范围时,固定化小球表面电位为负值,小球表面带负电荷,废水中Zn2+被吸引进入小球内部,SO42-离子与小球内部多肽结构形成化学键也被吸附,故锌离子也有较好的脱除效果,Zn2+去除率也可达97%左右,但由于锌离子对SRB的毒害,小球不能重复利用。
Zinc-containing wastewater endangers environment and human health because it contains various poisonous and persistant pollutants. There are many methods developed for its treatment.Biological method has received much attention becauce of its low cost and environmental friendly. Sulfate reducing bacteria(SRB),one of the promosing biological method, has the characteristics of using waste sludge to treat wastewater, being suitable for various heavy metals and high removal rate, and has been widely used in the treatment of organic wastewater, acid mine drainage and electroplating wastewater. However, there are still some drawback in it, such as low-usage of nutrition, high effluent COD and toxicity of metal ion.
     A novel technology,immobilized SRB sludge beads with inner cohesive nutrient source, was proposed in this study for treatment of heavy metal wastewater. It can provide a reticular structure for SRB sludge to resist heavy metals poisoning and organic pollution from outer environment.
     The entrapping method was used with sludge acclimatized of 15 days as entrapped objectives in this study. The effects of some factors, such as influent SO42-, pH, mass ratio of beads to liquid and HRT, on the treatment of Zinc-containing wastewater were systematically investigated, and the eduction kinetics of SO42,mechanism of zinc removal,mass transfer process were also included. The main conclusions of this study are as follows:
     (1)The pC-pH diagrams of Zn-S2--H2O system are plotted according to thermodynamic equilibrium. Zn(OH)2 has the minimum solubility of 10-5.61 mol/L at pH 9.41,and the minimum solubility for ZnS (10-7.69mol/L) is obtained at pH 8.36.In the thermodynamic equilibrium system of Zn(OH)2 and ZnS,only ZnS precipitation is generated when the concentration of S2- is greater than that of Zn ion.
     (2) PVA is chosen as main entrapping carrier involves adding small amount of active carbon, alginate, SiO2, Fe.According to orthogonal tests and single-factor experiments, the optimal parameters are that:PVA concentration of 12%, active carbon of 5%,Alginate of 0.1%, SiO2 of 4%, activated sludge of 25% and pH 6.5 for crosslinking agent. Under the condition, the highest removal rate of Zn2+ reachs 92.5% with influent Zn2+ concentration of 200mg/L
     (3)The results of the continuous treatment show that the removal rate of Zn2+ is greater than 98%,and Zn2+ concentration in effluent meets integrated wastewater discharge regulation (GB8978-1996) under the condition:4150mg/L of SO42-, Zn2+ of 100mg/L, pH 5.9 in influent, mass ratio of beads to liquid 1:2 and HRT 4h. The stable operation time of reactor is 13h and it is in the range of 12-14h even after five cycles-regeneration. Based on the analysis of precipitation mechanism, Zn removal was mainly caused by the formation of ZnS precipitation, Zn adsorption on immobilized SRB beads is secondary to Zn removal,and no Zn(OH)2 precipitates were observed. (4) When SO42- concentration is below 3259mg/L, SO42- reduction follows first-order enzyme kinetics.The reaction rate is proportional to SO42- concentration, when SO42- is over 3259mg/L, it follows zero-order enzyme kinetics and the reaction rate is independent of SO42-concentration. (5)At pH 4-7,the surface e of immobilized SRB beads is positive charged which tend to repulse Zn2+ in wastewater, and attract SO42-, Moreover, SO42- adsorbed on the surface diffused into the inner and was reduced to S2-. S2- can pass through the bead surface and form ZnS precipitate with Zn2+ resulting high Zn2+ removal rate (about 98%).At pH 8-10 the surface of immobilized SRB beads is negative charged, exhibiting higher affinity for Zn2+. For SO42-, it can be adsorbed to immobilized SRB beads by chemical binding with inner polypeptide. Therefore, Zn2+ removal rate is also high (97%), however, the beads cannot be reused due to the toxicity of Zn2+ to SRB.
引文
[1]. 王浩.我国水资源合理配置的现状和未来[J].水利水电技术,2006,37(2):7-14
    [2]. 李茜.中国水资源问题及其对策研究.科技资讯,2006,2(26):1921
    [3]. 虢明芳.中国镀锌领域与锌工业发展[J].世界有色金属,2007,3(3):20-22
    [4]. 殷德洪.关于我国铅锌工业环境问题的思考-挑战、抉择与对策[J].世界有色金属,2001,3(6):3-4
    [5]. 任广达,秦书俭.锌在细胞代谢中的作用[M].国外医学医学地理分册,2008,3(29):99-107
    [6]. 向中兰.补锌过量对人体的危害[J].现代医药卫生,2001,17(9):727
    [7].Salzman M B,Smith E M, Koo C.Excessive oral zinc supplementation. Journal of Pediatric Hematology/Oncology,2002,24(7):582-584
    [8].Li Bo, Wang F et al.Effect of excessive Zn2+ and deficient Zn2+ on the expression of wild type pm RNA in rate flicoma cells.Journal of Hygiene Research.2002,02
    [9]. 沈菁,潘敏,杜春桃.探讨微量元素铜、锌、铁与恶性肿瘤的关系[J].海南医学,2005,16(4):16-17
    [10].鲁栋梁,夏璐.重金属废水处理方法与进展[J].化工技术与开发,2008,37(12):32-35
    [11].蒋剑虹,曾光明,张盼月,等.锌冶炼厂重金属废水处理试验研究[J].工业水处理,2005,25(11):44-46
    [12].汤兵,张俊浩.铁氧体法处理含锌、镍废水研究.环境保护学报[J].环境保护与科学,2002,28(109):12-15
    [13].尹庚明,马晓鸥,康思琦,等.混凝沉淀法处理锰锌铁氧体生产废水[J].环境科学与技术[J].2002,25(4):32-33
    [14].张小燕,党酉胜,卢荣.鳌合絮凝法处理含锌污水[J].西安石油学院学报(自然科学版,2002,17(3):39-40
    [15].陈文森,陈炳稳.两性离子交换树脂对含锌废水的处理[J].化工时刊,2004,18(1):47-48
    [16].王大军,许弟军,单连斌,等.改性粉煤灰处理含锌废水的研究[J].环境保护科学,2005,31(3):19-21
    [17].李门楼.改性硅藻土处理含锌电镀废水的研究[J].湖南科技大学学报(自然科学版),2004,19(3):81-84
    [18].刘泽英.乳状液膜体系处理含锌废水[J].资源节约与环保,2004,20(2):45-46
    [19].张鹤鸣.宝钢冷轧电镀锌废水处理[J].工业用水与废水,2000,31(3):25-27
    [20].闵小波,于霞,柴立元,等.生物法处理重金属废水研究进展[J].中南工业大学学报,2003,33(2):90-97
    [21].Vinta V Panchanadikar, Radhanathp Das.Biorecovery of zinc from industrial effluent using native microflora..Inter J Environmental Stdies,1993,44: 251-257
    [22].Atkinson B.W.,Bux F.,Kasan H. C.Bioremediation of Metal-Contaminated Industrial Effluents Using Waste Sludges.Water Science Technology, 2002,34(9):9-15
    [23].朱一民,魏德洲.Mycobacterium phlei菌对重金属Pb2+, Zn2+,Ni2+,Cu2+的吸附规律[J].东北大学学报(自然科学版),2003,24(1):91-93
    [24].Costley S C, Wallis F M. Treatment of heavy metal-polluted wastewaters using the biofilms of a multistage rotating biological contactor. World Journal of Microbiology & Biotechnology,2001,Vol.17, No.1,2001
    [25].田建民.用生物法去除工业废水中的重金属离子[J].太原理工大学学报,1998,29(5):488-491
    [26].Jong Tony, Parry, David L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.Water Research,2003,14(37):3379-3389
    [27].Diels L.,Van Roy S,Hooyberghs L, et al.Heavy Metal Biosorption and Bioprecipitation by Alcaligenes Eutrophus ER121.International Biodeterioration and Biodegradation,1996,37(3-4):241-252
    [28].Matis K A, Zouboulis A I et al.Metal biosorption-flotation. Application to cadmium removal.Appl.Microbiol.Biotechnol.,1996,45:569-573
    [29].舒生辉,杨永峰,张志,等.生物吸附处理重金属废水的影响因素分析[J].广西轻工业,2009,(1):87-88
    [30].陈勇生,孙启俊,陈均,等.重金属的生物吸附技术研究[J].环境科学进展,1997,5(6):34-43
    [31].Esteves A J P, Valdman E, Leite S G F. Repeated removal of cadmium and zinc from an industrial effluent by waste biomass Sargassum sp. Biotechnology Letters 2000,22:499-502
    [32].路浩,刘宗平,赵宝玉.金属硫蛋白生物学功能研究进展[J].动物医学进展,2009,30(1):62-65
    [33].Tony J,David L P. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res.2003,37:3379-3389
    [34].Utgikar V P, T H H et al. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria. Biotechnol. Bioeng.,2003,82(3):306-312
    [35].王新,李培军,巩宗强,张海荣.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122
    [36].张自杰主编.排水工程下册[M].第四版.北京:中国建筑工业出版社,2000.
    [37].王里奥,崔志强、钱宗琴,等.微生物固定化的发展及在废水处理中的应用[J].重庆大学报.2004,27(3):125-129
    [38].于霞,柴立元.细胞固定化技术及其在废水处理中的应用研究[J].工业水处理.2001,(20)10:9-12
    [39].朱柱,李和平,郑泽.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学报.2000,22(5):95-101
    [40].闵航,郑耀通,钱泽澎,等.聚乙烯醇包埋厌氧活性污泥处理废水的最优化条件研究[J].环境科学.1995,15(5):10-14
    [41].徐雪芹,李小明,杨麒,等.固定化微生物技术及其在重金属废水处理中的应用[J].环境污染治理技术与设备.2006,7(7):100-101
    [42].Geoffrey W.,Codd G. A. and Gadd G. M. Accummulation of colbalt, zinc and manganese by the estuarine green microalgae Chlorella salina immobilized in alginate microbeads.Environ. Sci.Technol.,1992,26(1):1764-1770
    [43].Maban C.A.,Holcombe J. A. Immobilization alages cells on silica gel and their characterization for trace metal p reconcentration. Anal.Chem.,1992,64: 1933-1939
    [44]Chang J. S.,Law R. and Chang C. C.Biosorption of lead, copper and cadmium by biomass of Pseudom onas aeruginosa PU21.Wat. Res.,1997,31(7): 1651-1658
    [45].严国安,李益健.固定化小球藻净化污水的初步研究[J].环境科学研究,1994,7(1):39-42
    [46].陈小霞,梁世中.固定化小球藻去除Cr6+的研究[J].海洋通报,2002,21(5):32-37
    [47].张欣华,杨海波.固定化海洋微藻对污水中Ni2+的吸附[J].生物技术,2003,13(5):25-27
    [48].廖家莉,杨远友,罗顺忠,等.固定化少根根霉吸附241Am的研究[J].核化学与放射化学,2002.24(4):227-230
    [49].胡罡,张利,童明容,等.聚乙烯醇包埋龟裂链霉菌对水中Pb2+吸附性能的研究[J].离子交换与吸附,2000.16(6):534-539
    [50].王琰.非活性菌丝体体对水中铅离子的吸附[J].环境科学,1998,19(3):62-66
    [51].徐容,汤岳琴.固定化产黄青霉废菌体吸附铅与脱附平衡[J].环境科学,1998,19(4):72-75
    [52].吴乾菁,李听,李福德,等.固定化酵母菌细胞去除Cd2+的研究[J].重庆环境科学,1996.18(3):16-19
    [53].谢丹丹,刘月英.固定化啤酒酵母废菌体吸附Pd2+的研究[J].微生物学通报,2003,30(6):29-34
    [54].Perea Corona T.,Madrid Albarran Y,Carmra C.,et al.Living organism as an alterative to by phenated techniques formetal speciation. Spectrochimica Acta Part B.1998,53(2):321-329
    [55].张建梅,韩志萍,王亚军.重金属废水的生物处理技术[J].环境污染治理技术与设备,2003.4(4):75-78
    [56].Hansen T A, Carbon metabolism of sulfate reducing bacteria[A].In:J M Odom and R Singleton, Jr. (ed.).Sulfate reducing bacteria:contemporary perspectives, Springerverlag[C].New York:1993:21-40
    [57].李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002.
    [58].聂兴利,李会先,郭振英.硫酸盐还原菌在废水处理中的应用进展[J],河北农业科学,2009,13(5):62-64
    [59].李亚新,苏冰琴,利用硫酸盐还原菌处理酸性矿山废水处理[J].中国给排水,2000,16(2):13-17
    [60].赵宇华,叶央芳,刘学东,硫酸盐还原菌及其影响因子[J].环境污染与防治,1997,19(5):41-43
    [61].Renze T V, Houten V, lettinga G A novel reactor design for biological sulphate removal[A].proc.8th international conf.on anaerobic design, Sendai, Japan:1997,3:25-29
    [62].张小里,陈志昕,刘海洪,等,环境因素对硫酸盐还原菌生长的影响[J].中国腐蚀与防护学报,2000,20(4):224-229
    [63].Reis M.A Effect of hydrogen sulfide on growth of sulfate reducing bacteria Biotech. Bioeng,1992,40(5):593-600
    [64].Oliver J.H.,Li H.G. and Jin M. C.Effect of metal additions on sulfate reduction activity in wastewaters, Toxicological and Environmental Chemistry, 1994,46:197-212
    [65].陈光胜,张启先译,微生物研究法讨论会编:微生物学实验法[M].北京:科学出版社,1983:273-293
    [66].Gundry, M.J.,Henry, J.G.and Prasad, D.:1989, Treating Electroplating Wastewater Using an Anaerobic Filter, Proceedings of the 44th,Indus.Waste Conference, Purdue University,pp.279-285
    [67].乔代蓉.硫酸盐还原菌的分离纯化和筛选及其去除重金属铬的研究:[硕士学位论文].成都:四川大学,2006
    [68].Tony Jong, David L.Parry, Removal of Sulfate and Heavy Metal by Sulfate Reducing Bacterium in Short-term Bench Scale Upflow Anaerobic Packed Bed Reactor Runs,Water Reserch 37(2003)3379-3389
    [69].华尧熙,叶雪明,马晓航.硫酸盐生物还原法处理含锌废水[J].环境科学,1995,16(4):19-21
    [70].缪应祺,倪国,岳强ASBR法处理酸钛白废水的技术研究[J].江苏大学学报,2003,24(1):87-90
    [71].冯易君,谢家理.共存离子对SRB处理含铬废水的影响研究[J].环境污染及防治,1995,17(4):15-17
    [72].UekiKatsuji,UekiAtsuko,ItohKenjl,etal.Removal of sulfate and heavy metals from acid mine water by anaerobie treatment with eattle waste. Effects of heavy metals on sulfate reduction. Journal of Environental Science and Health PartA:Environrnental Seienee and Engineering,1991,26(8):1471-1489
    [73].田小光,张介驰,于德水.硫酸盐还原菌净化含铬废水的影响研究汇[J].生物技术,1997,5(1):32-34
    [74].苏冰琴,李亚新EGSB反应器中硫酸盐还原与重金属去除[J].中国矿业大学学报,20082(37):741-743
    [75].Postgate J R. Cultivation and growth in the sulphate-reducing bacteria [M]. Cambridge-Cambridge University Press,1984
    [76].王娜,闵小波,王云燕,等游离和固定化SRB污泥处理含锌废水比较研究[J]环境科学与技术,2008,31(11):69-72
    [77].魏复盛,国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002
    [78].谢红斌.分段中和法处理重金属废水的研究[J].湖南有色金属,2000,16(9): 91-92
    [79].王春光,胡亮,王吉坤,等矿山含锌废水的治理技术[J].云南冶金,2008,37(5):66-68
    [80].黄万抚,王淑君.硫化沉淀法处理矿山酸性废水研究[J].环境污染治理技术与设备,2004,5(8):60-62
    [81].张祥麟,康衡.配位化学[M].长沙:中南工业大学出版社,1986
    [82].陈绍炎.水化学[M].北京:水利电力出版社,1989
    [83].V.L.Snoeyink,D.Jenkins,蒋展鹏译水化学[M]北京建筑工业出版社,北京1990
    [84].李梦龙.化学数据速查手册[M].北京:化学工业出版社,2002
    [85].翟晓萌,李道棠.海藻酸钠固定化包埋微生物处理有机污染源水[J].环境科学,2000,21(6):80-84
    [86].Ueki K, Ueki A. Removal of sulfate and heavy metal from acid mine water by anaerobic treatment with cattle waste:Effects of heavy metals on sulfate reduction[J].Environ Sci Health,1991,A26(8):1471-1489
    [87].苏冰琴,李亚新.硫酸盐生物还原和重金属的去除[J].工业水处理,2005,25(9):1-4
    [88].胡凯光,汪爱河,冯志刚硫酸盐还原菌及在处理硫酸盐废水中的作用[J].铀矿冶,2007,26(1):48-52
    [89].胡芳,谢来苏.电荷分析在造纸湿部化学中的应用[J].天津造纸,1999(4):29-30
    [90].李盛贤,刘松梅,赵丹丹编著.生物化学[M].哈尔滨工业大学出版社.2005,9,189-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700