隧道围岩离散裂隙网络渗流场与应力场耦合分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂隙岩体渗流场与应力场耦合研究是岩体水力学中一个很有意义的课题。裂隙岩体渗流特性主要由岩体裂隙网络结构决定。裂隙隙宽的改变引起对裂隙渗流的影响,而渗流场变化反过来引起岩体应力场变化,即为渗流与应力的耦合作用。在隧道工程施工过程中,隧道围岩中渗流场与应力场存在着耦合关系。本文在国内外研究的基础上,根据裂隙网络岩体渗流场与应力场耦合的基本理论,对隧道开挖后衬砌前裂隙围岩在二次应力和敞开排水状态下的渗流场与应力场进行耦合计算。研究成果主要有以下几个方面:
     1、分析现有岩体渗流场与应力场耦合模型,总结各种数学模型的优缺点及其适用范围。吸收现有岩体水力学在该领域的研究成果,分析应力与隙宽、渗透力等之间的关系,建立耦合分析模型;
     2、使用裂隙网络数学模型对裂隙网络岩体进行渗流场与应力场的耦合计算,根据离散网络模型的基本理论,编制计算程序,并通过算例对程序进行了验证。
     3、隧道工程施工过程中,存在着渗流场与应力场的耦合关系。对隧道工程施工过程中渗流场与应力场的耦合机理进行研究。以裂隙岩体渗流场与应力场耦合模型为基础,建立隧道开挖过程中渗流场与应力场耦合模型;
     4、用所编制的程序,在考虑中部开挖的情况下,对裂隙网络岩体进行渗流场与应力场的耦合计算,从计算结果可以看出,开挖后的岩体渗流场与应力场,在耦合与不耦合情况下有所不同。渗流场对应力场的影响,在靠近开挖区域较为明显。与开挖部位相连通的裂隙渗流量,在考虑耦合作用影响下有所减小;
     5、对某隧道工程开挖后、衬砌前,围岩在二次应力和敞开排水(不考虑衬砌与防排水措施)条件下的渗流场与应力场进行了耦合计算。由计算结果看出,隧道开挖后,在隧道周围出现应力集中现象。考虑耦合作用时,应力场对渗流场的影响大于渗流场对应力场的影响,在应力场的影响下,隧道围岩内裂隙闭合,裂隙内水头增加,对与隧道连通裂隙的渗流量进行计算,考虑耦合作用后,裂隙向隧道内的渗流量减小。在渗流场影响下,围岩最大主应力增大,但增大值相对较小,且集中在隧道周边部位。
Coupled analysis research of unsteady seepage and stress in fractured rock masses is a very valued task for discussion. The seepage in rock mass mainly reflected as fracture flow. With the changing of boundary hydra-head, the width of the fracture increased or reduced, which affects the fracture flow. Conversely, the change of seepage field affects the stress field. The interaction of the two filed is called coupling. on tunnel construction process, there is coupied interaction between seepage and stress fields. On the basis of existing studies in the field of seepage of rock mass both at home and abroad, according the basic theory of coupled seepage and stress fields, the thesis has conducted a broad study of coupled seepage and stress fields on tunnel surrounding rock mass between excavation and lining step. The main researches as follows:
     1. Analyzed the exist model of coupled seepage and stress field. Summarizes the advantage and disadvantage and applicable scope of every model. Based on study properties of rock mass mechanics, analysis the relationship between stresses and osmotic ratio, and created the model of coupling;
     2. Discrete fracture network method is used in couple field. According the basic theory of discrete fracture network method, edit the calculating program, check the program with a example;
     3. In tunnel construction process, exist the interaction between seepage and stress field. Analysis the mechanics of seepage and stress interaction in tunnel construction process. At the basic of rock mass couple field theory. Build the couple field model of tunnel rock mass at excavation step;
     4. Use edited program, calculating the seepage and stress field of fracture rock mass at the condition of excavation. The result show that, when considering of couple effect, seepage and stress field are all different from when not considering the couple effect. The effect to stress field is significantly near the excavation area. Seepage discharge is redused under couple effect;
     5. Calculating A tunnel seepage and stress field under secondary stress and drainage condition between excavation and lining step. The result show that, after excavation,near excavation area appeared stress-focus phenomenon.When considered couple effect, the influence to seepage field is more obviously then to stress field.When consider the stress field influence,the fracture closed, hydraulic head increased, the quantit of water inflow reduced. Consider the couple effect, max tensile stress is increased near the tunnel area, but the added value is less.
引文
[1]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版.1995
    [2]柴军瑞.大坝工程渗流力学M.拉萨:西藏人民出版社.2001
    [3]吉小明,王宇会.隧道开挖问题的水力耦合计算分析[J].地下空间与工程学报.2005,12,(6):848-851
    [4]Vangolf-racht, T. D.裂隙油藏工程基础[M].北京:石油出版社.1989:55-56
    [5]孙广忠.岩体结构力学[M].北京:科学出版社.1988:78-79
    [6]李俊亭,王愈吉主编.地下水动力学[M].北京:地质出版社,1987
    [7]Louis C..Maini Y.N.T..Determination of in situ hydralic parameters in jointed rock.Proc.2ndCongr.ISRM, 1970, VOL.1
    [8]Romm.E.S..Flow Characteristics of Fractured Rocks.Nedra,Moscow,1966
    [9]Long J.C.S.et al.Porous media equivalents for networks of discontinuous fractures.Water Resources Res..Vol.18,No.3,1982
    [10]田开铭.对裂隙岩石渗透性的初步探讨[J].地质研究.1982(1):37-39
    [11]张有天,张武功.裂隙岩体渗透特性渗流数学模型及系统量测[J].岩石力学.1982(8):73-76
    [12]杜延龄,许国安,黄一和.复杂岩基三维渗流分析研究[J].水利学报.1984,3:101-104
    [13]杨延毅,周维垣.裂隙岩体的渗流损伤耦合分析模型及其工程应用[J].水利学报.1991,(5):19-27
    [14]杨太华,曾德顺.三峡船闸高边坡裂隙岩体的渗流损伤特征[J].中国地质灾害与防治学报.1997,8(2):13-18
    [15]郑少河.裂隙岩体渗流损伤耦合模型的理论分析[J].岩石力学与工程学报.2001,20(2):156-159
    [16]王恩志.三维裂隙网络渗流数值模型研究[J].岩石力学与工程学报.1997,3,(2):520-525
    [17]切尔内绍夫.水在裂隙网络中的运动[M].北京:北京地质出版社.1987:39-41
    [18]王恩志.岩体裂隙网络分析及渗流模型[J].岩石力学与工程学报.1993.12(3):214-221
    [19]贺少辉,廖国华.裂隙岩体裂隙网络渗流模型研究[J].矿冶工程.1997,17(2):11-15
    [20]柴军瑞.岩体多重裂隙网络渗流模型研究[J].煤田地质与勘探.2000,28(2):33-36
    [21]李祖贻,陈平.裂隙岩体二维渗流计算[J].水利水运科学研究.1992,2,(7):189-194
    [22]Louis C,Wittke W. Modellversuch zur Durchstonemung klueftiger Medien.Fels Mech And Ingenieurgeol[J], suppl. Ⅳ,1968:115-118
    [23]王恩志.裂隙岩体渗流理论与实践(博士后出站报告)[D].北京,清华大学,1993,1:67-68
    [24]王媛.裂隙岩体渗流及其与应力的全耦合分析[博士学位论文][D].南京,河海大学,1995:26-28
    [25]王媛,徐志英,速宝玉.复杂岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报.2000,19(2):177-181
    [26]Gangi A F. Variation of whole and fractured porous rock permeability with confining pressure[J]. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1978,15(4):249-257
    [27]Walsh J B. Effect of Pore Pressure and Confining Pressure on Fracture Permeability[J]. Int. J. Rock Mech. Min. Sci&Geomech, Abstr.,1981,18(5):429-435
    [28]Tsang Y M, Witherspoon P A. Hydromechanical Behavior of a Deformable Rock Fracture Subject to Normal Stress [J].Geophys. Resear.,1981,86(B10):9187-9198
    [29]Esaki J. Shear-Flow Coupling Test on Rock Joints[J]. In:Proc.7'. Int. Conf. ISRM,1992:526-532
    [30]耿克勤等.岩体裂隙渗流水力特性的实验研究[J].清华大学学报(自然科学版).1996,36(1):102-106
    [31]陈平,张有天.裂隙岩体渗流场与应力耦合分析[J].岩石力学与工程学报.1994,13(4):299-308
    [32]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报.1998,(7):55-59
    [33]杨志锡.各向异性饱和土体的渗流耦合分析及其工程应用[D].上海,同济大学,2001:44-46
    [34]Noorishad J, et al. A Finite-Element Method for Coupled Stress and Fluid Flow Analysis in Fractured Rock Masses[J]. Int. J. Rock Mech. Sci.&Geomech. Abstr,1985,22(4):251-281
    [35]张有天,张武功.隧洞水荷载的静力计算[J].水利学报,1980,6:52-62
    [36]P.C.Kelsall, J.B.Case, C.R.Chabannes. Evaluation of excavation-induced changes in rock permeability[J].Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1984,21 (3),37-46
    [37]L. Zhang, J. A. Franklin. Prediction of water flow into rock tunnels:an analytical solution assuming an hydraulic conductivity gradient[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.1993,30(1),37-46
    [38]杨林德,丁文其.渗水高压引水隧道衬砌的设计研究[J].岩石力学与工程学报.1997,16(2):112-114
    [39]王建秀,杨立中,何静.深埋隧道衬砌水荷载计算的基本理论[J].岩石力学与工程学报,2002,21(9):1339-1343
    [40]王建宇.对我国隧道工程中两个问题的思考[J].铁道建筑技术.2001(4):1-4
    [41]巫锡勇,王鹰,罗健.侵蚀性环境水形成与地下水运动特征的关系研究[J].铁道学报.1998,20(4):27-31
    [42]X. Yi. R. Kerry Rowe, K.M.Lee. Observed and cal-culated pore pressures and deformations induced by an earth balance shield[J]. Can. Geotech. J,1993,30:476-490
    [43]Murad Y. Abu-Farsakh, George Z.Voyiadjis. computa-tional model for the simulation of the shield tunneling pro-cess in cohesive soils[J]. Int. J. Anal. Meth. Geomech,1999,23,23-44
    [44]J. H. Shin, T. I. Addenbrooke, D. M.Potts. Anumeri-cal study of the effect of groundwater movement on long-termtunnel behaviour[J]. Geotechnique,2002,52(6):391-403
    [45]黄涛.渗流场与应力场耦合环境下裂隙围岩型隧道涌水量预测的研究[D].成都:西南交通大学,1997
    [46]Lomize G M. Flow in Fractured Rocks [M]. Moscow:Gesenergoizdat,1951:71-74
    [47]Romm E S.Flow Characteristics of Fractured Rocks[M].Moscow:Nedra,1966
    [48]Neuzil C E, Tracy J V. Flow through fractures[J]. Water Resour. Resear.,1981,17(1):191-194
    [49]Tsang Y W,Witherspoon P A.The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size[J].J.of Geophys.Research,1983,88(B3):2359-2366
    [50]Tsang Y W. The effect of tortuosity on fluidflow through a single fracture[J]. Water Resour Resear.1984, 20(9):1209-1215
    [51]Elsworth D, Goodman R E.Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1986,23(3):233-243
    [52]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展.2002,(30):62-68
    [53]柴军瑞.岩体裂隙网络非线性渗流分析[J].水动力学研究与进展,2002,A辑,17(2):217-221.
    [54]Brace W F. Walsh J B. Frangos W T. Permeability of granite under high pressure[J]. J. Geophy. Res.. 1968.73(6):2225-2236
    [55]孙广忠,林文祝.结构面闭合变形法则及岩石弹性本构方程[J].地质科学,1983,(2):81-87
    [56]Goodman R E.不连续岩体中的地质工程方法[M].北京:中国铁道出版社,1980
    [57]Bandis S C,Lumsden A C,Barton N R.Fundamentals of rock joint deformation[J]Int.J Rock Mech.Min.Sci.and Geomech.Abstr.,1983,20(6):249-268
    [58]Oda M, Takemura T, Aok T. Damage growth and permeability change in triaxial compression tests of Inada granite[J]. Mechanics of Materials,2002,34(6):313-331.
    [59]张有天,张武功.裂隙岩石渗透特性渗流数学模型及系数量测[J].岩石力学.1982,(8):41-52
    [60]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989:34-36
    [61]Wittke W. Rock Mechanics-Theory and Applications with Case Histories[M]. Berlin.1990,377-386
    [62]米勒L.(路易斯c.).李世平,冯震海译.岩石力学(岩体水力学)[M].北京:煤炭工业出版社,1981,254-330
    [63]毛昶熙,陈平.岩石裂隙渗流的计算与试验[J].水利水运科学研究.1984,(3):29-37
    [64]Wilson C R. Witherspoon P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research.1974,10(2):328-335
    [65]Nordqvist A W, T sang Y W, Tsang C F. A variable aperture fracture network model for flow and transport in fractured rocks[J]. Water Resources Research.1992,28(6):1703-1713
    [66]Dershow itz W S. A new three dimensional model for flow in fractured rock[J]. Int Assoc Hydrogeol. 1985,(17):441-448
    [67]万力,李定方,李吉庆.三维裂隙网络的多边形单元渗流模型[J].水利水运科学研究.1993,(4):347-353
    [68]王媛,速宝玉,徐志英.三维裂隙岩体渗流耦合模型及其有限元模拟[J].水文地质工程地质.1995,(3):1-4
    [69]Romero, L., L. Moreno, and 1. Neretnieks, Nuctran:computer program to calculate radionuclide transport in the near field of a repository[R], SKB Arbetsrapp. AR-95-14,Swed. KArnbrinslehautering AB, Stockholm,1995:5-9
    [70]Clemo, T., and L. Smith, A hierarchical model for solute transport in fractured media[J]. Water Resour. Res.,1997,33(8),1763-1783
    [71]Dershowitz, W.S., and C. Fidelibus, Derivation of equivalent pipe network analogues for three-dimensional discrete fracture networks by the boundary element method[J], Water Resour. Res..1999. 35(9).2685-2691
    [72]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报.1998,17(4):400-406.
    [73]吉小明,白世伟,杨春和.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报.2003,22(10):1636-1639.
    [74]Huyakorn P S, Lester B H, Faust C R. Finite element techniques for modeling groundwater flow in fractured aquifers[J]. Water Resources Research.1983,19(4):1019-1035
    [75]肖裕行,王泳嘉,卢世宗等.裂隙岩体水力等效连续介质中物理量的讨论[J].岩土力学.1997,18(4):13-17
    [76]Witherspoon PA, et al. Water Resour. Res. [J],1980,16(8):1196-1204
    [77]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报.1988,21(1):8-13
    [78]常晓林.岩体稳定渗流与应力状态的耦合分析及其工程应用初探.第一届全国计算岩土力学研讨会论文集(一)[C].成都,西南交通大学出版社,1987:335-343
    [79]陈胜宏等.节理面渗流特性的探讨[J].武汉水利电力学院学报,1989,22(1):53-60
    [80]段小宁,李继初,刘继山.应力场与渗流场相互作用下裂隙岩体水流运动的数值模拟[J].大连理工大学学报,1992,32(6):712-717
    [81]Millard A, et al. Discrete and Continuum Approaches to Simulate the Thermo-Hydro-Mechanical Couplings in a Large, fractured Rock Mass. Int. J. Rock Mech[J]. Min. Sci.&Geomech. Abstr.,1995,32 (5):409-434
    [82]徐钟济.蒙特卡罗方法[M].上海科学技术出版社,1985:45-48
    [83]黄运飞,冯静.计算工程地质学[M].兵器工业出版社,1992:78-82
    [84]黄勇,周志芳.岩体渗流模拟的二维随机裂隙网络模型[J].河海大学学报.2004,32(1):91-94
    [85]朱伯芳.有限单元法原理与运用[M].中国水利水电出版社,1998:153-155
    [86]柴军瑞,仵彦卿.单裂隙水流对裂隙壁施加的拖曳力分析[J].工程地质学报.2001,9(1):29—31.
    [87]吴金刚.高水压隧道渗流场的流固耦合研究[D].北京.北京交通大学.2006:23-26
    [88]王建秀等.高水压隧道围岩渗流应力耦合作用模式研究[J].岩土力学.2008,vo1.29增刊:237-239
    [89]汪海滨.山岭隧道地下水规律及防治方法研究[D].成都.西南交通大学.2002:8-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700