快速凝固TiAl-Nb合金的显微组织及相转变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-TiAl基合金由于低密度、高强度以及良好的高温强度和抗蠕变性,目前被认为是具有应用潜力的高温结构材料。但是在室温条件下表现出的低塑性和韧性,一直以来限制着它们的实际应用。本文首先采用真空钮扣炉制备了不同Nb含量的Ti-46Al-xNb-2Cr-0.3Y(x=2,4,6)母合金锭,接着利用快速凝固-熔体旋转法(Melt-Spinning)制备了同成分的合金薄带,研究合金元素Nb和快速凝固对合金组织和性能的影响。研究的目的是探索提高TiAl合金的室温塑性和高温性能的途径。
     利用金相电镜(OM)、扫描电镜(SEM)及电子探针(EPMA)对铸态合金的显微组织研究发现,合金呈现典型的枝晶组织,在枝晶间均匀地分布着白点状的Y2O3颗粒相以及网纹状的Al2Y化合物。对合金的XRD分析表明:随着Nb含量的增加合金中的α2-Ti3Al相含量减少,这是因为Nb的合金化降低了合金中Ti/Al的比例,促进了γ相的形核所致。由于α2-Ti3Al相含量的减少,显微硬度也随着Nb含量的增加而降低。
     利用扫描电镜(SEM)和透射电镜(TEM)对快速凝固合金薄带的显微组织进行了观察。发现快速凝固使合金的显微组织明显细化,成分更加均匀。基体主要由块状组织和层片组织构成,存在着大量的析出物、孪晶、位错等微观结构。相分析表明,合金仍然由γ-TiAl和α2-Ti3Al相构成,不过在快速凝固条件下合金中的α2-Ti3Al相含量明显增多。快速凝固合金经过退火处理后,发现层片组织不断地被γ晶粒吞食,造成层片的减少和消失。随着退火温度的提高,合金中的层片组织越来越少,在970℃退火处理以后,合金几乎全部由块状组织构成。
     对铸态、快速凝固态和热处理态合金的γ-TiAl及α2-Ti3Al相的晶格参数的研究发现,三种合金在快速凝固条件下γ和α2相晶格参数a、c都要比铸态条件的低。快速凝固合金薄带经过热处理后,γ相和α2-Ti3Al相的晶格参数表现出相似的规律,其中a减少,而c变大。理论表明,晶格参数的减小会对TiAl材料电子云状态及位错滑移特点产生影响,有利于提高TiAl合金的室温塑性。
γ-Based TiAl alloys are currently considered as potential structural materials for elevated temperature applications due to their low density, high strength and excellent creep resistance. Factors impeding their practical application are poor ductility and toughness at ambient temperature. The present paper used argon arc melting to prepare Ti-46Al-xNb-2Cr-0.3Y ingot with different Nb contents (x=2,4,6 at.%), then used rapid solidification technique–melt spinning to prepar alloy ribbon which have the same contents. The influence of Nb addition and rapid solidification technique on the microstructure and mechanical properties of the alloys was investigated intensively, in order to explore a new method to enhance RT ductility and improve HT properties of TiAl based alloys.
     The microstructure of the cast alloys were studied by OM, SEM, EPMA. It was found that the alloys appeared typical dendritic microstructure, Al2Y phase and Y2O3 particles distribute homoegeneously on the interdendritic. XRD results showed that the amount ofα2-Ti3A phase in alloy reduced with the Nb element increasing, as a result of reducing the proportion of Ti/Al caused by nucleation ofγphase. The micro-hardness also showed a decreasing tendency with Nb content increasing because of the reducing content ofα2-Ti3A phase in alloy.
     SEM and TEM observations are performed to to investigate the solidification microstructure . It was found that the microstructure of alloy ribbon was refined and component became more homoegeneously by rapid solidification technology. The matrix are composed of massive structure and lamellar structure,which contains a lot of precipitated phases, twins and dislocations microstructure. There were still two phases in alloy ribbons, includingγ-TiAl andα2-Ti3Al phasse, yet the amount ofα2-Ti3Al phase obviously increased by rapid solidification. After annealling, the lamellar structure diwindle and disappear and was continuously swallowed byγgrains. With the increasing annealling temperature, the amount of lamellar structure in alloys became less. When annealling temperature was above 970℃, the matrix was composed of only massive structure.
     Investigation of lattice parameters of the cast, rapid solidification and annealled alloys revealed that the lattice parameters (c,a) ofγandα2 phase decreased compared with those in the cast alloy. After annealling, crystal parameters (c,a) ofγandα2 phased show the similar tendency, in which a axis decreased while c axis increased. The above changes in TiAl base alloys is attributed to the electron cloud conditions and sliding characters of dislocations which are beneficial to improving the RT ductility for TiAl base alloy.
引文
1陈振华等译.钛与钛合金.化学工业出版社, 2005:79
    2闫蕴琪,张振祺,周廉.γ-TiAl金属间化合物研究现状与未来展望.材料导报. 2000, 14(2):31-33
    3牛中杰,曹继敏,杨冠军,王廷询. Ti-6Al-7Nb钛合金热加工与热处理工艺研究.钛工业进展. 2006, 23(1):24-27
    4周尧和,胡壮麒.凝固技术.机械工业出版社, 1998: 228-280
    5 X. W. Du, J. Zhu, X. Zhang, Z. Y. Cheng, Y. W. Kim. Composition Change During Creep in Colonies Oriented for Easy-Slip of Ti–46.5Al–2Cr–3Nb–0.2W. Materials Science and Engineering A. 2000,291:131-135
    6 Y. Jiang, Y. H. He, N. P. Xu, J. Zou, B. Y. Huang. Effects of the Al Content on Pore Structures of Porous Ti-Al Alloys. Intermetallics. 2008,16:327-332
    7张永刚,韩雅芳,陈国良等.金属间化合物结构材料.国防工业出版社, 2000:753-756
    8陈国良,林均品.有序金属间化合物结构材料.冶金工业出版社, 1999:332-333
    9 P. Duwez, J. L. Taylor. The Crystal Structure of TiAl. Transactions of AIME. 1952,194(1):70-71
    10 D. Shechtman. Plastic Deformation of TiAl. Metall Trans. 1974,5A(6):137-139
    11 T. Kawabata, Y. Takezono. Bend Test and Fracture Mechanism of TiAl Single Crystal at 293?1073K. Acta Metallurgica et Materialia. 1988,36(4):963-975
    12 B. A. Greenberg, O. Antonova. Dislocation Transformations and the Anomalies of Deformation Characteristics in TiAl—Models of Dislocation Blocking. Acta Metallurgica et Materialia. 1991,39(2):233-242
    13 R. Lipsittha, C. Shechtmand. The Deformation and Fracture of TiAl at Elevated Temperatures. Metallurgical Transactions. 1975,6A (11):1991-1996
    14 E. L. Hall, S. C. Huang. Stoichiometry Effects on the Deformation of Binary TiAl alloys. Journal of Materials Research. 1989,4(3):595
    15 G. Hug. Nature and Dissociation of the Dislocations in TiAl Deformed at Room Temperature. Philosophical Magazine A. 1986,54(1):47
    16张蕾蕾,陈达,林栋梁. TiAl金属间化合物研究现状及发展趋势.材料开发与应用. 1995,10(5):44-47
    17 Y. W. Kim. Intermetallic Alloys Based on Gamma Titanium Aluminide. Jom. 1989,41(7): 24-30
    18曲选辉,黄伯云,吕海波等. TiAl有序合金研究综述.稀有金属材料与工程. 1991,20(4): 3-14
    19程天一,章守华.快速凝固技术与新型合金.宇航出版社, 1990:220-227
    20 C. T. Liu, Kim. Room-Temperature Environmental Embrittlement in a TiAl Alloy. Scripta Metallurgica et Materialia. 1992,27(5):599-603
    21 W. Y. Chu, W. Anthony. Thompson Effects of Grain Size on Yield Strength in TiAl. Scripta Metallurgica et Materialia. 1991,25(3):641-644
    22胡汉起.金属凝固原理.第二版.机械工业出版社, 2000:291-292
    23 V. K. Vasudevan, S. A. Court, Kurath. P and H. L. Fraser. Effect of Purity on the Deformation Mechanisms in the Intermetallic Compound TiAl. Scripta Metallurgica. 1989, 23(6):907-911
    24 M. Aindow, K. Chaudhuri, S. Das. On the Influence of Stoichiometry and Purity on the Deformation Mechanisms in the Intermetallic Compound TiAl. Scripta Metallurgica et Materialia. 1990,24(6):1105-1108
    25 W. J. Zhang, G.. L. Chen. A Preliminary Study on the Creep Behavior of Ti–45Al–10Nb Alloy. Materials Science and Engineering A. 2001,315:250-253
    26 S. J. Balsone, B. D. Worth. Fractographic Study of Fatigue Crack Growth Processes in a Fully Lamellarγ-TiAl Alloy. Scripta Mater. 1995,32:1653-1658
    27 P. I. Gouma, K. Subramanian, Y. W. Kim, M. J. Mills. Annealing Studies ofγ-Titanium Aluminides Alloyed With Light Elements for Creep Strengthening. Intermetallics. 1998,6:689
    28 F. Appel, U. Christoph. Creep Deformation in Two-phase Titanium Aluminide Alloys. Materials Science and Engineering A. 2002,329–331:780-787
    29 M. Oehring, F. Appel, P. J. Ennis. A TEM Study of Deformation Processes and Microstructural Changes During Long-term Tension Creep of a Two-phaseγ-Titanium Aluminide Alloy. Intermetallics. 1999,7:335-345
    30 J. Beddoes, D. Y. Seo. Long Term Creep of TiAl + W + Si With Polycrystalline and Columnar Grain Structures. Scripta Materialia. 2005,52:745-750
    31 D. Hu, A. B. Godfrey et al. Thermal Stability of a Fully Lamellar Ti-48Al-2Cr-2Nb-1B Alloy. Intermetallics. 1998,6(5): 413-417
    32 J. A. Wert. Creep Deformation and Elevated Temperature Microstructural Stability of a Two-Phase TiAl/Ti3Al Lamellar Alloy. Metall Trans. 1994, A(25):2317-2326
    33 T. T. Cheng. Effects of Thermal Exposure on the Microstructure and Properties of aγ-TiAl Based Alloy Containing 44Al–4Nb–4Zr–0.2Si–0.3B. Intermetallics. 1999,7(9):995-999
    34 Z. W. Huang, W. Voice. The Effects of Long-term Air Exposure on the Stability of Lamellar TiAl Alloys. Intermetallics. 2000,8(4):417-426
    35 R. V. Ramanujan, P. J. Maziasz. The Thermal Stability of the Microstructure ofγ-based Titanium Aluminides. Acta Mater. 1996,44(7):2611-2642
    36 G.. Sharma, R. Ramanujan. Instability Mechanisms in Lamellar Microstructures. Acta Materialia. 2000,48(4):875-889
    37 D. S. Shong, Y. W. Kim. Discontinuous Coarsening of High Perfection Lamellar in Titanium Aluminides. Scripta metall. 1989,23 (2 ):257-261
    38 S. Mitao, L. A. Bendersky. Morphology and Growth Kinetics of Discontiuous Coarsening in Fully Lamellar Ti-44Al Alloy. Acta mater. 1997,45(11):4475-4489
    39李臻熙,齐立春,黄旭,曹春晓. Al含量和冷速对TiAl合金全片层组织热稳定性的影响.航空材料学报. 2006,26(3):66-70
    40 G. L. Chen, L. C. Zhang. Microstructural Stability of Lamellar TiAl-Based Alloys at High Temperature. Intermetallics. 1999,7:1211-1218
    41 P. J. Maziasz. Effects of B and W Alloying Additions on the Formation and Stability of Lamellar Structures in Two-Phaseγ-TiAl. Intermetallics. 1997,5:83-95
    42陈忠伟,介万奇.单相合金快速凝固组织形成原理及应用.材料导报. 2001,15(8):13-15
    43沈福宁,汤亚力,关绍康等.凝固理论进展与快速凝固.金属学报,1996,32(7):673-683
    44 S. M. L. Sastry, J. E. O’Neal. Correlation Between Dendrite-Arm-Spacing and Cooling Rate for Laser-Melted Ti-15V-3Al-3Sn-3Cr. Asm. 1983,14A:241-246
    45 T. C. Peng , S. M. L. Sastry , J. E. O’Neal. Laser-Melting/Spin-Atomizatiom Method for the Production of Titanium Alloy Powders. Metallurgical Transactions A. 1985,16A:1897-1990
    46 S. M. L. Sastry , T. C. Peng, L. P. Beckerman. Structure and Properties ofRapidly Solidified Dispersion Strengthened Titanium Alloys:Part II. Tensile And Creep Properties. Metallurgic al Transactions A.1984,15A:1465-1474
    47 T. C. Peng, B. London. Rapidly Solidified Ti-Alloy Powders Produced by Plasma-Arc-Melting/Centrifugal-Atomization. Advancesin Powder Metallurgy. 1989,3:387-400
    48向青春,周彼德.快速凝固法制取金属粉末技术的发展状况.粉末冶金技术. 2000:283-303
    49游涛,袁小川等.钛合金快速凝固技术及其研究现状.铸造. 2007,56 (6):567-571
    50 C. Suryanarayana, F. H. Fores and R. G.. Rowe. Rapid Solidification Processing of Titanium Alloys. Inter. Mater. Rev. 1991,36(3):85-123
    51 Lon. B, T. C. Peng , S. M. L. Sastry. Paper Presented at 2nd ASM Inter. Conf. on Rapidly Solidified Materials:Properties and Processing. San. Diego,USA. Mar.7-9,1988
    52 S. M. L. Sastry , T. C. Peng , P. J. Meschter. Rapid Solidification Processin of Titannium Alloys. J. Met. 1983,35(9):21-28
    53 R. Cox. Superalloys: Metallurgy and Manufacture. Claitor’s Publ..1976:45-53
    54沈军,马学著等.快速凝固TiAl合金冷却速度的计算.稀有金属材料与工程. 2001(4):273-276
    55 R. R. Boyer, W. F. Spurr. Current and Potential Usage of Titanium Castings for Airframe Applications. National SAMPE Technical Conference, 1985:624-634
    56程天一,章守华.快速凝固技术与新型合金.宇航出版社, 1990:220-223
    57张振兴.快速凝固技术在钛和钛合金中的应用.稀有金属与硬质合金. 1990 (100):47-53
    58李松瑞,潭敦吉.快速凝固钛合金的开发.稀有金属与材料工程. 1988(2):7-13
    59 S. Buehlerw. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys Near Compsition TiNi. J. A. Phys.1963,34:1475-1477
    60 J. H. Lee, T. H. Nam. Shape Memory Characteristics and Superelasticity of Ti–45Ni–5Cu Alloy Ribbons. Materials Science and Engineering A. 2006,438–440:691-694
    61 T. H. Nam, J. H. Lee. The B2-B19-B19' Transformation in a Rapidly Solidified Ti-45Ni-5Cu(at%) Alloy. Journal of Materials Science. 2005,40(18):4925-4927
    62 T. H. Nam, S. M. Park. Microstructures and Shape Memory Characteristics of Ti-25Ni-25Cu(at.%) Alloy Ribbons. Smart Materials and Structures. 2005,14(5): S239-S244
    63 S. M. Park, Y. W. Kim, T. H. Nam. Microstructures and Mechanical Properties of Ti–25Ni–25Cu (at.%) Alloy Ribbons. Materials Science and Engineering A. 2006,438–440:695-698
    64何文军,闵光辉,于化顺. Ti-Ni-Cu形状记忆合金急冷条带的显微组织.特种铸造及有色合金. 2007,27(2):153-156
    65 D. V. Louzguine. Crystallization Behavior of Ti50Ni25Cu25 Amorphous Alloy. Journal of Materials Science. 2005,35(16):4159-4164
    66 X. Z. Ma, J. Shen. Study on Rare Earth-containing Phases in TiAl Based Alloys Prepared by Non-equilibrium Solidification Processing. Journal of Rare Earths. 2001,19(2):103-106
    67 M. V. Kral, B. T. Bassler, W. H. Hofmeister. Microstructres in Rapidly Solidified Gamma Titanium-aluminum Alloys with Erbium Additions. Materials Research Society Symposium- Proceedings. 1995,364(2):817-822
    68 Z. G. Liu, Y. Y. Chen, L. H. Chai et al. Production and Characterization of TiAl Ribbons with Y Additions. Transactions of Nonferrous Metals Society of China(English Edition). 2006,16: S711-S714
    69 C. G.. Mckamey, S. H. Whang, C. T. Liu. Microstructural Characterization of aγ-TiAl-Ni Alloy Produced by Rapid Solidification Techniques. Scripta Metallurgica et Materialia.1995,32(3): 383-388
    70 D. Vujic, Z. X. Li, S. H. Whang. Effect of Rapid Solidification and Alloying Adition on Lattice Distotion and Atomic Ordering in L10 TiAl Alloys and Their Ternary Alloys. Metall Trans A. 1988,19:2445-2455
    71 W. Z. Chen, X. P. Song. The Lamellar Microstructure and Fracture Behavior ofγ-Based TiAl Alloy Produced by Centrifugal Spray Deposition. Materials Science and Engineering A. 1998,247:126 -134
    72 R. Gerling, F. P. Schimansky. Spray Forming of Ti 48.9Al (at.%) and Subsequent Hot Isostatic Pressing and Forging. Materials Science and Engineering A. 2002,326 (1): 73-78
    73 E. L. Hall and S. C. Huang. Microstructures of Rapidly-Solidified Binary TiAl Alloys. Acta Metall. Mater. 1990,38(4):539-549
    74 E. A. Aitken. Intermetallic Compounds. J .H .Westbrook, 1967:491-516

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700