资源受限工程调度及其在工程供应链设计中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程供应链管理是供应链管理和工程项目管理研究的新领域,关于工程供应链设计问题的研究仍未开展。在以承包商为核心的工程供应链中,供应链构建与运行的驱动来自于工程活动网络,而合作伙伴(如专业分包商、混凝土供应商、原材料供应商等)的资源能力将会对工程调度构成约束,在工程供应链的设计中必须充分考虑各合作伙伴的资源能力约束和工程工期底线约束,促成总的工程活动成本最小。基于此,本文首先对活动成本目标下的资源受限工程调度问题展开研究,然后将有关理论与方法应用到工程供应链设计中。
    资源受限工程调度问题的研究中很少关注活动成本目标,而问题中以活动成本最小化为目标时也是一类NP-Hard 问题,并且问题目标是非正规的。考虑活动的单执行模式和可重用资源约束,给出了问题的数学模型,分析了启发式求解问题的基本思想,并提出了三类调度方法:1)、基于活动前置矩阵的调度,给出了活动前置矩阵的构造规则; 2)、基于优先规则的调度,结合活动成本目标改造了传统的串行调度方案和并行调度方案,并设计了相应的优先规则; 3)、改进的遗传算法:采用紧前(后)关系相容链表进行编码,解码方法是一种串行调度方案。针对改造PSPLIB 中的单模式算例,遗传算法的求解效果相对较好,采用确定型多回合计算的效果要优于单优先规则下的同类启发式调度方法。
    基于单执行模式问题的研究,进一步讨论了多执行模式下的问题,其中,在进行活动调度的同时也要选择相应的执行模式,文中给出了考虑多模式调度的通用并行调度框架,并基于这个框架提出了两种调度策略:联合调度策略、两步调度策略。针对改造PSPLIB 中的多模式算例,虽然同类算法中在模式的选择时考虑了折衷的先序相关成本因素所得到的有效解数量略少,但得到的平均偏差却是最小的,而且活动-模式两步调度策略下得到的结果平均偏差小于活动-模式联合调度策略。
    工程供应链中可重用资源供应商是承包商最直接的合作伙伴,他们的资源能力对工程调度会产生相应的约束,可以基于资源受限工程调度进行工程中多可重用资源的合作伙伴选择。文中给出了问题的数学模型,讨论了问题规模约减的原理。基于问题特性,构造了遗传算法的求解框架,并进行了算例测试,结果表明,改进遗传算法求解此类问题能够获得较好的效果。在多资源供应商选择问题的基础上,随后构造的供应-执行两层工程供应链设计问题中加入了对作为工程执行层的承包商的选择因素,文中描述了的问题的数学模型,给出了其求解方法。
Construction supply chain management is a new area of construction project management and supply chain management. There is still no research on design of construction supply chain. In a construction supply chain where contractor is the kernel, design and operation of the chain is driven by project activity network where capacity of the partners such as specialized subcontractors, ready-mix concrete suppliers, raw material suppliers, will become a constraint to project scheduling. Therefore, resource-constraints from these partners and limitation on project duedate must be considered in design of construction supply chain so that the objective of minimizing activities’cost in project can be achieved. For the above, resource-constrained project scheduling with the objective of minimizing activities’cost will be discussed firstly based on which research on design of construction supply chain is going to be carried out.
    There is little attention paid to activities’cost of project in resource-constrained project scheduling problems(RCPSPs). When the objective of minimizing activities’cost is considered as the performance measure, the problem is also NP-hard and the objective is nonregular. A mathematical model is put forward for the cases the activities are executed in one execution mode and renewable resources are consumed. The basic thinking is analyzed for solution of the problems in heuristics and three approaches are developed: 1).Scheduling based on Preposing Acitivity Matrix where some rules are developed to form the matrix. 2).Priority-rule-based Scheduling that is updated to achieve the new objective on the basis of the old one for the RCPSPs with makespan objective and some priority rules are employed in the serial schema and the parallel schema. 3).Improved Genetic Algorithm where the schema of encoding is an activities’chain with precedence relationship and the decoding procedure is a serial scheduling schema. Computational Study with the single-mode instances in updated PSPLIB shows that the efficiency of the genetic algorithm proposed is the best and the results will become better when deterministic multi-pass approaches are used.
    The above research is extended to the cases activities have multiple possible execution modes in the following. In the new problems, the execution modes must be selected for the activities when they are scheduled. A general parallel schedule generation schema is
    proposed for multi-mode scheduling and two heuristic procedures are developed: united scheduling and two-step scheduling. Computational study with the multi-mode instances in updated PSPLIB shows that, when the factors about the compromised transitively relative cost is considered for selecting execution modes, a relatively fewer valid schedules will be got than the heuristics considering other factors in the same approach, but the average error is the minimal. Additionally, the average error of the heuristics with two-step scheduling is less than that of the heuristics with united scheduling. The renewable resources suppliers are the most immediate partners for contractor in construction supply chain and their capacities will form the constraints to project scheduling. That’s to say, when selecting these partners, the RCPSPs must be taken into account. The mathematical model for selecting these suppliers in construction project is proposed and the principle to reduce the solution space is discussed. Following that, a schema with GA to solve the problems is designed that is test by an example. The results show that a fine efficiency can be got with the improved GA. Whereafter, a problem about design of supply-execution construction supply chain is proposed, where one of candidate contractors should be selected to execute the construction project, and the representation of the problems and the approach for solution are all given. Suppliers selection is to solve the problems of designing supply chain in a local facet, but design of supply chain network is in the whole. Based on the analysis about the structure of construction supply chain network, integrated project scheduling and material ordering problems with limited capacities are proposed firstly where bilevel capacities about renewable resources and raw materials are all described. This type of problems can be decomposed to two types of problems: single-mode RCPSP with the objective of minimizing activities’cost(SMRCPSP-AC) and material ordering problem in a finite planning horizon with limited supply capacity(MOP-LSC), where the latter can be solved by dynamic programming. A feasible solution for the integrated problem may be got by searching a feasible solution for SMRCPSP-AC and then solving the relative MOP-LSC, and the optimal one will be found out in the set of feasible solutions for the integrated problem. A schema with improved GA is developed to solve the integrated problems. The numerical computation shows that the efficiency is fine when selection scheme is represented by stochastic tournament model with elitist preservation. This type of problems can be extended to design construction supply chain networks. To solve the proposed
    problems with GA, the schema of encoding is an integrated one including two segments where suppliers and activities are encoded by different schemas and the decoding procedures are processed separately after which, SMRCPSP-AC and MOP-LSC are formed and solved in turn to get a feasible solution of designing construction supply chain network. Different operators are used on the two segments in the chromosome. It can be concluded based on the computational study that this type of problems can be solved by using the above genetic algorithm.
引文
[1]. 王红卫, 马新安, 费奇. 大型工程物资供应组织中的合作伙伴选择. 计算机集成制造系统, 2001, 7(7):47-52
    [2]. 刘三女牙, 王红卫, 郭敏. 基于Agent 的大型水利工程物资供应链建模与仿真. 系统仿真学报, 2002, 14(5):656-660
    [3]. O'Brein W. J., Fischer M.A. Importance of Capacity Constraints to Construction Cost and Schedule. Journal of Construction Engineering and Management, 2000, 126(5):366-374
    [4]. Smith D. E., Smith V. L. Optimal Project Scheduling with Materials Ordering. IIE Transactions, 1987, 19(4):122-129
    [5]. Kolisch R., Padman R. An integrated survey of deterministic project scheduling. Omega, 2001, 29(3): 249-272
    [6]. LEE H L., Billington C. Material management in decentralized supply chains. Operations Research, 1993, 41(5): 835-847
    [7]. 杰伊?海泽, 巴里?雷德. 生产与运作管理. 北京: 华夏出版社, 1999
    [8]. 大卫?辛奇?科维. 供应链设计与管理—概念、战略与案例研究. 上海: 上海远东出版社, 2000
    [9]. Dickson G. An Analysis of Vendor Selection Systems and Decisions. Journal of Purchasing, 1996, 2:28-41
    [10]. Weber C. A., Current J. R., Benton W. C. Vendor selection criteria and methods. European Journal of Operational Research , 1991, 50(1):2-18
    [11]. Holt G. D. Which contractor selection methodology? International Journal of Project Management, 1998, 16(3):153-164
    [12]. Zeger D., Eva L., Filip R. An evaluation of vendor selection models from a total cost of ownership perspective. European Journal of Operational Research, 2000, 125(1):34-58
    [13]. Luitzen B., Eva L., Pierangela M. A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management , 2001, 7(2):75-89
    [14]. 刘晓, 李海越, 王成恩等. 供应商选择模型与方法综述. 中国管理科学, 2004, 12(1): 139-148
    [15]. Roodhooft F., Cohen M.A. Vender Selection and Evaluation: an Activity Based Costing Approach. European Journal of Operational Research, 1997, 96(1):97-102
    [16]. 汪定伟, 容启亮, 叶伟雄. 企业动态结盟中的伙伴挑选模型及其软计算方法. 中国科学(E 辑), 2002, 32(6):824-830
    [17]. Wang D., Ip W. H., Yung K. L. A heuristic genetic algorithm for subcontractor selection in a global manufacturing environment. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 2001, 31(2):189-198
    [18]. Ip W. H., Huang M., Yung K. L. et al. Genetic Algorithm for a risk-based partner Selection Problem in a Virtual Enterprise. Computers & Operations Research, 2002, 30(2):213-231
    [19]. Ronald H. B. Unresolved Issues in Supply Chain Network Design. Information Systems Frontiers, 2001, 3(4):417-426
    [20]. Weber A. Theory of the Location of Industries. Friedrich C. J. University of Chicago Press, Chicago, 1929
    [21]. Cooper L. Location-Allocation Problems. Operations Research, 1963, 11(3):331-344
    [22]. Murtagh B., Niwattisyawong S. An Efficient Method for the Multi-period Location-Allocation Problem. Journal of the Operations Research Society, 1982, 33:629-634
    [23]. Bongartz I. A projection method for norm location-allocation problems. Mathematical Programming, 1994, 66:283-312
    [24]. Rosing K. An optimal method for solving multi-weber problems. European Journal of Operational Research, 1992, 58(3):414-426
    [25]. Melkote S., Daskin M. S. Capacitated facility location/network design problems. European Journal of Operational Research, 2001, 129(3):481-495
    [26]. Owen, S. H., Daskin M. S. Strategic facility location: A review. European Journal of Operational Research, 1998, 111(3): 423-447
    [27]. Geoffrion A M., Graves G W. Multicommodity Distribution System Design by Benders Decom-position. Management science, 1974, 20(5):822-844
    [28]. Cohen M. A., Lee H. L. Manufacturing strategy concepts and methods. Kleindorfer P.R. The Management of Productivity and Technology in Manufacturing, 1985:153-188
    [29]. Brown G. G., Graves G. W. Honczarenko M. D. Design and Operation of a Multicommodity Production/Distribution System Using Primal Goal Decomposition. Management Science, 1987, 33(11): 1469-1480
    [30]. Van Roy T. J. Multi-level Production and Distribution Planning with Transportation Decision Fleet Optimization. Management Science, 1989, 35(12):1443-1453
    [31]. Hasan P., Vaidyanathan J. A Multi-Commodity, Multi-Plant, Capacitated Facility Location Problem: Formulation and Efficient Heuristic Solution. Computers and Operations Research,1998, 25(10):869-878
    [32]. Canel C., Basheer M. K., Law J. et al. An algorithm for the capacitated, multi-commodity multi-period facility location problem. Computers & Operations Research , 2001, 28 (5):411-427
    [33]. Arntzen B. C., Brown G. G., Harrison T. P. et al. Global supply Chain Management at Digital Equip-ment Corporation. Interfaces, 1995, 25(1):69-93
    [34]. Sabri E. H., Beamon B. M. A multi-objective approach to simultaneous strategic and operational planning in supply chain design. Omega, 2000, 28(5):581-598
    [35]. Admi S., Young S. Y., Mitsuo G.. Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Computers & Industry Engineering, 2002, 43(1-2):299-314
    [36]. Talluri S., Baker R.C. A multi-phase mathematical programming approach for effective supply chain design. European Journal of Operational Research, 2002, 141(3):544-55
    [37]. Dasci A., Verter V. A continuous model for production-distribution system design. European Journal of Operational Research, 2001, 129(2):287-298
    [38]. Alonso-Ayuso A., Escudero L.F., Garin A.. An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. Journal of Global Optimization , 2003, 26(1):97-124
    [39]. Santoso T., Ahmed S., Goetschalckx M.. A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 2005, 167(1):96-115
    [40]. Ballou R. H. 企业物流管理-供应链的规划、组织和控制. 王晓东, 胡瑞娟. 北京: 机械工业出版社, 2002
    [41]. Supply Chain Council. Supply-Chain Operations Reference model: overview of SCOR version 5.0. http://www.supply-chain.org, 2003.2
    [42]. Ruben V., Koskela L.. The four roles of supply chain management in construction. European Journal of Purchasing & Supply Management, 2000, 6(3-4):169-178
    [43]. 贺恭.三峡工程物资供应管理专辑-序.中国三峡建设, 2000, 10(增刊):I
    [44]. Bertelsen S. Construction logistics I and II, materials-management in the construction process(in Danish). Boligministeriet, Bygge-og Boligstyrelsen, K?benhavn, 1993
    [45]. O’Brien W. J. Construction Supply-Chain Management: A Vision for Advanced Coordination, Costing, and Control. NSF Berkeley-Stanford Construction Research Workshop, Stanford University, California, 1999.8
    [46]. Koskela, L. Application of the New Production Philosophy to Construction(Tech.Report 72). CIFE, Stanford University, California, 1992.9
    [47]. O’Brien W. J., Fischer M. A. Construction supply-chain management: a research framework. Proceedings of CIVIL-COMP-'93, Information Technology for Civil and Structural Engineers, The Third International Conference on the Application of Artificial Intelligence to Civil and Structural Engineers. Edinburgh, Scotland, 1993.8:61-64
    [48]. London K.A., Kenley R. Client’s role in construction supply chain network management: a theoretical model. Proceeding CIB W55&W65, 1999
    [49]. 刘振元, 王红卫, 余明晖. 供应链研究的新领域-工程供应链管理. 华中科技大学学报(城市科学版), 2004, 21(2):27-30
    [50]. Geoffrey B., Dainty R. J., Millett S. Construction supply chain partnerships: skills, knowledge and attitudinal requirements. European Journal of Purchasing &Supply Management, 2001, 7(4):243-255
    [51]. Dainty R. J., Geoffrey B., Millett S. New perspectives on construction supply chain integration. Supply Chain Management: An International Journal, 2001, 6(4):163-173
    [52]. O’Brien W. J. Capacity Costing Approaches for Construction Supply-Chain Management, Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, 1998
    [53]. O’Brien W. J. Multi-Project Resource Allocation: Parametric Models and Managerial Implications. Proceedings IGLC-8, 2000
    [54]. O’Brien W. J., London K., Ruben V.. Construction supply chain modeling: a research view and interdisciplinary research agenda. Proceedings IGLC-10, Gramado, Brazil, 2002
    [55]. O’Brien W. J. A Call for Cost and Reference Models for Construction Supply Chains. Conference Theme for Supply Chain Management in International Group of Lean Construction 11th Annual Conference, 2002
    [56]. Tommelein I. D., Li A. Yi. Just-In-Time Concrete Delivery: Mapping Alternatives for Vertical Supply Chain Integration. Proceedings IGLC-7, 1999:97-108
    [57]. Tommelein I. D., Weissenberger M. More Just-In-Time Location of Buffers in Structural Steel Supply and Construction Processes. Proceedings IGLC-7, 1999:109-120
    [58]. Arbulu R. J., Tommelein I. D. Alternative Supply-Chain Configurations for Engineered or Catalogued Made-to-Order Components: case study on pipe supports used in power plants. Proceedings IGLC-10, Gramado, Brazil, 2002
    [59]. Arbulu R. J., Tommelein I. D. Contributors to lead time in construction supply chains: the case of pipe supports used in power plants. Yücesan E., Chen C.-H., Snowdon J. L.et al. Proceedings of the 2002 Winter Simulation Conference, 2002:1745-1751
    [60]. Arbulu R. J., Tommelein I. D. Value Stream Analysis Of Construction Supply Chains case study on pipe supports used in power plants. Proceedings IGLC-10, Gramado, Brazil, 2002
    [61]. Construction Industry Institute. Capital Projects Supply Chain Management. Conference Proceedings of 2002 Annual Conference, 2002:63-70
    [62]. London K., Kenley R., Agapiou A. The impact of construction industry structure on supply chain network modelling. Proceedings Lean Research Network Conference, Cranfield, 1998
    [63]. London K. Russell, Andrew A. Theoretical supply chain network modelling in the building industry. in Association of Researchers in Construction Management (ARCOM). Reading, UK: ARCOM, 1998
    [64]. Caron F., Marchet G., Perego A. Project logistics: integrating the procurement and construction processes. International Journal of Project Management, 1998, 16(5):311-319
    [65]. Ruben V., Koskela L., Howell G. Understanding construction supply chain: an alternative interpretation. Proceedings IGLC-9, Singapore, 2001
    [66]. Donselaar K., Kopczak L. R.et al. The use of advance demand information in a project-based supply chain. European Journal of Operational Research, 2001, 130(3):516-538
    [67]. Elazouni A. M., Metwally F. G. D-SUB: Decision support system for subcontracting construction works. Journal of Construction Engineering and Management, 2000, 126(3):191-200
    [68]. Tserng H. P., Lin P. H. An accelerated subcontracting and procuring model for construction projects. Automation in Construction, 2002, 11(1):105–125
    [69]. Julio Y. S., Francisco F. C. Subcontracting and Cooperation Network in Building Construction: a literature review. Proceedings IGLC-10, Gramado, Brazil, 2002
    [70]. Jung U. M., Hans C. B. Agent-based supply chain management automation. The 2nd worldwide European Council of Civil Engineering Symposium, Espoo, Finland, 2001:6-8
    [71]. Kim K., Paulson B. C.,Charles Jr. Agent based electronic Markets for Project supply chain coordination. KBEM’00(Knowledge based Electronic Markets, a AAA’00 workshop), Austin,Tx,USA, 2000
    [72]. Taylor J., Bjornsson H. Construction Supply Chain Improvements Through Internet Pooled Procurement. Proceedings IGLC-7, 1999:207-218
    [73]. John Taylor, Hans Bjornsson. Identification and Classification of Value Drivers for a New Production Homebuilding Supply Chain. Proceedings IGLC-10, Gramado, Brazil, 2002.8
    [74]. 刘振元, 王红卫, 甘邯. 工程项目集成管理与工程供应链. 武汉理工大学学报(综合版)(待刊)
    [75]. 唐国春, 张峰, 罗守成. 现代排序论. 上海:上海科学普及出版社, 2003
    [76]. HSU Ch. Cheng. New Heuristics for the Multi-Mode Resource Investment Problem. Ph.D. Dissertation, University of Massachusets Amherst, 2001
    [77]. Davis E.,patterson J. A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling. Management Science, 1975, 21(8):944-955
    [78]. Cooper D. Heuristics for Scheduling Resource-Constrained Projects: an Experimental Investigation. Management Science, 1976, 22(11):1186-1194
    [79]. Christofides N., Alvarez-Valdes R., Tamarit J.M. Project Scheduling with Resource Constraints: a Branch and Bound Approach. European Journal of Operational Research, 1987, 29(3):262-273
    [80]. Weglarz J. Control in Resource Allocation Systems. Foundation Control Engineering, 1980, 5(3):159-180
    [81]. S?owiński R. Multi-objective Network Scheduling with Efficient Use of Renewable and Nonrenewable Resources. European Journal of Operational Research, 1981,7(3):265-273
    [82]. Talbot B. Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: the Non-Preemptive Case. Management Science, 1982, 28(10):1197-1210
    [83]. 齐东海, 宋向群. 工程项目进度管理. 大连:大连理工大学出版社, 1999
    [84]. Elmaphraby S. E. Activities Networks: Project Planning and Control by Network Models. New York: John Wiley & Sons, 1977
    [85]. Carruthers J. A, Battersby A. Advances in critical path methods. Operational Research Quarterly 1966, 17(4):359-380
    [86]. Kaplan L. A. Resource-Constrained Project Scheduling with Setup Times. Unpublished Paper, Department of Management, University of Tennessee, 1988
    [87]. Pritsker A., Watters L., Wolfe P. Multi-Project Scheduling with Limited Resources: a Zero-One Programming Approach. Management Science, 1969, 16(1):93-109
    [88]. Patterson J., Walter H. A Horizon-Varying Zero-One Approach to Project Scheduling. Management Science, 1974, 20(6):990-998
    [89]. Patterson J. H., Roth G. W. Scheduling a project under multiple resource constraints: a zero-one programming approach. AIIE Transactions, 1976, 8:449-455
    [90]. Stinson J. P. A branch and bound algorithm for a general class of multiple resource-constrained scheduling problems. Ph.D. thesis, Graduate School of Business Administration, University of North Carolina, 1976
    [91]. Johnson T. J. R. An algorithm for the resource-constrained project scheduling problem. Ph.D. thesis, Massachusets Institute of Technology, 1967
    [92]. Schrage L. Solving resource-constrained network problems by implicit enumeration non-preemptive case. Operations Research, 1970, 18(2):263-278
    [93]. Patterson J. H. Computational Experience with A Backtracking Algorithm for Solving A General Class of Precedence and Resource-Constrained Scheduling Problems. European Journal of Operational Research, 1990, 49(1):68-79
    [94]. Demeulemeester E., Herroelen W. branch and bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 1992, 38(12):1803-1818
    [95]. Demeulemeester E., Herroelen W. New benchmark results for the resource-constrained project scheduling problem. Management Science, 1997, 43(11):1485-1492
    [96]. Mingozzi A., Maniezzo V., Ricciardelli S.et al. An exact algorithm for project scheduling with resource constraints based on a new mathematical formulation. Management Science,1998,44(5): 714–729
    [97]. Bell C., Park K. Solving the Resource Constrained Project Scheduling Problem by A* Search. Naval Research Logistics, 1990, 37:61-84
    [98]. Bell C., Han J. A New Heuristic Solution Method in Resource-Constrained Project Scheduling. Naval Research Logistics, 1991, 38:315-331
    [99]. Brucker P., Knust S., Schoo A.et al. A Branch and Bound Algorithm for the Resource-Constrained Project Scheduling Problem. European Journal of Operational Research, 1998, 107(2):272-288
    [100]. Jirachai B. Multi-mode resource-constrained project scheduling problem with resource vacations and task splitting. Ph.D. dissertation, Oregon State University, 2003
    [101]. Kolisch R. Serial and parallel resource-constrained project scheduling methods revisited-Theory and computation. European Journal of Operational Research, 1996, 90(2):320-333
    [102]. Kelley J. E. The Critical-path Method: Resources Planning and Scheduling. Muth J. F., Thompson G. L. Industrial Scheduling. Prentice-Hall, New Jersy, 1963:347-365
    [103]. Bedworth D. D., Bailey J. E. Integrated Production Control Systems-Management, Analysis, Design. Wiley, New York, 1982
    [104]. Kolisch R. Efficient Prior Rules for the Resource-Constrained Project Scheduling Problem. Journal of Operations Management, 1996, 14(3):179-192
    [105]. 白思俊. 资源有限的网络计划与启发式优化方法及其评价与选择. 中国管理科学,1993, 1(2):30-38
    [106]. Hartmann S. A. Competitive Genetic Algorithm for Resource-Constrained Project scheduling. Naval Research Logistics, 1998, 45:733-750
    [107]. 刘士新. 资源受限工程调度问题的优化方法研究. 东北大学博士学位论文, 2001
    [108]. Lee J. K., Kim Y. D. Search heuristics for resource constrained project scheduling. Journal of the Operational Research Society, 1996, 47(3):678-689
    [109]. Ozdamar L. A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on System, Man and Cybernetics, 1999, 29(1):44-59
    [110]. Hindi K. S., Yang H., Fleszar K. An Evolutionary Algorithm for Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation, 2002, 6(5):512-518
    [111]. Cho J. H, Kim Y. D. A simulated annealing algorithm for resource constrained project scheduling problem. Journal of the Operational Research Society, 1997, 48(7):736-744
    [112]. Merkle D., Middendorf M., Schmeck H.. Ant Colony Optimization for Resource-Constrained Project Scheduling. IEEE Transactions on Evolutionary Computation, 2002, 6(4):333-346
    [113]. Zhang H., Li X. D., Li H. Particle Swarm Optimization-based Schemes for Resource-Constrained Project Scheduling. Automation in Construction, 2005, 14(3):393-404
    [114]. Russell A. H. Cash Flows in Networks. Management Science, 1970, 16(5):357-373
    [115]. Doersch R. H, Patterson J. H. Scheduling a project to maximize its present value: a zero–one programming approach. Management Science, 1977, 23(8):882-889
    [116]. Herroelen W., Dommelen V. P., Demeulemeester E.et al. Project network models with discounted cash Flows-a guided tour through recent developments. European Journal of Operational Research, 1997, 100(1):97-121
    [117]. Dayanand N. Scheduling payments in projects: an optimization based approach. Ph.D. thesis, The Heinz School, Carnegie Mellon University, Pittsburgh, 1996
    [118]. Dayanand N, Padman R. On modeling payments in project networks. Journal of the Operational Research Society, 1997, 48(9):906-918
    [119]. Dayanand N, Padman R. Project contracts and payment schedules: the client’s problem. Management Science, 2001, 47(12):1654-1667
    [120]. Vanhoucke M., Demeulemeester E., Herroelen W. Progress payments in project scheduling problems. European Journal of Operational Research, 2003, 148(3):604-620
    [121]. Fulkerson D. R. A network flow computation for project cost curves. Management Science, 1961, 7(2):167-178
    [122]. Kelley J. E. Critical-path planning and scheduling: mathematical basis. Operations Research, 1961, 9(3):296-321
    [123]. De P., Dunne J., Ghosh J.et al. The discrete time-cost tradeoff problem revisited. European Journal of Operational Research, 1995, 81(2):225-238
    [124]. De P., Dunne J., Ghosh J.et al. Complexity of the discrete time-cost tradeoff problem for project networks. Operations Research, 1997,45(2):302-306
    [125]. Demeulemeester E., Herroelen W., Elmaghraby S. E. Optimal procedures for the discrete time/cost trade-off problem in project networks. European Journal of Operational Research, 1996, 88(1): 50-68
    [126]. Ahn T., Erenguc S. S. The resource constrained project scheduling problem with multiple crashable modes: a heuristic procedure. European Journal of Operational Research, 1998, 107(2):250-259
    [127]. M?hring R. H. Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 1984, 32(1):89-120
    [128]. Demeulemeester E. Minimizing resource availability costs in time-limited project networks. Management Science, 1995, 41(10):1590-1598
    [129]. Neumann K., Zimmermann J. Resource Leveling for Projects with Schedule-Dependent Time Windows. European Journal of Operational Research, 1999, 117(2):591-605
    [130]. Icmeli O., Rom W. Ensuring quality in resource constrained project scheduling. European Journal of Operational Research, 1997, 103(3):483-496
    [131]. Icmeli O., Rom W. Analysis of the characteristics of projects in diverse industries. Journal of Operations Management,1998,16(1):43-61
    [132]. Aquilano N. J., Smith D. E. A formal set of algorithms for project scheduling with critical path-material requirements planning. Journal of Operations Management, 1980, 1(2):57-67
    [133]. Smith D. E., Aquilano N. J. Constrained resource project scheduling subject to material constraints. Journal of Operations Management, 1984, 4(4):369-388
    [134]. Dodin B., Elimam A. A. Integrated project scheduling and material planning with variable activity duration and rewards. IIE Transactions, 2001, 33(11):1005-1018
    [135]. Leu S. S., Chen A. T., Yang Ch. H. Fuzzy Optimal Model fot Resource-Constrained Construction Scheduling. Journal of Computing in Civil Engineering, 1999, 13(3):207-216
    [136]. Wang J. A fuzzy project scheduling approach to minimize schedule risk for product development. Fuzzy Sets and Systems, 2002, 127(2):99-116
    [137]. Choi J., Realff M. J.,Lee J. H. Dynamic programming in a heuristically confined state space-a stochastic resource-constrained project scheduling application. Computers and Chemical Engineering, 2004, 28(6-7):1039-1058
    [138]. Davis E. W. An exact algorithm for the multiple constrained project scheduling problem. Ph.D. thesis, Yale University, 1969
    [139]. Patterson J. H. A comparison of exact approaches for solving the multiple constrained resource project scheduling problem. Management Science, 1984, 30(7):854-867
    [140]. Alvarez-Valdés R., Tamarit J. M. Heuristic algorithms for resource-constrained project scheduling: a review and an empirical analysis. S?owiński R., W?glarz J. Advances in project scheduling. Amsterdam, Elsevier, 1989:113-134
    [141]. Kolisch R., Sprecher A. PSPLIB-A Project Scheduling Problem Library. European Journal of Operational Research, 1996, 96(1):205-216
    [142]. Bottcher J., Drexl A., Kolisch R. Project Scheduling Under Partially Renewable Resource Constraints. Management Science, 1999, 45(4):543-559
    [143]. Brucker P., Drexl A., M?hring R. Resource-constrained project scheduling Notation, classification, models, and methods. European Journal of Operational Research, 1999, 112(1):3-41
    [144]. Herroelen W., Demeulemeester E., De Reyck B. A Classification Scheme for Project Scheduling. Welglarz J. Project Scheduling: Recent Models, Algorithms, and Applications, 1999:1-26
    [145]. Sprecher A., Kolisch R., Drexl A. Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research, 1995, 80(1):94-102
    [146]. Blazewicz, J., Lenstra, J.K., Rinnooy Kan A.H.G. Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 1983, 5(1):11-24
    [147]. 刘士新, 王梦光, 唐加福. 资源受限工程调度问题的优化方法综述. 控制与决策, 2001, 16(增刊):647-651
    [148]. Kolisch R., Sprecher A., Drexl A. Characterization and generation of a general class of resource-constrained project scheduling. Management Science, 1995, 41(10):1693-1703
    [149]. 卢开澄, 谭明术. 计算机算法设计与分析. 北京: 中国铁道出版社, 1998.9
    [150]. Holland J. H. Adaptation in Nature and Artificial Systems. MIT Press, 1992
    [151]. De Jong K A. An analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Dissertation, University of Michigan, 1975
    [152]. Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, 1989
    [153]. 周明,孙树栋. 遗传算法原理及应用. 北京:国防工业出版社, 1999
    [154]. Kolisch R., Drexl A. Local Search for Nonpreemptive Multi-Mode Resource-Constrained Project Scheduling. IIE Transaction, 1997, 29(11):987-999
    [155]. Boctor F. F. Heuristics for Scheduling Projects with Resource Restrictions and Several Resource-Duration Modes. International Journal of Production Research, 1993, 31(11):2547-2558
    [156]. Cheng R., Gen M. Evolution Program for Resource-Constrained Project Scheduling Problem. Proceeding of the First IEEE Conference on Evolutionary Computation. IEEE Press, Orlando, FL, 1994:736-741
    [157]. Naief T. I. A Comparative Evalution of Construction and Manufacturing Materials Management. International Journal of Project Management, 2002, 20(4):263-270
    [158]. Peterson R., Silver E. A. Decision Systems for Inventory Management and Production Planning. John Wiley & Sons, New York, 1985
    [159]. Wagner H. M., Whitin T. M. Dynamic Version of the Economic Lot Size Model. Management Science, 1958, 5(1):89-96

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700