三维空间关系的描述及其定性推理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间关系主要包括拓扑关系、方向关系、距离关系等3类,是GIS学科中的重要理论问题之一。它们的研究内容又可细分为空间关系描述和空间关系推理。以往的研究集中在二维空间关系的描述和推理上,而对三维空间关系方面的研究甚少。本文针对三维空间关系理论开展研究。
     (1)拓扑关系的描述和推理。采用单纯形数据模型,用九交矩阵工具详细地研究了三维空间中点(0-单纯形)、线(1-单纯形)、面(2-单纯形)和体(3-单纯形)间的拓扑关系,获得了九交矩阵所对应的几何图形。用集合论研究了拓扑关系的定性推理,得到了组合推理表。(2)方向关系的描述和推理。建立了三维空间方向关系的描述模型,并对单方向关系的推理进行了详细研究,导出了组合推理表,给出了单方向关系的推理规律。(3)距离关系的描述和推理。建立了三维空间距离关系的定性描述系统,引入了区间数工具,根据区间数的运算以及定性距离满足的三个约束条件,导出了在不同情况下定性距离推理结果的通项公式。给出了二元关系“>>”的定义,并分析了“>>”的含义。(4)混合空间关系定性推理。在二维空间中,分析了利用Allen区间关系对方法分别描述方向区域和常用的8大拓扑关系(disjoint,meet,overlap,cover,coveredby,contain,inside,equal)的不足,并改进了现有的方法。此外,探讨了如何由方向关系推导拓扑关系问题,得到了相应的组合推理表。在三维空间中,用Allen区间关系对方法分别描述了方向区域和常用的8大拓扑关系,导出了方向关系的推理规律,并给出了方向关系和拓扑关系之间的组合推理表。(5)综合拓扑方向关系描述和推理。针对二维空间中现有拓扑方向关系描述模型的不足,改进了现有模型。在三维空间中,建立了拓扑方向关系的描述模型。根据拓扑关系的不同,分别在二维、三维空间中研究了拓扑方向关系的定性推理,给出了拓扑关系为disjoint和meet时拓扑方向关系的组合推理表。(6)位置关系定性描述和推理。分别在二维、三维空间中,采用基于投影的方向关系建立了位置关系定性描述模型。如,根据目标对象B与参照物A的位置关系和目标对象C与参照物B的位置关系,导出了C与参照物A的位置关系公式。根据位置关系公式,进一步研究了位置关系的定性推理,并用MATLAB语言模拟了位置关系的定性推理。
Spatial relations, including topological, directional and distance relations, have been recognized as one of the fundamental research themes in the field of Geographic Information System (GIS). For research convenience, each of the three spatial relations can further be divided into the representation and reasoning of spatial relations. Previous studies focused on the representation and reasoning of spatial relations in the two-dimensional (2D) space. Progress on similar studies in the three-dimensional (3D) space has been very limited, however. This dissertation is an investigation of the theory of spatial relations in the 3D space.
     First, topological relations among 0-simplex, 1-simplex, 2-simplex and 3-simplex in 3Dspace were studied with the 9-intersection matrix model in the basis of the simplex datamodel. The geometric interpretations toward these relations were also provided. Based on thesets theory, the qualitative reasoning of topological relations was investigated, and thereasoning results were presented in the form of composition tables. Second, the representationmodels of directional relations were built in 3D space. The reasoning of a single directionrelation was specifically studied to derive the composition tables and to explore the laws ofsingle direction relation reasoning. Third, a framework for the representation of qualitativedistance in 3D space was proposed. The concept of interval number was introduced and theoperations of the interval number were defined to derive the universal formulae for the resultsof qualitative distance reasoning under the three constraints of qualitative distance. Thedefinition of binary relation >> was provided and discussed. Fourth, the limitations to usethe Allen's interval relation pair in describing the directional regions and the commonly-used8 topological relations (disjoint, meet, overlap, cover, coveredby, contain, inside, equal) in 2Dspace were analyzed and refined. The topological relations were reasoned from the directionalrelations and the results were shown in composition tables. The directional regions and thecommonly-used 8 topological relations in 3D space were described using the Allen's intervalrelation pair. The qualitative reasoning laws of the directional relations in 3D space wereexplored with the theory of interval relation pair. The mixed reasoning between the directionaland topological relations was studied, and the results were presented in combined tables. The representation models of the topological and directional relations in 2D space were first analyzed, and then an improved model was put forward to describe the mixed relations. The description model of the integrated topological and directional relations in 3D space was also developed and the directional regions described by the interval pair were analyzed. The qualitative reasoning of integrated topological and directional relations was studied according to the different topological relations, and the combined tables of the integrated topological and directional relations were obtained when the topological relations were disjoint or meet in 2D and 3D space. The description model of integrated qualitative distance and directional relations was built with the project-based method in 2D- and 3D space, respectively. Fro example, the formulae of the positional relations between the primary object C and the reference object A was derived from the positional relations between the primary object B and the reference object A as well as the positional relations between the primary object C and the reference object B. The qualitative reasoning of the position relations was studied using positional relation equations and was simulated in 2D- and 3D- space with MATLAB programming language, respectively.
引文
[1] Abdelmoty AI, Williams HM. Approaches to the representation of qualitative spatial relation-ships for geographic databases [A]. In: Advanced Geo-graphic Data Modeling: Spatial Data Modeling and Query Language for 2D and 3D applications, 1994, pp.204-216.
    
    [2] Abdelmoty AI, EI-Geresy BA. A general approach to the representation of spatial relationships [R]. Technical report CS-95-6, Dept. of Computer Studies, University of Glamorgan, Wales, 1995.
    [3] Agrawal R, Imielinski T and Swami A. Mining association rules between sets of items in large databases [A]. In: Proc.1993 ACM-SIGMOD Int. Conf. Management of Data, Washington, D.C., May 1993, pp.207-216.
    [4] Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. In: Proc. 1994 Int. Conf. VLDB, Santiago, Chile, Sept. 1994, pp.487-499.
    [5] Allen JF. Maintaining knowledge about temporal intervals [J]. Communications of the ACM, 1983, 26(11):832-843.
    [6] Altaian D. Fuzzy set theoretic approaches for handling imprecision in spatial analysis [J]. International Journal of Geographical Information Systems, 1994, 8(3):271-289.
    [7] Armstrong MA. 孙以丰译.基础拓扑学[M].北京:北京大学出版社,1997.
    [8] Beauboef T, Ladner R, Petry F. Rough set spatial data modeling for data mining [J]. International Journal of Intelligent Systems, 2004,19:567-584.
    [9] Bennett B. Logical representations for automated reasoning about spatial relationships [D]. Ph. D. Thesis. School of Computer Studies, University of Leeds, 1997.
    [10] Bennett B. Logics for topological reasoning [R]. ESSLLI Summer School, University of Birmingham, Leeds, 2000.
    
    [11] Bjorke JT. Topological relations between fuzzy regions: derivation of verbal terms [J]. Fuzzy Sets and Systems, 2004,141:449-469.
    
    [12] Briggs R. On the relationship between cognitive and objective distance [A]. In: Preiser WFE. Ed. Environmental design research. Stroudsburg, PA Dooden, Hutchinson and Ross, 1973a, pp.186-192.
    [13] Briggs R. Urban cognitive distance [A]. In: Downs RM and Stea D. Eds. Image and Environment. Chichago, Aldine Publishing Company, 1973b, pp.361-388.
    [14] Brinkhoff T, Kriegel HP and Schneider R. Comparison of approximations of complex objects used for approximation-based query processing in spatial database systems [A]. Ninth International Conference on Data Engineering, Vienna, IEEE Press, 1993, pp.81-90.
    [15] Cadwallader MT. Problems in cognitive distance implications for cognitive mapping [J]. Environment and Behavior, 1979, 11(4):559-576.
    
    [16] Canter D, Tagg SK. Distance estimation in cities [J]. Environment and Behavior, 1975, 7(1):59-80.
    [17] Chang K-T. Introduction to geographic information systems [M]. The McGraw-Hill Companies, Inc., 2002.
    
    [18] Chang SK. Elements of a visual language [J]. IEEE Software Magazine, 1987, 4(1):29-39.
    [19] Chang SK, Shi QY, Yan CW. Iconic indexing by 2-D strings [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1987, PAMI-9 (3): 413-427.
    [20] Chang SK, Li Y. Representation of multi-resolution symbolic and binary pictures using 2DH strings [A]. In: Proc, of IEEE Workshop on Language for Automation, 1988, pp.190-195.
    [21] Chang SK, Jungert E, Li Y. Presentation and retrieval of symbolic pictures using generalized 2D strings [A]. Proceeding of SPIE visual communications and image processing conference, 1989.
    [22] Chang SK, Jungert E, Li Y. The design of pictorial databases based upon the theory of symbolic projection design and implementation of large spatial databases [A]. First Symposium SSD'89, Santa Barbara, California, Lecture Notes in Computer Science, No.409, Berlin: Springer-Verlag, 1989, pp.303-323.
    
    [23] Chellas BF. Modal logic: an introduction [M]. Cambridge University Press, 1980.
    [24] Chen J, Jiang J. An event-based approach to spatial-temporal data modeling in land subdivision systems [J]. Geoinformatical, 2000, 4(4):387-402.
    [25] Chen J, Li CM, Li ZL, Gold CM. A Voronoi-based 9-intersection model for spatial relations [J]. International Journal of Geophysical Information Sciences, 2001,15(3): 201-220.
    [26] Christopher BJ. Map generalization with a triangulated data structure [J]. Cartography and Geographic Information systems, 1995, 22(4):317-331.
    [27] Clarke BL. A calculus of individuals based on 'connection' [J]. Notre Dame Journal of Formal Logic, 1981, 23(3):204-218.
    
    [28] Clarke BL. Individuals and points [J]. Notre Dame Journal of Formal Logic, 1985,26(1):61-75.
    [29] Clementini E, Di Felice P, van Oosterom P. A small set of formal topological relationships suitable for end-user interaction [A]. In: Abel D, Ooi BC. Eds. Proc. 3rd International symposium on large spatial Database, Lecture Notes in Computer Science no.692, Singapore, Springer-Verlag, June 1993, pp.277-295.
    [30] Clementini C, Sharma J, Egenhofer MJ. Modeling topological spatial relations strategies for query processing [J]. Coput. & Graphics, 1994,18(6):815-822.
    [31] Clementini E, Di Felice P. A comparison of methods for representing topological relationships [J]. Information Sciences, 1995, 3:149-178.
    [32] Clementini E, Di Felice P, Califano G Composite regions in topological queries [J]. Information Systems, 1995, 20(7):579-594..
    [33] Clementini E, Di Felice P. A model for representing topological relationships between complex geometric features in spatial databases [J]. Information Sciences, 1996, 90:121-136.
    [34] Clementini E, Di Felice P, Hernandez D. Qualitative representation of positional information [J]. Artificial Intelligence, 1997, 95:317-356.
    [35] Clementini E, Di Felice P. Approximate topological relations [J]. International Journal of Approximate Reasoning, 1997,16:173-204.
    [36] Clementini E, Di Felice P. Topological invariants for lines [J]. IEEE Transactions on Knowledge and Data Engineering, 1998, 10(1):38-54.
    [37] Clementini E, Di Felice P, Koperski K. Mining multiple-level spatial association rules for objects with a broad boundary [J]. Data & Knowledge engineering, 2000, 34:251-270.
    [38] Clementini E, Di Felice P. A spatial model for complex objects with a broad boundary supporting queries on uncertain data [J]. Data and Knowledge Engineering, 2001, 37:285-305.
    [39] Clementini C. A model for uncertain lines [J]. Journal of Visual Languages and Computing, 2005, 16:271-288.
    [40] Cohn AG, Randell DA, Cui Z. Taxonomies of logically defined qualitative spatial relations [J]. Internat. J. Human-Comput. Stud., 1995, 43(5-6):831-846.
    [41] Cohn AG, Bennet T, Gooday J, Gotts NM. Qualitative spatial representation and reasoning with the region connection calculus [J]. Geoinformatical, 1997, 1:275-316.
    [42] Couclelis H. Towards an operational typology of geographic entities with ill-defined boundaries [A]. In: Burrough PA, Frank AU. Eds. Geographic objects with indeterminate boundaries, Taylor and Francis, London, 1996, pp.45-56.
    [43] Cui Z, Cohn AG, Randell DA. Qualitative simulation based on a logical formalism of space and time [A]. Proceedings AAAI-92,AAAI Press, Menlo Park, California, 1992, pp.679-684.
    [44] Cui Z, Cohn AG, Randell DA. Qualitative and topological relationships in spatial databases [A]. In: Abel DJ, Ooi BC. Eds. Third International Symposium on Advances in Spatial Database, SSD'93, lecture notes in computer science, Springer, Singapore, 1993,692:296-315.
    [45] Down RM, Stea D. Cognitive maps and spatial behavior: process and products [A]. In: Downs RM, Stea D. Eds. Image and environment: cognitive mapping and spatial behavior, Aldine, Chicago, IL, 1973, pp.8-26.
    [46] Dubois D, Jaulent M-C. A general approach to parameter evaluation in fuzzy digital pictures [J]. Pattern Recognition Letters, 1987, 6:251-259.
    [47] Dutta S. Qualitative spatial reasoning: a semi-quantitative approach using fuzzy logic [A]. In: Buchmann A, Guther O, Smith TR, Wang YF. Eds. Symposium on the Design and Implementation of Large Spatial Databases, Lecture Notes in Computer Science, Vol.409, Springer-Verlag, New York, 1989, pp.345-364.
    [48] Dutta S. Approximate reasoning with temporal and spatial concepts [R]. Dept. of Computer Science, University of California at Berkeley, 1989.
    [49] Dutta S. Approximate spatial reasoning: integrating qualitative and quantitative constraints [J]. International Journal of Approximate Reasoning, 1991, 5:307-331.
    [50] Egenhofer MJ, Franzosa RD. Point-set topological spatial relations [J]. Internat. J. Geographical Inform. Systems, 1991,5(2):161-174.
    [51] Egenhofer MJ, Herring JR. Categorizing binary topological relationships between regions, lines, and points in geographic databases [R]. Technical Report, Department of surveying engineer, University of Maine, Orono, ME, 1991.
    [52] Egenhofer MJ, AI-Taha K. Reasoning about gradual change of changes of topological relationships [A]. In: Frank AU, Campari I, Formentini U. Eds. Theories and Models of Spatio-temporal Reasoning in Geographic Space, Lecture Notes in Computer Science, Springer, Berlin, 1992,639:196-219.
    [53] Egenhofer MJ. A model for detailed binary topological relationships [J]. Geomatica, 1993, 47(3&4):261-273.
    [54] Egenhofer MJ. Deriving the composition of binary topological relations [J]. Journal of Visual Languages and Computing, 1994, 5(2):133-149.
    [55] Egenhofer MJ. Pre-processing queries with spatial constrains [J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(6):783-970.
    
    [56] Egenhofer MJ. Pre-processing Queries with Spatial Constraints [J]. PE&RS, 1994, 60(6):783-970.
    [57] Egenhofer MJ, Franzosa RD. On the equivalence of topological relations [J]. International Journal of Geographic Information Systems, 1995, 9(2):133-152.
    [58] Forbus KD, Nielsen P, Fallings B. Qualitative spatial reasoning: the clock project [J]. Artificial Intelligence, 1991, 51:417-471.
    [59] Frank AU. Qualitative spatial reasoning about distances and directions in geographic space [J]. Journal of Visual Languages and Computing, 1992, 3:343-371.
    [60] Frank AU. Qualitative spatial reasoning: cardinal direction as an example [J]. International Journal of Geographic Information Systems, 1996,10(3):269-290.
    [61] Franz A. Voronoi diagram: a survey of a fundamental geometric data structure [J]. ACM computing surveys, 1991, 23(3):345-405.
    
    [62] Freksa C. Temporal reasoning based on semi-intervals [J]. Artificial Intelligence, 1992,54:199-227.
    [63] Freksa C, Rohrig R. Dimensions of qualitative spatial reasoning [R]. Technical report, University of Hamburg, Dept. of Computer Science, Germany, 1993.
    [64] Garling T, Book A, Lindberg E, Arce C. Evidence of response-bias explanation of non-Euclidean cognitive maps [J]. Professional Geographer, 1991, 43(2): 143-149.
    
    [65] Gatrell AC. Distance and space: a geographical perspective [M]. Oxford, Clarendon Press, 1983.
    [66] Goodchild MF, Gopal S. The accuracy of spatial databases [MJ. Taylor and Francis, Basingstoke, 1990.
    [67] Goodchild MF. Future directions for geographic information science [J]. Geographic Information Science, 1995, 1(1):1-7.
    [68] Gore A. The digital earth: understanding our planet in the 21th Century [R]. The Lecture Note on the Science Center of California, 1998.
    [69] Goyal R. Similarity assessment for cardinal directions between extended spatial objects [D]. Ph. D. Thesis. Dept. of Spatial Information Science and Engineering, the University of Maine, ME, 2000.
    [70] Goyal R, Egenhofer MJ. Similarity of cardinal directions [A]. In: Jensen C, Schneider M, Seeger B, Tsotras V. Eds. Seventh international symposium on spatial and temporal database. Los Angeles, CA, lecture notes in computer science, 2121, Springer-Verlag, 2001:36-55.
    [71] Guesgen HW. Spatial reasoning based on Allen's temporal logic [R]. Technical Report TR-89-049, International Computer Science Institute, Berkeley, CA, 1989.
    
    [72] Hajeck P. Metamathematics of fuzzy logic [M]. Kluwer Academic Publishers, London, 1998.
    [73] Han J, Fu Y. Discovery of multiple-level association rule from large databases [A]. In: Proceedings of the International Conference on Very Large Databases, 1995, pp.20-31.
    [74] Herndndez D. Relative representation of spatial knowledge: the 2-D case [A]. In: Mark DM, Frank AU. Eds. Cognitive and Linguistic Aspects of Geographic Space, 1990, pp.373-385.
    [75] Herndndez D. Qualitative representation of spatial knowledge [A]. Lecture Notes in Artificial Intelligence 804, Springer-Verlag, Berlin, 1994.
    [76] Herndndez D, Clementini E, Di Felice P. Qualitative distances [A]. Proceedings of COSIT'95, LNCS, Springer-Verlag, Berlin, 1995.
    [77] Hong J-H. Qualitative distance and direction reasoning in geographic space [D]. Ph. D. Thesis. University of Maine, Orono, ME, 1994.
    [78] Hong J-H, Egenhofer MJ, Frank AU. On the robustness of qualitative distance- and direction-reasoning [A]. Proceedings of Autocarto 12, Charlotte, NC, 1995.
    [79] Jungert E. Extended symbolic projection used in a knowledge structure for spatial reasoning [A]. In: Proceedings of 4th BPRA Conference on Pattern Recognition, Cambridge, Springer-Verlag, Mar. 1988, pp.28-30.
    [80] Jungert E, Chang SK. An algebra for sympolic image manipulation and transformation [A]. In: Kunii TL Ed. Visual Database Systems: Proceedings of the IFIP TC 2/WG 2.6 Working Conference on Visual Database Systems, Tokyo, Japan, Elserier Science Publishers, 1989, pp.301-317.
    [81] Jungert E. The observer's point of view: an extension of symbolic projections [A]. In: Frank AU, Campari I, Formentini U. Eds. Theories and methods of spatio-temporal reasoning in geographic space. Lecture Notes in Computer Science 639, Berlin: Springer-Verlag, 1992, pp.179-195.
    [82] Kavanagh BF, Bird SJG Surveying principles and applications [M]. 5~(th) edition. Prentice-Hall, Inc., NJ, 2000.
    [83] Kirasic KC, Allen GL, Siegel AW. Expression of configurational knowledge of large-scale Environment [J]. Environment and Behavior, 1984,16:687-712.
    [84] Koperski K, Han J. Discoverity of spatial association rules in geographic information databases [A]. In: Proceedings of the Fourth International Symposium on Large Spatial Databases, 1995, pp.47-66.
    [85] Koshizuka T, Kurita O. Approximate formulas of average distance associated with regions and their applications to location problems [J]. Mathematical Programming, session B, 1991,52:99-123.
    [86] Kuipers B. Commonsense knowledge of space: learning from experience [A]. In: Chen SS. Ed. Advances in Spatial Reasoning. Norwood, New Jersey, USA, ABLEX Publishing Corporation, 1990, pp.199-206.
    [87] Kuipers B. Modeling spatial knowledge [A]. In: Chen SS. Ed. Advances in Spatial Reasoning. Norwood, New Jersey, USA, ABLEX Publishing Corporation, 1990, pp.171-198.
    [88] Kuipers B, Levitt T. Navigation and mapping in large-scale space [A]. In: Chen SS. Ed. Advances in Spatial Reasoning. Norwood, New Jersey, USA, ABLEX Publishing Corporation, 1990, pp.207-251.
    [89] Ladner R, Petry FE, Cobb MA. Fuzzy set approaches to spatial data mining of association rules [J]. Transactions in GIS, 2003, 7(1): 123-138.
    [90] Lee SY, Hsu F J. Spatial reasoning and similarity retrieval of images using 2D C-string knowledge representation [J]. Pattern Recognition, 1992, 25(3): 305-318.
    [91] Liu Y-S, Hao Z-X. A method for composing cardinal direction relations [A]. Proceedings of the 4~(th) International Conference on Machine Learning and Cybernetics, Guangzhou, 2005, pp.2108-2112.
    [92] Lunberg U. Emotional and geographical phenomenon in psychophysical research [A]. In: Downs RM and Stea D. Eds. Image and Environment. Chichago, Aldine Publishing Company, 1973, pp.322-337.
    
    [93] Maki RH. Categorization and distance effect with spatial linear orders [J]. Journal of Experimental Psychology, 1981, 7(1): 15-32.
    [94] McDermott D, Davis E. Planning routes through uncertain territory [J]. Artificial Intelligence, 1984, 22:107-156.
    [95] McKay RI, Pearson RA, Whigham RA. Learning spatial relationships: some approaches [A] Proceedings of Geo Computation'97,1997, pp.69-77.
    [96] McNamara DV, Davis E. Planning Routes through Uncertain Territory [J]. Artificial Intelligence, 1984, 22:107-156.
    [97] McNamara TP, LeSueur LL. Mental representations of spatial and non-spatial relations [J]. The Quarterly Journal of Experimental Psychology, 1989, 41A:215-233.
    [98] Mennis J, Liu JW. Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change [J]. Transactions in GIS, 2005, 9(1):5-17.
    [99] Moleannar M. Towards a geographic information theory [J]. ITC Journal, 1989, (10): 5-11.
    [100] Moleannar M. A topology for 3D vector maps [J]. ITC Journal, 1992, (1):25-33.
    [101] Montanari A, Pernici B. Temporal reasoning [A]. In: Tansel AU, Clifford J, Gadiaetal S. Eds. Temporal Databases: Theory, Design, and Implementation. Redwood, CA, The Benjaming/Cummings Publishing Company, Inc., 1993, pp.534-562.
    [102] Montello DR. The measurement of cognitive distance: methods and construct validity [J]. Journal of Environment Psychology, 1991, ll(2):101-122.
    [103] Papadias D, Sellis T. Spatial reasoning using symbolic arrays [A]. In: Frank AU, Campari I, Formentini U. Eds. Theories and methods of spatio-temporal reasoning in geographic space: International Conference GIS-From Space to Territory, Pisa, Italy, Lecture Notes in Computer Science 639, Berlin: Springer-Verlag, 1992, pp.153-161.
    [104] Papadias D, Sellis T. Qualitative representation of spatial knowledge in two-dimensional space [J]. The VLDB Journal, 1994, 3(4):479-516.
    [105] Papadias D, Theodoridis Y, Sellis T, Egenhifer M. Topological relations in the world of minimum bounding rectangles: a study with R-trees [A]. Proceedings of the ACM SIGMOD International Conference on Management of Data, ACM Press, San Jose, Calif., 1995, pp.92-103.
    [106] Papadias D, Karacapilidis N, Arkoumanis D. Processing fuzzy spatial queries: a conguration similarity approach [J]. International Journal of Geographical Information Science, 1999, 13(2):93-118.
    [107] Peuquet DJ, Zhan CX. An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane [J]. Pattern Recognition, 1987,20(1):65-74.
    [108] Peuquet DJ. Toward the definition and use of complex spatial relationships [A]. In: 3~(rd) International Symposium on Spatial Data Handling, Sydney, Australia, 1988, pp.211-223.
    [109] Peuquet DJ. An algorithm for calculating minimum Euclidean distance between two geographical features [J]. Computers and Geosciences, 1992,18(8):989-1001.
    [110] Pullar .DV, Egenhofer MJ. Toward formal definitions of topological relations among spatial objects [A]. In Proc.3rd International symposium on spatial Data Handling, Sydney, Australia, Columbus, OH, Aug. 1988, pp.225-241.
    
    [111] Raiman O. Order of magnitude reasoning [J]. Artificial Intelligence, 1991,51:11-38.
    [112] Randell DA, Cui Z, Cohn AG. A spatial logic based on regions and connection [A]. In: Proc. 3rd Int. Conf, on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, 1992, pp. 165-176.
    [113] Raper J, Kelk B. Three-dimensional GIS [A]. In: Geographical information system: Principles and applications, Longman, London, 1991,1:299-317.
    [114] Renz J. A canonical model of the region connection calculus [A]. Proc. Of the 6th International Conference on Knowledge Representation and Reasoning, 1998, pp.330-341.
    [115] Sadalla EK, Staplin LJ. The perception of traversed distance intersections [J]. Environment and Behavior, 1980,12(2): 167-182.
    [116] Sadalla EK, Staplin LJ. An information storage model for distance cognition [J]. Environment and Behavior, 1980,12(2): 183-193.
    [117] Santos MY, Amaral LA. Geo-spatial data mining in the analysis of a demographic database [J]. Soft Computing, 2005, 9:374-384.
    [118] Schlieder C. Reasoning about ordering [A]. A theoretical basis for GIS international conference COSIT'95, Berlin: Springer-Verlag, 1995, pp.341-349.
    [119] Sergent J. Judgments of relative position and distance on representation of spatial relations [J]. Journal of Experimental Psychology, 1991,17(3):762-780.
    [120] Sharma J, Flewelling DM. Inferences from combined knowledge about topology and directions [A]. In: Herring JR, Egenhofer MJ. Eds. 4th International Symposium on Large Spatial Databases, SSD'95, Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
    [121] Sharma J. Integrated spatial reasoning in geographic information systems: combining topology and direction [D]. Ph. D. Thesis. University of Maine, Orono, ME, 1996.
    [122] Shekhar S, Chawla S. Spatial databases: a tour [M]. Prentice-Hall, Inc., NJ, 2003.
    [123] Simmons R. Commonsense arithmetic reasoning [A]. In: Weld DS, Kleer JD. Eds. Readings in Qualitative Reasoning about Physical Systems, San Mateo, Califormia, Morgen Kaufmann Publishers, Inc., 1990, pp.337-343.
    [124] Smith TR, Park KK. Algebraic approach to spatial reasoning [J]. International Journal of Geographical Information Systems, 1992, 6(3):177-192.
    [125] Struss P. Problems of interval-based qualitative reasoning [A]. In: Weld DS, Kleer JD. Eds. Readings in Qualitative Reasoning about Physical Systems, San Mateo, California, Morgan Kaufmann Publishers, Inc., 1990, pp.288-305.
    [126] Thorndyke PW. Distance estimation from cognitive Maps [J]. Cognitive Psychology, 1981, 13:526-550.
    [127] Timpf S. A conceptual model of wayfinding using multiple levels of abstraction [A]. Proc. of the GIS-form Space to Theory: Theories and Methods of Spatio-temporal Reasoning, 1992, pp.348-367.
    [128] Vilain M, Kautz H, van Beek P. Constraint propogation algorithms for temporal reasoning: a revised report [A]. In: Weld DS, Kleer JD. Eds. Readings in Qualitative Reasoning about Physical Systems, San Mateo, California, Morgan Kanfmann Publishers, Inc., 1990, pp.373-381.
    [129] Wang FJ. Handling grammatical errors, ambiguity and impreciseness in GIS natural language queries [J]. Transactions in GIS, 2003, 7(1):103-121.
    [130] Wang W. Spatial temporal data mining [D]. Ph.D. Thesis. University of California, Los Angeles,1999.
    [131] Wolter F, Zakharyaschev M. Spatial reasoning in RCC-8 with Boolen region terms [A]. Proc. Of the 4th European Conference on Artificial Intelligence, ECAI 2000, 2000, pp.244-248.
    [132] Wright DJ, Goodchild MF. Data from the deep: implications for the GIS community [J]. International Journal of Geographical Information Systems, 1997, 11(6):523-528.
    [133] Zhan FB. Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries [J]. Soft Computing, 1998, 2:28-34.
    [134] 曹菡,陈军.方向关系与距离关系的定性描述与推理[J].西安石油学院学报(自然科学版),2001,16(1):68-72.
    [135] 曹菡,陈军,杜道生.空间目标方向关系的定性扩展描述[J].测绘学报,2001,30(2):162-167.
    [136] 曹菡.空间关系推理的知识表示与推理机制研究[D].博士学位论文.武汉:武汉大学,2002.
    [137] 陈军,郭薇.三维空间实体间拓扑关系的矩阵描述[J].武汉测绘科技大学学报,1998,23(4):359-363.
    [138] 陈军,郭薇.基于剖分的三维拓扑ER模型研究[J].测绘学报,1998,27(4):308-317.
    [139] 陈军,赵仁亮.GIS空间关系的基本问题与研究进展[J].测绘学报,1999,28(2):95-102.
    [140] 陈军,蒋捷.多维动态GIS的空间数据建模、处理与分析[J].武汉测绘科技大学学报,2000,25(3):189-195.
    [141] 陈军.Voronoi动态空间数据模型[M].北京:测绘出版社,2002.
    [142] 陈军.论中国地理信息系统的发展方向[J].地理信息世界,2003,1(1):6-11.
    [143] 陈军,李志林,蒋捷,朱庆.多维动态GIS空间数据模型与方法的研究[J].武汉大学学报(信息科学版),2004,29(10):858-862.
    [144] 陈慕泽.数理逻辑教程[M].上海:上海人民出版社,2001.
    [145] 陈述彭.遥感地学分析的时空维[J].遥感学报,1997,1(3):161-171.
    [146] 邓敏,刘文宝.GIS中模糊点目标位置的不确定性描述[J].矿山测量,1999,(3):13-15.
    [147] 邓敏,刘文宝,崔先国.矿山GIS中动态点位置的不确定性表达[J].煤炭学报,2002,27(2):152-157.
    [148] 邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
    [149] 邸凯昌.空间数据发掘与知识发现[M].武汉:武汉大学出版社,2001.
    [150] 丁虹.空间相似性理论与计算模型的研究[D].博士学位论文.武汉:武汉大学,2004.
    [151] 杜世宏.空间关系模糊描述及组合推理的理论和方法研究[D].博士学位论文.中国科学院遥感应用研究所,2004.
    [152] 杜晓初.多重表达中空间拓扑关系等价性研究[D].博士学位论文.武汉:武汉大学,2005.
    [153] 樊明辉.空间数据挖掘及其可视化系统若干关键技术研究[D].博士学位论文.北京:中国科学院遥感应用研究所,2006.
    [154] 郭达志.地理信息系统原理与应用[M].徐州:中国矿业大学出版社,2002.
    [155] 郭平.定性空间推理技术及应用研究[D].博士学位论文.重庆:重庆大学,2004.
    [156] 郭仁忠.空间分析[M].武汉:武汉测绘科技大学出版社,1997.
    [157] 郭薇,陈军.基于流形拓扑的三维空间实体形式化描述[J].武汉测绘科技大学学报,1997,27(3):156-161.
    [158] 郭薇,陈军.基于点集拓扑学的三维拓扑空间关系形式化描述[J].测绘学报,1997,26(2):122-127.
    [159] 郭薇.顾及空间剖分的三维拓扑空间数据模型[D].博士学位论文.武汉:武汉测绘科技大学,1998.
    [160] 何建华,刘耀林.GIS中拓扑和方向关系推理模型[J].测绘学报,2004,33(2):156-162.
    [161] 李成名.基于Voronoi图的空间关系描述、表达与推断[D].博士学位论文.武汉:武汉测绘科技大学,1998.
    [162] 李德仁,龚健雅,边馥苓.地理信息系统导论[M].北京:测绘出版社,1993.
    [163] 李德仁.论RS、GPS与GIS集成的定义、理论与关键技术[J].遥感学报,1997,1(1):64-68.
    [164] 李德仁.关于地理信息系统理论的若干思考[J].武汉测绘科技大学学报,1997,22(2):93-95.
    [165] 李军.三维GIS空间数据模型及可视化技术研究[D].博士学位论文.长沙:国防科学技术大学,2000.
    [166] 李清泉.基于混合结构的三维GIS数据模型与空间分析研究[D].博士学位论文.武汉:武汉测绘科技大学,1998.
    [167] 梁启章.GIS和计算机制图[M].北京:科学出版社,1995.
    [168] 刘炳初.泛函分析[M].北京:科学出版社,1998.
    [169] 刘文宝,邓敏,夏宗国.矢量GIS中属性数据的不确定性分析[J].测绘学报,2000,29(1):76-81.
    [170] 刘文宝,邓敏.GIS图上地理区域空间不确定性的分析[J].遥感学报,2002,6(1):45-49.
    [171] 吕林根,许子道.解析几何[M].第3版.北京:高等教育出版社,1987.
    [172] 罗德安.一种基于关系数据库的空间数据模型及其特殊应用[D].博士学位论文.成都:西南交通大学,2001.
    [173] 盛德成.抽象代数[M].北京:科学出版社,2001.
    [174] 施恩伟,林谦.模糊集合论基础[M].成都:西南交通大学出版社,1994.
    [175] 孙海滨.定性空间推理及其应用技术研究[D].博士学位论文.长春:吉林大学,2006.
    [176] 孙希文.数理逻辑引论[M].哈尔滨:哈尔滨工业大学出版社,1991.
    [177] 孙玉国.拓扑关系描述与2D T-String空间关系表达[D].博士学位论文.武汉:武汉测绘科技大学,1993.
    [178] 万剑华.城市三维地理信息系统的建模研究[D].博士学位论文.武汉:武汉大学,2001.
    [179] 王国俊.非经典数理逻辑与近似推理[M].北京:科学出版社,2000.
    [180] 王家耀.普通地图制图综合原理[M].北京:测绘出版社,1993.
    [181] 王新洲,史文中,王树良.模糊空间信息处理[M].武汉:武汉大学出版社,2003.
    [182] 吴立新.真3维地学构模的若干问题[J].地理信息世界,2004,2(3):13-18.
    [183] 吴立新.史文中.论三维地学空间构模[J].地理与地理信息科学,2005,21(1):1-4.
    [184] 毋河海,龚健雅.地理信息系统(GIS)空间数据结构与处理技术[M].北京:测绘出版社,1997.
    [185] 谢琦.空间方位关系模型与时空结合推理的研究fD].博士学位论文.长春:吉林大学,2006.
    [186] 熊金城.点集拓扑学讲义[M].北京:高等教育出版社,1981.
    [187] 阎浩文,郭仁忠.用Voronoi图描述空间方向关系的理论依据[J].武汉大学学报(信息科学版),2002,27(3):274-278.
    [188] 易善桢.基于单纯形的3D-GIS数据模型及其初步设计[J].测绘通报,1999,(11):10-13.
    [189] 张文修.模糊数学基础[M].西安:西安交通大学出版社,1984.
    [190] 张文修,吴伟志,梁吉业,李德玉.粗糙集理论与方法[M].北京:科学出版社,2001.
    [191] 赵红超.空间关系的研究和实现[D].博士学位论文.北京:中国科学院计算技术研究所,2006.
    [192] 赵仁亮.基于Voronoi图的空间关系计算研究[D].博士学位论文.长沙:中南大学,2002.
    [193] 赵学胜,陈军.基于球面四元三角网剖分的层次空间推理[J].测绘学报,2001,30(4):355-360.
    [194] 郑维行,王声望.实变函数与泛函分析概要[M].北京:人民教育出版社,1980.
    [195] 朱铁稳.基于均匀空间离散域对象的空间数据库关键技术研究[D].博士学位论文.长沙:国防科学技术大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700