华夏地块前海西期地壳深熔作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华夏地块位于华南板块东南部,其广泛出露的前寒武纪变质基底曾遭受后期地质事件的强烈改造。浙西南和闽西北地区地处华夏地块腹地,此地区分布的基底变质岩经历了强烈的后期构造变形和区域混合岩化作用,形成大范围出露的花岗质杂岩系。这些分布于变质基底中的花岗质岩石是研究华夏地块前海西期地壳深熔作用及构造演化的窗口。本文通过详细的野外观察、系统采样,以详细的岩相学研究为基础,结合岩石元素地球化学,以先进的LA-(MC)-ICP-MS锆石U-Pb定年、微量元素及Hf同位素测试为手段,对华夏地块浙西南和闽西北变质基底中的花岗质岩石进行了系统的研究,来探讨华夏地块前海西期(早元古代和加里东期)地壳深熔作用的时间、成因和构造属性。获得的主要认识如下:
     1.浙西南地区出露于八都群中的淡竹和三枝树花岗岩分别为黑云钾长花岗和二长花岗岩。主量和微量元素研究表明,淡竹和三枝树花岗岩高Si富碱,高K贫Al、Ca和Mg,准铝质,高FeO~*/MgO和10000Ga/Al值,HFSE元素组合(zr+Nb+Ce+Y)值也较高,表明淡竹和三枝树花岗岩为典型的铝质A型花岗岩,而不同于以往认为的S型(或改造型)花岗岩。LA-ICP MS锆石U-Pb年代学研究表明,淡竹和三枝树花岗岩的成岩年龄分别为1844±10Ma和1860±13 Ma。岩浆锆石ε_(Hf)(t)值均为较低的负值(分别为-5.4~-3.6和-15.6~-10.0),表明花岗岩均为古老地壳深熔作用的产物。
     2.以前被认为是花岗闪长岩的大柘花岗质岩石实际为含紫苏辉石花岗质麻粒岩,其变质年龄为1851±11 Ma。变质锆石ε_(Hf)(t)值也为较低的负值(-13.4~-9.5),另外岩相学观察表明岩石中发生了黑云母的脱水熔融变质反应,因此麻粒岩是古老地壳在遭受麻粒岩相变质作用过程中经深熔作用而成。淡竹和三枝树花岗岩具A型花岗岩特征及大柘花岗质麻粒岩显示近等压冷却退变质(IBC)演化轨迹,暗示华夏地块~1.85 Ga基性岩浆底侵作用可能导致了麻粒岩相变质(可能伴随地壳拉张)以及古老地壳熔融形成花岗岩。华夏地块~1.85 Ga岩浆-变质事件很可能记录了Columbia超大陆聚合向裂解转折的信息。
     3.详细的地球化学及锆石年代学研究表明,闽西北地区基底变质岩-混合岩-花岗岩存在成因联系。基底变质岩中的黑云母在较低温(~800℃)、H_2O不饱和的条件下发生脱水熔融反应产生初始熔体,初始熔体发生结晶分异作用,堆晶产物形成了混合岩的浅色体,而残余熔体继续演化形成花岗岩。基底变质岩的变质年龄为455~443 Ma,浅色体结晶年龄为~437 Ma,花岗岩结晶年龄为~440 Ma。锆石Hf同位素研究表明,基底变质岩中先存(继承)锆石以及其它富Hf矿物的溶解释放出的Hf是形成新生变质(岩浆)锆石重要的Hf来源。同时,变质/岩浆锆石均具有负的ε_(Hf)(t)值和较高的二阶段Hf模式年龄,指示基底变质岩、混合岩和花岗岩均为加里东期地壳深熔再造的产物。
     4.闽西北变质基底中变质-深熔-岩浆作用时间持续时间至少为15 Mya,混合岩和花岗岩可能是华南加里东期陆内碰撞造山作用的产物。结合前人的研究,华南加里东造山作用开始时间不晚于458 Ma,主碰撞时间可能为~443 Ma,造山带垮塌时间可能稍晚于423 Ma。
     5.闽西北花岗质岩石中继承锆石1.4~1.3 Ga的年龄与海南岛中元古代岩浆岩的年龄(1.44~1.43 Ga)接近,也与劳伦古陆南部的1500~1350 Ma花岗岩-流纹岩同时。另外闽北地区新元古代沉积岩碎屑锆石年龄谱与劳伦古陆西部(现今北美)的年龄谱极为相似,似乎表明了华南地块与劳伦古陆的亲缘性。另外,华夏地块南部是否存在Grenville期(1.0~0.9Ga)造山带值得商榷。
The Cathaysia Block, located in the southeast part of South China, expose extensive Precambrianmetamorphic basement rocks that were heavily reformed by later geological events. Thebasement metamorphic rocks experienced later strong structural deformation and migmatizationin SW Zhejiang and NW Fujiang Provinces in the interior of the Cathaysia Block, with extensiveexposed granitic complex in it. The granitic rocks of the metamorphic basement provide awindow into the study of pre-Hercynian crustal anatexis and tectonic evolution of the CathaysiaBlock. Based on field observation, systematic sampling and petrographic investigation, acombined study of rock geochemistry, zircon trace elements, U-Pb and Lu-Hf isotopes wascarried out on the granitic rocks in basement rocks of SW Zhejiang and NW Fujian Provinces,aiming to elucidate the timing and genesis of pre-Hercynian crustal anatexis in the CathaysiaBlock and its tectonic significance.
     1. The Danzhu and Sanzhishu granites, exposed in the Badu Group of SW ZhejiangProvince, are biotite K-feldspar granite and adamellite, respectively. They are high in Si, alkaliand K, and low in Al, Ca and Mg. The granites are metaluminous with high FeO~*/MgO and10000Ga/Al ratios and high (Zr+Nb+Ce+Y) content, implying that they are typical aluminousA-type granites rather than S-type granite as previously thought. LA-ICP MS U-Pb datinganalyses of magmatic zircons reveal that the formation ages of the Danzhu and Sanzhishugranites are 1844±10 Ma and 1860±13 Ma, respectively. The magmatic zircons had negativeε_(Hf)(t)values of -5.4--3.6 and -15.6 to -10.0 for each, suggesting the granites are anatetic products ofancient crust.
     2. The granitic rock in Dazhe area of SW Zhejiang Province, previously regarded asgranodiorite, is actually orthopyroxene-bearing granitic granulite, with metamorphic age of1851±11 Ma. The metamorphic zircons had negativeε_(Hf)(t) values of -13.4--9.5. Along with thegeographic observation of biotite dehydration melting reactions in the granulite, we suggest thatthe Dazhe granitic granulite was likely formed by anatexis of ancient crust during the granulite facies metamorphism. Combining A-type affinities of the Danzhu and Sanzhishu granites withthe retrogressive metamorphism evolution of the Dazhe granulite characterized by near-isobariccooling (IBC), the~1.85 Ga mafic underplating in the Cathaysia Block might be responsible forthe granulite facies metamorphism (probably accompanied by crustal extension) and the meltingof ancient crust that produced the granites. The~1.85 Ga magmatic-metamorphic events in theCathaysia Block may mark the transition from assembly to break-up of the Columbiasupercontinent.
     3. On the basis of detailed studies of geochemistry and zircon geochronology, there existed agenetic link among the basement rocks, migmatites and granites in NW Fujian Province. Theoriginal granitic melts were likely produced by dehydration-melting of the biotite frommetasedimentary rocks in basement under relatively low temperature (~800℃) andH_2O-undersaturated conditions, then the leucosomes of migmatites were probably formed by thefractional crystallization and crystal accumulation of the initial granitic melts mentioned above,and the remaining melts continued to evolve and ultimately crystallized as granites. Themetamorphic ages of the basement metamorphic rocks fall in the range of 455-443 Ma, and thecrystallization ages are~437 Ma for the leucosomes of migmatites and~440 Ma for the granites.The zircon Hf isotope data reveal that breakdown of pre-existing zircons and minerals other thanzircon in the source played a key role in new zircon formation by release of Hf into the melt.Meanwhile, the newly formed zircons had negativeε_(Hf)(t) values and high two-stage Hf modelages, indicating that the basement metamorphic rocks, migmatites and related granites in NWFujian were formed by the Caledonian crustal anatexis and reworking event in South China.
     4. The Caledonian metamorphism, anatexis and magmatism observed in the metamorphicbasement of NW Fujian Province was a protracted tectonothermal event which lasted for ca. 15Mya, and the migmatites and related granites might be a result from an intracontinental collisionbetween the Yangtze and Cathaysia blocks. Combined with previous research, the initiation ofCaledonian orogeny in South China began no later than 458 Ma, with climax of collision at~443Ma and collapse of the orogenic belt slightly later than 423 Ma.
     5. The ages of 1.4~1.3 Ga recorded by inherited zircons from the granitic rocks in NWFujian Province are identical to the formation ages (1.44~1.43 Ga) of the magmatic rocks onHainan Island at the southern end of the Cathaysia Block, and also synchronous with the1500-1350 Ma granite-rhyolite in southern Laurentia. In fact, the zircon age spectra ofNeoproterozoic sediments in NW Fujian Province is quite similar to that of river sands fromwestern Laurentia (North America), providing good evidence for a connection between Cathaysiaand Laurentia in Rodinia. Besides, whether there was a Grevillian orogenic belt in the southernCathaysia Block is open to discussion.
引文
[1] 郑永飞,张少兵.华南前寒武纪大陆地壳的形成和演化.科学通报,2007,52(1):1-10
    [2] 于津海,魏震洋,王丽娟,等.华夏地块:一个由古老物质组成的年轻陆块.高校地质学报,2006,12(4):440-447
    [3] 金文山,庄建民,杨传夏,等.福建前加里东区域变质岩系的岩石学、地球化学和变质作用特征.福建地质,1992,11(4):241-262
    [4] 赵风清,陈去钊.闽北前加里东期变质基底的多期变形和构造层次研究.福建地质,1993,12(1):33-40
    [5] 金文山,孙大中,赵风清,等.华南大陆深部地壳结构及其演化.北京:地质出版社,1997.1-175
    [6] 胡雄健,李惠民.浙西南早元古代花岗岩,伟晶岩的单颗粒锆石U-Pb年龄.科学通报,1992,37(11):1016-1018
    [7] 甘晓春,李惠民.浙西南早元古代花岗质岩石的年代.岩石矿物学杂志,1995,14(1):1-8
    [8] 王一先,赵振华.浙江花岗岩类地球化学与地壳演化--Ⅱ.元古宙花岗岩类.地球化学,1997,26(6):57-68
    [9] 胡雄健,许金坤,童朝旭,等.浙西南前寒武纪地质.北京:地质出版社,1991.1-278
    [10] Li X H. Timing of the Cathaysia Block formation: Constraints from SHRIMP U-Pb zircon geochronology. Episodes, 1997, 20(3): 188-192
    [11] 汪相,陈洁,罗丹.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义.地质论评,2008,54(3):387-398
    [12] 于津海,王丽娟,魏震洋,等.华夏地块显生宙的变质作用期次和特征.高校地质学报,2007,13(3):474-483
    [13] Brown M, Pressley R A. Crustal melting in nature: Prosecuting source processes. 1999,24(3): 305-316
    [14] Brown M. Crustal melting and granite magmatism: key issues. 2001, 26(4-5): 201-212
    [15] Solar G S, Brown M. Petrogenesis of migmatites in Maine, USA: Possible source of peraluminous leucogranite in plutons?. Journal of Petrology, 2001, 42(4): 789-823
    [16] White R W, Powell R, Holland T J B. Calculation of partial melting equilibria in the system Na_2O-CaO-K_2O-FeO-MgO-Al_2O3-SiO_2-H_2O (NCKFMASH). Journal of Metamorphic Geology, 2001, 19(2): 139-153
    [17] Ashworth J R. Migmatites. Glasgow: Blackie and Son, 1985. 1-302
    [18] Hutton J. Theory of the Earth with Proofs and Illustrations. 3rd ed. London: Geological Society, 1997.1-278
    [19] Andersson J, Moller C, Johansson L. Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): A major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research, 2002, 114(1-2): 121-147
    [20] Whitney D L, Teyssier C, Fayon A K, et al. Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Nigde Massif, Turkey. Tectonophysics, 2003, 376(1-2): 37-60
    [21] Brown M. Orogeny, migmatites and leucogranites: A review. Proceedings of the Indian Academy of Sciences: Earth and Planetary Sciences, 2001, 110(4): 313-336
    [22] Harris N, Massey J. Decompression and anatexis of Himalayan metapelites. Tectonics, 1994,13(6): 1537-1546
    [23] Hodges K V, Le Fort P, Pecher A. Possible thermal buffering by crustal anatexis in collisional orogens: Thermobarometric evidence from the Nepalese Himalaya. Geology, 1988,16(8): 707-710
    [24] Rapp R P. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. Journal of Geophysical Research,1995, 100(B8): 15,601-615,610
    [25] Rutter M J, Wyllie P J. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature, 1988, 331(6152): 159-160
    [26] Thompson A B, Connolly J A D. Melting of the continental crust: Some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. Journal of Geophysical Research, 1995, 100(B8): 15, 515-565, 579
    [27] Vanderhaeghe O. Melt segregation, pervasive melt migration and magma mobility in the continental crust: The structural record from pores to orogens. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 2001, 26(4-5): 213-223
    [28] Vanderhaeghe O, Teyssier C. Crustal-scale rheological transitions during late-orogenic collapse. Tectonophysics, 2001, 335(1-2): 211-228
    [29] Foster D A, Schafer C, Fanning C M, et al. Relationships between crustal partial melting,plutonism, orogeny, and exhumation: Idaho-Bitterroot Batholith. Tectonophysics, 2001,342(3-4): 313-350
    [30] Keay S, Lister G, Buick I. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece.Tectonophysics, 2001, 342(3-4): 275-312
    [31] Gardien V, Thompson A B, Grujic D, et al. Experimental melting of biotite + plagioclase +quartz + or - muscovite assemblages and implications for crustal melting. Journal of Geophysical Research, 1995, 100(B8): 15, 515-581, 591
    [32] Guernina S, Sawyer E W. Large-scale melt-depletion in granulite terranes: An example from the Archean Ashuanipi Subprovince of Quebec. Journal of Metamorphic Geology, 2003, 21(2): 181-201
    [33] Rushmer T. Partial melting of two amphibolites: Contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology, 1991, 107(1): 41-59
    [34] Mark Harrison T, Lovera O M, Grove M. New insights into the origin of two contrasting Himalayan granite belts. Geology, 1997, 25(10): 899-902
    [35] Rosenberg C L, Riller U. Partial-melt topology in statically and dynamically recrystallized granite. Geology, 2000, 28(1): 7-10
    [36] Watt G R, Oliver N H S, Griffin B J. Evidence for reaction-induced microfracturing in granulite facies migmatites. Geology, 2000, 28(4): 327-330
    [37] Johnson K, Barnes C G, Miller C A. Petrology, geochemistry, and genesis of high-Al tonalite and trondhjemites of the Cornucopia Stock, Blue Mountains, northeastern Oregon. Journal of Petrology, 1997, 38(11): 1585-1611
    [38] Muir R J, Weaver S D, Bradshaw J D, et al. The Cretaceous Separation Point batholith, New Zealand: granitoid magmas formed by melting of mafic lithosphere. Journal of the Geological Society, London, 1995, 152(4): 689-701
    [39] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 1996, 37(6): 1491-1521
    [40] Nelson K D, Wenjin Z, Brown L D, et al. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results. Science, 1996, 274(5293): 1684-1688
    [41] Zhong Z Q, Suo S T, You Z D, et al. Major constituents of the Dabie collisional orogenic belt and partial melting in the ultrahigh-pressure unit. International Geology Review, 2001,43(3): 226-236
    [42] 马昌前,杨坤光,明厚利,等.大别山中生代地壳从挤压转向伸展的时间:花岗岩的证据.中国科学:D辑,2003,33(9):817-827
    [43] Winkler H G F. Petrogenesis of Metamorphic Rocks. 5th ed. New York: Springer-Verlag,1979. 1-348
    [44] Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 1991, 51 (1-4): 1-25
    [45] Drummond M S, Defant M J, Kepezhinskas P K. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. Special Paper-Geological Society of America,1996, 315:205-215
    [46] Le-Breton N, Thompson A B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contributions to Mineralogy and Petrology, 1988, 99(2):226-237
    [47] Vielzeuf D, Holloway J R. Experimental determination of the fluid-absent melting relations in the pelitic system: Consequences for crustal differentiation. Contributions to Mineralogy and Petrology, 1988, 98(3): 257-276
    [48] Patino Douce A E, Johnston A D. Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology, 1991, 107(2): 202-218
    [49] Montel J M, Vielzeuf D. Partial melting of metagreywackes: Part Ⅱ, Compositions of minerals and melts. Contributions to Mineralogy and Petrology, 1997, 128(2-3): 176-196
    [50] Vielzeuf D, Montel J M. Partial melting of metagreywackes: Part 1, Fluid-absent experiments and phase relationships. Contributions to Mineralogy and Petrology, 1994,117(4): 375-393
    [51] 杨晓松,金振民,马瑾.喜马拉雅造山带地壳深熔作用:来自聂拉木群混合岩的地球化学和年代学证据.中国科学:D辑,2004,34(10):926-934
    [52] 杨晓松,Huenges E.高喜马拉雅黑云斜长片麻岩脱水溶融实验:对青藏高原地壳深熔的启示.科学通报,2001,46(3):246-250
    [53] 王岳军,韩吟文.辉长岩的高压部分熔融实验研究.岩石学报,1998,14(1):71-82
    [54] 周文戈,谢鸿森,刘永刚,等.2.0GPa块状斜长角闪岩部分熔融--时间和温度的影响.中国科学:D辑,2005,35(4):320-332
    [55] Klemme S, Blundy J D, Wood B J. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica et Cosmochimica Acta, 2002,66(17): 3109-3123
    [56] 姜杨,周汉文,杨启军,等.0.1 GPa块状榴辉岩脱水部分熔融:局部熔融体系和温度的影响.地球科学:中国地质大学学报,2006,31(1):121-128
    [57] Clemens J D. The granulite-granite connection. NATO Advanced Study Institutes Series.Series C: Mathematical and Physical Sciences, 1990, 311:25-36
    [58] White A J R, Chappell B W. Per migma ad magma downunder. Geological Journal, 1990,25(3-4): 221-225
    [59] Milord I, Sawyer E W, Brown M. Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: An example from St. Malo, France.Journal of Petrology, 2001, 42(3): 487-505
    [60] Otamendi J E, Patino Douce A E. Partial melting of aluminous metagreywackes in the northern Sierra de Comechingones, central Argentina. Journal of Petrology, 2001, 42(9):1751-1772
    [61] Johnson T E, Hudson N F C, Droop G T R. Evidence for a genetic granite-migmatite link in the Dalradian of NE Scotland. Journal of the Geological Society, London, 2003, 160(3):447-457
    [62] Johannes W, Ehlers C, Kriegsman L M, et al. The link between migmatites and S-type granites in the Turku area, southern Finland. Lithos, 2003, 68(3-4): 69-90
    [63] Hinchey A M, Carr S D. The S-type Ladybird leucogranite suite of southeastern British Columbia: Geochemical and isotopic evidence for a genetic link with migmatite formation in the North American basement gneisses of the Monashee complex. 2006, 90(3-4): 223-248
    [64] Calderon M, Herve F, Massonne H J, et al. Petrogenesis of the Puerto Eden igneous and metamorphic complex, Magallanes, Chile: Late Jurassic syn-deformational anatexis of metapelites and granitoid magma genesis. Lithos, 2007, 93(1-2): 17-38
    [65] Pitcher W S. The Nature and Origin of Granite. 2nd ed. London: Chapman and Hall, 1997. 1-387
    [66] Sawyer E W. Melt segregation and magma flow in migmatites: Implications for the generation of granite magmas. Special Paper - Geological Society of America, 1996, 315:85-94
    [67] Pirajno F, Bagas L, Hickman A H. Gold mineralization of the Chencai-Suichang Uplift and tectonic evolution of Zhejiang Province, Southeast China. Ore Geology Reviews, 1997, 12(1):35-55
    [68] 王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化.地学前缘,2003,10(3):209-220
    [69] 陈江峰,郭新生,汤加富,等.中国东南地壳增长与Nd同位素模式年龄.南京大学学报(自然科学版),1999,35(6):649-658
    [70] 沈渭洲,凌洪飞.中国东南部花岗岩类Nd-Sr同位素研究.高校地质学报,1999,5(1):22-32
    [71] Li W X, Li X H, Li Z X. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precambrian Research, 2005, 136(1): 51-66
    [72] Li X H, Li W X, Li Z X, et al. 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. 2008, 102(1-2): 341-357
    [73] 李献华.万洋山-诸广山加里东期花岗岩的形成机制:微量元素和稀土元素地球化学.地球化学,1993(1):35-44
    [74] 吴富江,张芳荣.华南板块北缘东段武功山加里东期花岗岩特征及成因探讨.中国地质,2003,30(2):166-172
    [75] Peng S B, Zhang Y M, Zhan M G, et al. Sm-Nd, Pb-Pb and Rb-Sr isotopic dating and its dynamic implications for the Proterozoic augen granite in the Yunkai area, western Guangdong Province. Acta Geologica Sinica (English Edition), 2000, 74(2): 289-296
    [76] 于津海,周新民,O'Reilly,S Y,等.南岭东段基底麻粒岩相变质岩的形成时代和原岩性质:锆石的U-Pb-Hf同位素研究.科学通报,2005,50(16):1758-1767
    [77] 曾雯,张利,周汉文,等.华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约.科学通报,2008,53(3):335-344
    [78] Xu X S, O'Reilly S Y, Griffin W L, et al. Relict Proterozoic basement in the Nanling Mountains (SE China) and its tectonothermal overprinting. Tectonics, 2005, 24, TC2003, doi:10.1029/2004TC001652
    [79] 曾勇.西武夷地区早古生代浅色花岗岩的厘定及其造山意义.江西地质,2000,14(1):1-4
    [80] 王江海,涂湘林.粤西云开地块内高州地区深熔混合岩的锆石U-Pb年龄.地球化学,1999,28(3):231-238
    [81] 庄建民,黄泉祯,邓本忠,等.福建省前寒武纪变质岩岩石地层单位划分研究.厦门:厦门大学出版社,2000.1-94
    [82] Wan Y S, Liu D Y, Xu M H, et al. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in northwestern Fujian, Cathaysia Block, China:Tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research,2007, 12(1-2): 166-183
    [83] 向华.浙西南前寒武纪变质基底岩系显生宙变质作用研究:硕士学位论文.武汉:中国地质大学(武汉),2008
    [84] 靳松,张利,钟增球,等.浙闽地区新元古代变火山岩系岩石地球化学特征及其地质意义.矿物岩石,2008(1):97-105
    [85] 柳小明,高山,第五春容,等.单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定.科学通报,2007,52(2):228-235
    [86] Andersen T. Correction of common lead in U-Pb analyses that do not report ~(204)pb. Chemical Geology, 2002, 192(1-2): 59-79
    [87] Ludwig K R. Users manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel.Berkeley Geochron Cent Spec Pub, 2003, 4:25-32
    [88] De Bievre P, Taylor P D P. Table of the isotopic compositions of the elements. Int J Mass Spectrom, 1993, 123(2): 149-166
    [89] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology, 2006, 34(9): 745-748
    [90] Scherer E, Muenker C, Mezger K. Calibration of the lutetium-hafnium clock. Science, 2001,293(5530): 683-687
    [91] Blichert-Toft J, Albarede F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 1997, 148(1-2): 243-258
    [92] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 533-556
    [93] Griffm W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 2002, 61(3-4):237-269
    [94] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 2007,35(2): 179-182
    [95] 于津海,王丽娟,魏震洋.浙西南古元古代淡竹花岗岩的地球化学和锆石U-Pb-Hf同位素组成.见:2007年全国岩石学与地球动力学暨化学地球动力学研讨会论文摘要.武汉:中国地质大学出版社,2007.128
    [96] 向华,张利,周汉文,等.浙西南变质基底基性-超基性变质岩锆石U-Pb年龄、Hf同位素研究:华夏地块变质基底对华南印支期造山的响应.中国科学D辑:地球科学,2008,38(04):401-413
    [97] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64(2):295-304
    [98] Boynton W V. Geochemistry of the rare earth elements: Meteorite studies. In: Henderson, ed.Rare Earth Element Geochemistry. New York: Elsevier, 1984. 63
    [99] Mcdonough W F, Sun S S. Composition of the Earth. Chemical Geology, 1995, 120:223-253
    [100] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500
    [101] Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study. Contributions to Mineralogy and Petrology, 1996, 122(4): 337-358
    [102] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,2004.49(16):1589-1604
    [103] Hoskin P W O, Ireland T R. Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 2000, 28(7): 627-630
    [104] Stephenson N C N. Geochemistry of granulite-facies granitic rocks from Battye Glacier,northern Prince Charles Mountains, East Antarctica. Australian Journal of Earth Sciences,2000, 47(1): 83-94
    [105] Rimsa A, Johansson L, Whitehouse M J. Constraints on incipient charnockite formation from zircon geochronology and rare earth element characteristics. Contributions to Mineralogy and Petrology, 2007, 154(3): 357-369
    [106] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics,discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419
    [107] King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 1997,38(3): 371-391
    [108] Rajesh H M. Characterization and origin of a compositionally zoned aluminous A-type granite from South India. Geological Magazine, 2000, 137(3): 291-318
    [109] Jung S, Mezger K, Hoernes S. Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites: A major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 1998, 45(1-4): 147-175
    [110] Qiu J S, Wang D Z, Mcinnes B I A, et al. Two subgroups of A-type granites in the coastal area of Zhejiang and Fujian Provinces, SE China: Age and geochemical constraints on their petrogenesis. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2004, 95(1-2):227-236
    [111] Eby G N. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 1990, 26(1-2): 115-134
    [112] 胡建,邱检生,王德滋,等.中国东南沿海与南岭内陆A型花岗岩的对比及其构造意 义.高校地质学报,2005,11(3):404-414
    [113] Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology,1982, 80(2): 189-200
    [114] Patino Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology, 1997, 25(8): 743-746
    [115] Poitrasson F, Pin C, Duthou J, et al. Aluminous subsolvus anorogenic granite genesis in the light of Nd isotopic heterogeneity. Chemical Geology, 1994, 112(3-4): 199-219
    [116] Poitrasson F, Duthou J, Pin C. The relationship between petrology and Nd isotopes as evidence for contrasting anorogenic granite genesis: Example of the Corsican Province (SE France). Journal of Petrology, 1995, 36(5): 1251-1274
    [117] Wei C, Zheng Y, Zhao Z, et al. Oxygen and neodymium isotope evidence for recycling of juvenile crust in northeast China. Geology, 2002, 30(4): 375-378
    [118] 苏玉平,唐红峰,侯广顺,等.新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究.地球化学,2006,35(1):55-67
    [119] Janardhan A S, Newton R C, Hansen E C. The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contributions to Mineralogy and Petrology, 1982, 79(2): 130-149
    [120] Kumar G R R, Srikantappa C, Hansen E. Charnocldte formation at Ponmudi in southern India. Nature, 1985, 313(5999): 207-209
    [121] Raith M, Srikantappa C. Arrested charnockite formation at Kottavattam, southern India.Journal of Metamorphic Geology, 1993, 11(6): 815-832
    [122] Ravindra Kumar G R. Mechanism of arrested charnockite formation at Nemmara, Palghat region, southern India. Lithos, 2004, 75(3-4): 331-358
    [123] Newton R C. Temperature, pressure and metamorphic fluid regimes in the amphibolite facies to granulite facies transition zones. NATO Advanced Study Institutes Series. Series C: Mathematical and Physical Sciences, 1985, 158: 75-104
    [124] Newton R C. Metamorphic fluids in the deep crust. Annual Review of Earth and Planetary Sciences, 1989, 17:385-412
    [125] Newton R C. Charnockitic alteration: Evidence for CO_2 infiltration in granulite facies metamorphism. Journal of Metamorphic Geology, 1992, 10(3): 383-400
    [126] Santosh M, Harris N B W, Jackson D H, et al. Dehydration and incipient charnockite formation: a phase equilibria and fluid inclusion study from South India. Journal of Geology,1990, 98(6): 915-926
    [127] Pichamuthu C S. Charnockite in the making. Nature, 1960, 188(4745): 135-136
    [128] Frost B R, Frost C D. On charnockites. Gondwana Research, 2008, 13(1): 30-44
    [129] Rietmeijer F J M. Chemical distinction between igneous and metamorphic orthopyroxenes especially those coexisting with Ca-rich clinopyroxenes: A re-evaluation. Mineralogical Magazine, 1983, 47(2): 143-151
    [130] Bhattacharyya C. An evaluation of the chemical distinctions between igneous and metamorphic orthopyroxenes. American Mineralogist, 1971, 56(3-4): 499-506
    [131] Kretz R. Symbols for rock-forming minerals. American Mineralogist, 1983, 68(1-2):277-279
    [132] Stevens G, Clemens J D, Droop G T R. Melt production during granulite-facies anatexis: Experimental data from "primitive" metasedimentary protoliths. Contributions to Mineralogy and Petrology, 1997, 128(4): 352-370
    [133] Dewaard D. The occurrence of garnet in the granulite-facies terrane of the Adirondacks Highlands. Journal of Petrology, 1965, 6(1): 165-191
    [134] Mclelland J M, Whitney P R. The origin of garnet in the anorthosite-charnockite suite of the Adirondacks. Contributions to Mineralogy and Petrology, 1977, 60(2): 161-181
    [135] Lavrent'Yeva I V, Perchuk L L. The orthopyroxene-garnet geothermometer: Experiments and theoretical evaluation of the data base. Doklady. Earth Science Sections, 1990, 310(1):122-125
    [136] Sen S K, Bhattacharya A. An orthopyroxene-garnet thermometer and its application to the Madras charnockites. Contributions to Mineralogy and Petrology, 1984, 88(1-2): 64-71
    [137] Aranovich L Y, Berman R G. A new garnet-orthopyroxene thermometer based on reversed Al_2O_3 solubility in FeO-Al_2O_3-SiO_2 orthopyroxene. American Mineralogist, 1997, 82(3-4):345-353
    [138] Harley S L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology, 1984, 86(4): 359-373
    [139] Newton R C, Perkins D. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene-clinopyroxene-quartz. American Mineralogist,1982, 67(3-4): 203-222
    [140] Perkins D, Chipera S J. Garnet-orthopyroxene-plagioclase-quartz barometry: Refinement and application to the English River Subprovince and the Minnesota River valley. Contributions to Mineralogy and Petrology, 1985, 89(1): 69-80
    [141] Keppler H, Wyllie P J. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 1990, 348(6301): 531-533
    [142] 刘锐,张利,周汉文,等.闽西北加里东期混合岩及花岗岩的成因:同变形地壳深熔作用.岩石学报,2008,24(6):1205-1222
    [143] 丁兴,周新民,孙涛.华南陆壳基底的幕式生长--来自广东古寨花岗闪长岩中锆石LA-ICPMS定年的信息.地质论评,2005,51(4):382-392
    [144] 于津海,O'Reilly,S Y,王丽娟,等.华夏地块古老物质的发现和前寒武纪地壳的形成.科学通报,2007,52(1):11-18
    [145] 于滓海,王丽娟,周新民,等.粤东北基底变质岩的组成和形成时代.地球科学:中国地质大学学报,2006,31(1):38-48
    [146] Yu J H, O'Reilly S Y, Wang L J, et al. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and HF isotopes of detrital zircons.Precambrian Research, 2008, 164(1-2): 1-15
    [147] Chen C H, Lu H Y, Lin W, et al. Thermal event records in SE China coastal areas:Constraints from monazite ages of beach sands from two sides of the Taiwan Strait. Chemical Geology, 2006, 231(1-2): 118-134
    [148] 陈正宏,李寄嵎,谢佩珊,等.利用EMP独居石定年法探讨浙闽武夷山地区变质基底岩石与花岗岩的年龄.高校地质学报,2008,14(1):1-15
    [149] Dostal J, Keppie D J, Jutras P, et al. Evidence for the granulite-granite connection: Penecontemporaneous high-grade metamorphism, granitic magmatism and core complex development in the Liscomb Complex, Nova Scotia, Canada. Lithos, 2006, 86(1-2): 77-90
    [150] 孟繁聪,张建新,杨经绥.柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件--花岗岩和片麻岩的同位素与岩石地球化学证据.岩石学报,2005,21(1):45-56
    [151] Rubatto D, Hermann J. Zircon formation during fluid circulation in eclogites (Monviso,Western Alps): Implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta, 2003, 67(12): 2173-2187
    [152] Wu Y B, Gao S, Zhang H F, et al. Timing of UHP metamorphism in the Hong'an area,western Dabie Mountains, China: Evidence from zircon U-Pb age, trace element and Hf isotope composition. Contributions to Mineralogy and Petrology, 2008, 155(1): 123-133
    [153] 沈渭洲,凌洪飞.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学:D辑,2000,30(5):471-478
    [154] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in south China. Precambrian Research, 2006, 151 (3-4):265-288
    [155] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth and Planetary Science Letters, 2006, 252(1-2): 56-71
    [156] Zheng J P, Griffin W L, O'Reilly S Y, et al. Widespread Archean basement beneath the Yangtze craton. Geology, 2006, 34(6): 417-420
    [157] Pearce J. Sources and settings of granitic rocks. Episodes, 1996, 19(4): 120-125
    [158] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 1992, 20(7): 641-644
    [159] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 1999, 46(3): 605-626
    [160] Barbarin B. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal, 1990, 25(3-4): 227-238
    [161] Bohlen S R. On the formation of granulites. Journal of Metamorphic Geology, 1991, 9(3):223-229
    [162] Harley S L. The origins of granulites: A metamorphic perspective. Geological Magazine,1989, 126(3): 215-247
    [163] Kusky T M, Li J H. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22(4): 383-397
    [164] Zhai M G, Guo J H, Liu W J, et al. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences,2005, 24(5): 547-561
    [165] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 2005, 136(2): 177-202
    [166] Wilde S A, Zhao G, Sun M. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 2002, 5(1): 85-94
    [167] Li X H, Sun M, Wei G J, et al. Geochemical and Sm-Nd isotopic study of amphibolites in the Cathaysia Block, southeastern China: Evidence for an extremely depleted mantle in the Paleoproterozoic. Precambrian Research, 2000, 102(3-4): 251-262
    [168] 徐勇航,赵太平,彭澎,等.山西吕梁地区古元古界小两岭组火山岩地球化学特征及其地质意义.岩石学报,2007,23(5):1123-1132
    [169] 赵太平,陈福坤,翟明国,等.河北大庙斜长岩杂岩体锆石U-Pb年龄及其地质意义.岩石学报,2004,20(3):685-690
    [170] 赵太平,徐勇航,翟明国.华北陆块南部元古宙熊耳群火山岩的成因与构造环境:事实与争议.高校地质学报,2007,13(2):191-206
    [171] 翟明国,彭澎.华北克拉通古元古代构造事件.岩石学报,2007:2665-2682
    [172] 彭澎,翟明国,张华锋,等.华北克拉通1.8 Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例.岩石学报,2004,20(3):439-456
    [173] Zhai M G, Liu W J, Cho M, et al. Palaeoproterozoic tectonic history of the North China Craton: a review. Precambrian Research, 2003, 122(1-4): 183-199
    [174] Hou G T, Li J H, Yang M, et al. Geochemical constraints on the tectonic environment of the late Paleoproterozoic mafic dyke swarms in the North China Craton. Gondwana Research,2008, 13(1): 103-116
    [175] Hou G T, Liu Y L, Li J H. Evidence for approximately 1.8 Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 2006, 27(4): 392-401
    [176] Hou G T, Wang C, Li J H, et al. Late Paleoproterozoic extension and a paleostress field reconstruction of the North China Craton. Tectonophysics, 2006, 422(1-4): 89-98
    [177] Kalsbeek F, Jepsen H F, Nutman A P. From source migmatites to plutons: Tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian Orogen. Lithos, 2001,57(1): 1-21
    [178] 赵风清.华夏地块前加里东期变质基底年代构造格架.前寒武纪研究进展,1999, 22(2): 39-46
    [179] Johannes W. The significance of experimental studies for the formation of migmatites. In: Ashworth, ed. Migmatites. Glasgow: Blackie and Son, 1985. 36-85
    [180] Mehnert K R. Migmatites and the Origin of Granitic Rocks. Amsterdam: Elsevier, 1968.1-400
    [181] Henkes L, Johannes W. The petrology of a migmatite (Arvika, Vaermland, western Sweden). Neues Jahrbuch fuer Mineralogie. Abhandlungen, 1981, 141(2): 113-133
    [182] Mengel K, Richter M, Johannes W. Leucosome-forming small-scale geochemical processes in the metapelitic migmatites of the Turku area, Finland. Lithos, 2001, 56(1): 47-73
    [183] Mclellan E. Deformational behaviour of migmatites and problems of structural analysis in migmatite terrains. Geological Magazine, 1984, 121(4): 339-345
    [184] Sawyer E W. Formation and evolution of granite magmas during crustal reworking: The significance of diatexites. Journal of Petrology, 1998, 39(6): 1147-1167
    [185] Weinberg R F. Melt segregation structures in granitic plutons. Geology, 2006, 34(4):305-308
    [186] Sawyer E W, Barnes S J. Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. Journal of Metamorphic Geology, 1988, 6(4): 437-450
    [187] Kriegsman L M. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos, 2001, 56(1): 75-96
    [188] Bickford M E, Mclelland J M, Selleck B W, et al. Timing of anatexis in the eastern Adirondack Highlands: Implications for tectonic evolution during ca. 1050 Ma Ottawan orogenesis. Geological Society of America Bulletin, 2008, 120(7-8): 950-961
    [189] Spear F S, Kohn M J, Cheney J T. P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology, 1999, 134(1): 17-32
    [190] Brown M, Solar G S. The mechanism of ascent and emplacement of granite magma during transpression: A syntectonic granite paradigm. Tectonophysics, 1999, 312(1): 1-33
    [191] Solar G S, Pressley R A, Brown M, et al. Granite ascent in convergent orogenic belts:Testing a model. Geology, 1998, 26(8): 711-714
    [192] Weinberg R F. Mesoscale pervasive felsic magma migration: Alternatives to dyking.Lithos, 1999, 46(3): 393-410
    [193] Brown M, Rushmer T. The role of deformation in the movement of granitic melt: Views from the laboratory and the field. In: Holness, ed. Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle. London: Chapman and Hall, 1997. 111-144
    [194] Marchildon N, Brown M. Melt segregation in late syn-tectonic anatectic migmatites: An example from Onawa contact aureole, Maine, USA. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 2001, 26(4-5): 225-229
    [195] Kriegsman L M. Quantitative field methods for estimating melt production and melt loss. Physics and Chemistry of the Earth. Part A: Solid Earth and Geodesy, 2001, 26(4-5): 247-253
    [196] Harris N B W, Inger S. Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 1992, 110(1): 46-56
    [197] Inger S, Harris N. Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 1993, 34(2): 345-368
    [198] Altherr R, Holl A, Hegner E, et al. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides: Northern Vosges (France) and northern Schwarzwald (Germany).Lithos, 2000, 50(1-3): 51-73
    [199] Condie K C. Chemical composition and evolution of the upper continental crust:Contrasting results from surface samples and shales. Chemical Geology, 1993, 104(1-4): 1-37
    [200] 徐克勤,刘昌实.华南花岗岩类的成因系列和物质来源.南京大学学报(自然科学版),1989.3:1-18
    [201] Watson E B. Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance. Special Paper-Geological Society of America, 1996, 315:43-56
    [202] Barbero L, Villaseca C, Rogers G, et al. Geochemical and isotopic disequilibrium in crustal melting: An insight from the anatectic granitoids from Toledo, Spain. Journal of Geophysical Research, 1995, 100(B8): 15, 715-745,765
    [203] Carrington D P, Watt G R. A geochemical and experimental study of the role of K-feldspar during water-undersaturated melting of metapelites. Chemical Geology, 1995, 122(1-4):59-76
    [204] Jung S, Hoernes S, Masberg P, et al. The petrogenesis of some migmatites and granites (central Damara Oregon, Namibia): Evidence for disequilibrium melting, wall-rock contamination and crystal fractionation. Journal of Petrology, 1999, 40(8): 1241-1269
    [205] Watt G R, Burns I M, Graham G A. Chemical characteristics of migmatites: Accessory phase distribution and evidence for fast melt segregation rates. Contributions to Mineralogy and Petrology, 1996, 125(1): 100-111
    [206] Sawyer E W. The role of partial melting and fractional crystallization determining discordant migmatite leucosome compositions. Journal of Petrology, 1987, 28(3): 445-473
    [207] Wu Y B, Zheng Y F, Zhang S B, et al. Zircon U-Pb ages and Hf isotope compositions of migmatite from North Dabie terrane in China: Constraints on partial melting. Journal of Metamorphic Geology, 2007, 25(9): 991-1009
    [208] Flowerdew M J, Millar I L, Vaughan A P M, et al. The source of granitic gneisses and migmatites in the Antarctic Peninsula: A combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contributions to Mineralogy and Petrology, 2006, 151 (6):751-768
    [209] Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 2005, 240(2): 378-400
    [210] Zheng Y F, Zhao Z F, Wu Y B, et al. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh pressure eclogite and gneiss in the Dabie Orogen. Chemical Geology, 2006, 231(1-2): 135-158
    [211] Xia X P, Sun M, Zhao G C, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, western block of the North China Craton. Earth and Planetary Science Letters, 2006, 241(3-4): 581-593
    [212] Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for ≥3.5 Ga continental crust in the Yangtze Craton of China. Precambrian Research, 2006, 146(1-2): 16-34
    [213] Zeck H P, Wingate M T D, Pooley G D, et al. A sequence of Pan-African Hercynian events recorded in zircons from an orthogneiss from the Hercynian Belt of western central Iberia:An ion microprobe U-Pb study. Journal of Petrology, 2004, 45(8): 1613-1629
    [214] Wu R X, Yongh-Fei Z, Wu Y B, et al. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in south China. Precambrian Research, 2006,146(3-4): 179-212
    [215] Berry R F, Jenner G A, Meffre S, et al. A North American provenance for Neoproterozoic to Cambrian sandstones in Tasmania?. Earth and Planetary Science Letters, 2001, 192(2):207-222
    [216] 熊庆,郑建平,余淳梅,等.宜昌圈椅墒A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用.科学通报,2008,53(22):2782-2792
    [217] 彭敏,吴元保,汪晶,等.扬子崆岭高级变质地体古元古代基性岩脉的发现及其意义.科学通报,2009,54(5):641-647
    [218] Rino S, Komiya T, Windley B F, et al. Major episodic increases of continental crustal growth determined from zircon ages of river sands: Implications for mantle overturns in the early Precambrian. Physics of the Earth and Planetary Interiors, 2004, 146(1-2): 369-394
    [219] Mishra S, Deomurari M P, Wiedenbeck M, et al. ~(207)pb/~(206)pb zircon ages and the evolution of the Singhbhum Craton, eastern India: An ion microprobe study. Precambrian Research,1999, 93(2-3): 139-151
    [220] Mondal M E A, Goswami J N, Deomurari M P, et al. Ion microprobe ~(207)pb/~(206)pb ages of zircons from the Bundelkhand massif, northern India: Implications for crustal evolution of the Bundelkhand-Aravalli protocontinent. Precambrian Research, 2002, 117(1-2): 85 - 100
    [221] Zheng Y F, Zhang S B, Zhao Z F, et al. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust. Lithos, 2007, 96(1-2): 127-150
    [222] Condie K C, Beyer E, Belousova E, et al. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 2005, 139:42-100
    [223] Xu X S, O'Reilly S Y, Griffin W L, et al. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Research, 2007, 158(1-2): 51-78
    [224] Wang Y J, Fan W M, Zhao G C, et al. Zircon U/Pb geochronology of gneissic rocks in the Yunkai Massif and its implications on the Caledonian event in the South China Block.Gondwana Research, 2007, 12(4): 404-416
    [225] Mclaren S, Sandiford M, Hand M. High radiogenic heat-producing granites and metamorphism--An example from the western Mount Isa inlier, Australia. Geology, 1999,27(8): 679-682
    [226] Montero P, Bea F, Zinger T F, et al. 55 million years of continuous anatexis in Central Iberia: Single-zircon dating of the Pena Negra Complex. Journal of the Geological Society,London, 2004, 161(2): 255-263
    [227] Rubatto D, Williams I S, Buick I S. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 2001,140(4): 458-468
    [228] 孙涛.华南中生代岩浆岩组合及其成因.南京:南京大学博士后出站报告,2005
    [229] 楼法生,沈渭洲,王德滋,等.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究.地质学报,2005,79(5):636-644
    [230] Li X H, Tatsumoto M, Premo W R, et al. Age and origin of the Tanghu Granite, southeast China: Results from U-Pb single zircon and Nd isotopes. Geology, 1989, 17(5): 395-399
    [231] 舒良树,夏菲.华南武夷山早古生代构造事件的~(40)Ar/~(39)Ar同位素年龄研究.南京大学学报:自然科学版,1999,35(6):668-674
    [232] Droop G T R, Clemens J D, Dalrymple D J. Processes and conditions during contact anatexis, melt escape and restite formation: The Huntty Gabbro Complex, NE Scotland.Journal of Petrology, 2003, 44(6): 995-1029
    [233] Heumann M J, Bickford M E, Hill B M, et al. Timing of anatexis in metapelites from the Adirondack lowlands and southern highlands: A manifestation of the Shawinigan orogeny and subsequent anorthosite-mangerite-charnockite-granite magmatism. Geological Society of America Bulletin, 2006, 118(11-12): 1283-1298
    [234] 郭令智,俞剑华,施央申,等.华南加里东地槽褶皱区大地构造发展的基本特征.见:陈国达等著,中国大地构造问题.北京:科学出版社,1965.165-183
    [235] 谢家荣.中国大地构造问题.地质学报,1961,41(2):218-239
    [236] 任纪舜.中国东南部泥盆紀前几个大地构造問題的初步探討.地质学报,1964,44(4):418-430
    [237] 郭令智,施央申,马瑞士.华南大地构造格架和地壳演化.见:国际交流地质学术论文集.北京:地质出版社,1980.109-116
    [238] 舒良树.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报,2006,12(4):418-431
    [239] Decelles P G, Gehrels G E, Quade J, et al. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science, 2000, 288(5465): 497-499
    [240] Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth and Planetary Science Letters, 2007, 255(1-2): 70-84
    [241] Kroener A, Zhang G W, Sun Y. Granulites in the Tongbai area, Qinling Belt, China: Geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics, 1993, 12(1): 245-256
    [242] 简平,杨巍然.大别山西部熊店加里东期榴辉岩--同位素地质年代学的证据.地质学报,1997,71(2):133-141
    [243] 简平,杨巍然.大别山西部熊店加里东期榴辉岩锆石离子探针测年.科学通报,2000,45(19):2090-2093
    [244] 杨经绥,裴先治,等.秦岭发现金刚石:横贯中国中部巨型超高压变质带新证据及古生代和中生代两期深俯冲作用的识别.地质学报,2002,76(4):484-495
    [245] 杨经绥,刘福来,吴才来,等.中央碰撞造山带中两期超高压变质作用:来自含柯石英锆石的定年证据.地质学报,2003,77(4):463-477
    [246] Wu Y B, Hanchar J M, Gao S, et al. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China. Earth and Planetary Science Letters, 2009, 277(3-4): 345-354
    [247] Wang J, Li Z X, Cho M, et al. History of Neoproterozoic rift basins in South China:Implications for Rodinia break-up. Precambrian Research, 2003, 122(1-4): 141-158
    [248] You Z D, Suo S T, Han Y J, et al. Metamorphic evolution of the East Qinling and Dabieshan tectonic belt, central China. Journal of Southeast Asian Earth Sciences, 1994, 9(4):397-403
    [249] 张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京:科学出版社,2001.1-806
    [250] Li Z X, Zhang L H, Powell C M. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia?. Geology, 1995, 23(5): 407-410
    [251] 郑永飞.新元古代超大陆构型中华南的位置.科学通报,2004,49(8):715-717
    [252] Myrow P M, Hughes N C, Paulsen T S, et al. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters,2003, 212(3-4): 433-441
    [253] Gehrels G E, Decelles P G, Martin A, et al. Initiation of the Himalayan Orogen as an early Paleozoic thin-skinned thrust belt. GSA Today, 2003, 13(9): 4-9
    [254] Zhou M F, Yan D P, Kennedy A K, et al. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 2002, 196(1-2): 51-67
    [255] Zhou M F, Ma Y, Yan D P, et al. The Yanbian Terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block.Precambrian Research, 2006, 144(1-2): 19-38
    [256] Tucker R D, Ashwal L D, Torsvik T H. U-Pb geochronology of Seychelles granitoids: A Neoproterozoic continental arc fragment. Earth and Planetary Science Letters, 2001,187(1-2):27-38
    [257] 颜丹平,周美夫,宋鸿林,等.华南在Rodinia古陆中位置的讨论--扬子地块西缘变质-岩浆杂岩证据及其与Seychelles地块的对比.地学前缘,2002,9(4):249-256
    [258] Li X H, Li Z X, Sinclair J A, et al. Revisiting the Yanbian Terrane: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China. Precambrian Research, 2006, 151(1-2): 14-30
    [259] Li Z X, Li X H, Li W X, et al. Was Cathaysia part of Proterozoic Laurentia? New data from Hainan Island, south China. Terra Nova, 2008, 20(2): 154-164
    [260] Van Schmus W R, Bickford M E, Turek A. Proterozoic geology of the east-central Midcontinent basement. Special Paper-Geological Society of America, 1996, 308:7-32
    [261] Nyman M W, Karlstrom K E, Kirby E, et al. Mesoproterozoic contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons. Geology, 1994, 22(10): 901-904
    [262] Anderson H E, Davis D W. U-Pb geochronology of the Moyie Sills, Purcell Supergroup,southeastern British Columbia: Implications for the Mesoproterozoic geological history of the Purcell (Belt) Basin. Canadian Journal of Earth Sciences, 1995, 32(8): 1180-1193
    [263] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and breakup history of Rodinia: A synthesis. Precambrian Research, 2008, 160(1-2): 179-210
    [264] Munteanu M, Wilson A. The South China piece in the Rodinian puzzle. A comment on"Assembly, configuration, and break-up history of Rodinia: A synthesis" by Li et al. (2008)[Precambrian Res. 160 (2008) 179-210]. Precambrian Research, 2008, doi:10.1016/j.precamres.2009.01.009
    [265] 王丽娟,于津海,O'Reilly,S Y,等.华夏南部可能存在Grenville期造山作用:来自基底变质岩中锆石U-Pb定年及Lu-Hf同位素信息.科学通报,2008,53(14):1680-1692
    [266] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research,2004, 131(3-4): 231-282
    [267] Li Z X, Li X H, Wang J, et al. South China in Rodinia: An update. Gondwana Research,2001, 4(4): 685-686
    [268] Li Z X. South China in Rodinia revisited. Abstracts with Programs-Geological Society of America, 2003, 35(6): 302-303
    [269] 汪晶,吴元保,彭敏,等.西大别红安地区榴辉岩原岩年龄及Hf同位素组成:对扬子板块北缘中元古代晚期地壳生长作用的显示.矿物岩石,2009,待刊
    [270] Li Z X, Li X H, Zhou H W, et al. Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,2002, 30(2): 163-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700