HPV-16 L1腺病毒载体疫苗和鼠卵透明带3腺病毒载体疫苗免疫效果的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腺病毒载体是基因治疗中最为常用的一种载体,具有以下优点:安全性高,经人工改造的减毒腺病毒对人体无明显毒副作用;腺病毒DNA不会整合入宿主基因组,避免了对宿主基因的干扰;腺病毒可增强MHC分子和共刺激分子的表达,从而促进抗原递呈;腺病毒载体容量大,最大可容纳约37 kb的外源DNA;可高效感染哺乳动物细胞,能够获得高滴度的病毒。
     高危型人乳头瘤病毒(HPV)的持续感染是诱发宫颈癌的主要原因,其中以HPV-16和HPV-18最为常见。新疆南部维吾尔聚居区是我国宫颈癌高发区,该地区妇女宫颈癌的发病率高,发病年龄较其它民族低,其发生与HPV-16的感染密切相关。HPV主要衣壳蛋白L1结构保守,能够自组装形成病毒样颗粒,是宫颈癌预防性疫苗的理想靶抗原。
     哺乳动物卵透明带(zona pellucida, ZP)是由卵母细胞分泌并覆盖于卵母细胞外的一层糖蛋白基质,在种属特异性精卵识别、结合,诱导精子与透明带的结合、顶体反应、避免多精受精和胚胎植入前的保护等方面发挥着重要作用。ZP主要由3种糖蛋白(ZP1、ZP2和ZP3)组成,ZP3在受精过程中具有十分重要的作用,能够与精子专一性地结合并诱导精子的顶体反应。大量研究证实:抗ZP3抗体能够阻断精卵结合。因此,ZP3可作为免疫不育的理想靶抗原。
     本研究将携带新疆株人乳头状瘤病毒16型(HPV-16)主要衣壳蛋白L1基因和鼠卵透明带3 ( murine zona pellucida 3)基因的腺病毒重组DNA转染HEK 293A细胞,使其在HEK 293A细胞中进行包装;继而扩增重组腺病毒Adeno-mZP3和Adeno-L1,利用TCID50(半数组织培养感染剂量)法分别测定滴度, Adeno-L1滴度为:1.2×1010 PFU/mL,Adeno-mZP3滴度为:2.5×1011 PFU/mL, Adenovirus滴度为:2.4×1011 PFU/mL。将获得的重组腺病毒Adeno-mZP3和Adeno-L1分别以滴鼻和灌胃两种途径免疫BALB/c小鼠。实验组每只小鼠接种1×108 PFU重组腺病毒,对照组每只小鼠接种1×108 PFU野生型腺病毒,每隔两周免疫1次,免疫3次,免疫后第14天、第28天和第28天采集小鼠血清,ELISA法检测重组腺病毒诱导的体液免疫反应,并比较两种免疫途径诱导免疫反应的差异。接种重组腺病毒Adeno-mZP3的雌性小鼠在第3次免疫后7天与已验证有生殖能力的雄鼠合笼,观察雌鼠受孕情况,判断重组腺病毒Adeno-mZP3所诱导的小鼠免疫不育效果。
     免疫检测结果显示:重组腺病毒Adeno-mZP3和Adeno-L1通过滴鼻和灌胃免疫小鼠后第14d、第28d、第42d,小鼠血清中相应抗体水平均比对照组小鼠高,二者存在极显著性差异(P<0.001);说明2种重组腺病毒通过滴鼻和灌胃免疫小鼠均能激发较强的体液免疫反应,且在3次免疫后,滴鼻免疫组小鼠血清中抗体水平高于灌胃免疫组。重组腺病毒Adeno-mZP3免疫组合笼实验的结果表明,滴鼻免疫小鼠的生育率和平均窝崽数均低于对照组,实验组与对照组的平均窝崽数存在显著性差异(P=0.021<0.05);灌胃免疫小鼠的生育率和平均窝崽数与对照组相比没有明显降低,实验组与对照组的平均窝崽数差异不显著(P=0.102>0.05)。以上结果说明腺病毒载体疫苗滴鼻免疫能诱导产生较好的免疫效果。
In recent years, Adenovirus vectors (AdVs) have been increasingly considered as gene therapy vectors for treating human diseases for the following features: they have been proven safe and effective after being used as live vaccines for immunizing with wild-type (wt) live AdVs showed no significant side effects; they do not integrate their viral DNA into host chromosomes, thereby avoiding the possibility of disturbing vital cellular genes or inducing cancer as has been the case with retrovirus vectors; they can modulate dendritic cell maturation by increasing the expression of major histocompatibility complex (MHC) and costimulating molecules; they can accommodate a large size of foreign DNA of up to 37 kb, and they can be easily produced in large quantities.
     A growing number of evidence indicates that persistent infection of high-risk HPV, particularly type 16 and 18, is an important initiating agent of cervical carcinogenesis. The south of Xinjiang where Uygur nationality inhabits is a region with a high incidence of cervical cancer, and the women in this region usually suffer cervical cancer much younger than other nationalities. This phenomena is considered as a closely relationship with the infection of HPV-16. The major capsid protein L1 has a conservative protein structure, and can assemble into virus-like particles (VLPs) automatically. So L1 is an ideal target antigen of prophylactic vaccines against cervical cancer.
     An acellular glycoproteinaceous matrix termed zona pellucida (ZP) surrounds the mammalian oocyte and plays a pivotal role in species-specific sperm–egg recognition and binding, induction of acrosomal exocytosis in ZP-bound spermatozoa, avoidance of polyspermy, and protection of the embryo prior to implantation. The mouse ZP is composed of three biochemically distinct glycoproteins designated as ZP1, ZP2, and ZP3. ZP3, the putative primary sperm receptor, binds to the head region of acrosome-intact spermatozoa and induces acrosomal exocytosis. There is considerable evidence implicate that anti-ZP3 antibodies can block sperm-egg binding, which can be used as an ideal target antigen for immunocontraception.
     In this study, adenovirus recombinant DNA which carry murine zona pellucida 3 gene and the L1 of HPV-16 from Xinjiang were transfected into HEK 293A cells to package viral particles respectively, the recombinant adenovirus named as Adeno-mZP3 and Adeno-L1. Then Adeno-mZP3, Adeno-L1 and wild type adenovirus were amplified in HEK 293A cells and TCID50 (50% tissue culture infectious doses) assay was employed to detect the titers of viruses. The titer of Adeno-mZP3 is 2.5×1011 PFU/mL, the titer of Adeno-L1 is 1.2×1010 PFU/mL and the titer of wild type Adenovirus is 2.4×1011 PFU/mL. BALB/c mice were immunized three times (interval 14d) with 1×108 PFU Adeno-L1, Adeno-mZP3 and wild type Adenovirus via intragastric route and intranasal route respectively, and the mice immunized with wild type Adenovirus as control. The sera of the mice were collected at 14 d, 28 d and 42 d respectively, and then ELISA tested the level of IgG against L1 and mZP3 respectively. The immunological effects of difeent recombinant adenovirus vaccines and the different immunization routes were analyzed by Two-way ANOVA. The female mice inoculated three times with Adeno-mZP3 were coupled with male mice possessing reproductive capacity to observe the pregnant situation, and then the immunocontraceptive efficacy induced by Adeno-mZP3 was evaluated.
     The results of ELISA showed that the level of antibody against L1 (or mZP3) from the mice immunized with Adeno-L1 (or Adeno-mZP3) via intranasal (or intragastric route) is extremely higher (P<0.001) than the serumal antibody level of mice in control group at 14th d, 28th d and 42nd d. These results suggested that both Adeno-L1 and Adeno-mZP3 can stimulate humoral immune response via intranasal and intragastric route. However, the serumal antibody of mice immunized via intranasal route was higher than that of mice immunized via intragastric route. Meanwhile antifertility assay indicate that the fertility and mean litter size of mice inoculated with Adeno-mZP3 via intranasal route were reduced significantly, and the mean litter size of mice immunized with Adeno-mZP3 were significantly lower than that of control group (P=0.021<0.05). But the reduction of the fertility and mean litter size of mice inoculated with Adeno-mZP3 via intragastric route was not significant, and the mean litter size of mice immunized with Adeno-mZP3 were not between treatment group and control group were not significantly lower than that of control group (P=0.102>0.05). So it is more effective to immunize mice with recombinant adenovirus via intranasal immunization than intragastric immunization in our study.
引文
[1] Baltzer Aw, Lattermann C, Whalen JD, et al. Genetic enhancement of fracture repair:healing of an experimental sepmental defect by adenoviral transfer of the BMP-2 gene [J]. Gene Ther. 2000, 7(9): 734-739.
    [2] Li X, Tikoo S K. Promoter activity of left inverted merminal repeat and downstream sequences of porcine adenovirus typc 3 [J]. Virus Res. 2005, l09: 5 l-58.
    [3] Stephan A, Vorburger, Kelly K. Adenoviral Gene Therapy[J].The Oncol Ogist. 2002, 7: 46-59.
    [4] Bangari D S, Shukla S, Mittal S K. Comparative transduction efficiencies of human and nonhuman adenoviral vectors in human, murine, and porcine cells in culture [J]. Bioche Biophys Res Commun. 2005, 327: 960-966.
    [5] Zoltick PW, Chirmule N, Sehnell MA. et al. Biology of E1-deleted adenovirus vectors in nonhuman primate muscle [J]. J Virol. 2001, 75: 5222-5229
    [6] Hehir KM, Armentano D, Cardoza LM, et al. Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence [J]. J Virol. 1996, 70: 8459-8467.
    [7] Tatsis N, Ertl H C J. Adenoviruses as vaccine vectors [J]. Mol TheL. 2004, 10(4):616-629.
    [8] Everett RS, Hodges BL, Ding EY, et al. Liver toxicities typically induced by first-generation adenoviral vectors can be reduced by use of E1, E2b-deleted adenoviral vectors [J]. Hum Gene Ther. 2003, 14(18): 1715-1726.
    [9] Amalfitano A, Hauser MA, Hu H, et a1. Production and characterization of improved adenovirus vectors with the E1,E2a and E3 genes deleted [J]. J Virol. 1998, 72(2): 926-933.
    [10] Mitani K, Graham F L, Caskey C T, et al. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector [J]. Proc Natl Acad Sci USA. 1995, 9(9): 3854-3858.
    [11] Lou J, Xu F, Merkel K, et al. Gene therapy: adenovirus-mediated human bone morphogenetie protein--2 gene transfer induces mesenchymal progenitor cell proliferation and diferentiation in vitro and bone formation in vivo [J]. J Orthop Res. 1999, 17(1): 43-50.
    [12] Sato M , Suzuki S, Kubo S, et al. Replication and packaging of helper-dependent adenoviral vectors [J]. Gene Ther. 2002, 9: 472-476.
    [13] N Cheshenko, N Krougkiak, RC Eisensmith, et al. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus [J]. Gene Therapy. 2001, 8: 846-854.
    [14] Hartigan O, Connor D, barjot C, et al. Efficient rescue of gutted adenovirus genomes allows rapid production of concentrated stocks without negative selection [J]. Hum Gene Ther. 2002,13: 519-531.
    [15]谢庆军,范凌云,李季凤等. Kozak序列引导的人p53基因重组智能腺病毒载体的构建与表达[J].生物制品学杂志, 2008, 21(2):107~110,118.
    [16]叶迅,陆琴,赵毅等.嵌合型E1B 55-kDa蛋白缺陷型腺病毒载体治疗肿瘤的评价[J].生物化学与生物物理进展, 2005, 32 (12) :1156-1164.
    [17] Shan wen, Shannon Graf, Philip G, et al. Improved vascular gene transfer with a helper-dependent adenoviral vector [J]. Circulation. 2004, 110(11): 1484-1491.
    [18] Belalcazar LM, Merched A, Cart B, et al. Long—term stable expression of human apolipoprotein A-I mediated by helper-dependent adenovirus gene transfer inhibits atherosclerosis progression and remodels atherosclerotic plaques in a mouse model of familial hypercholesterolemia [J]. Circulation. 2003, 107(21): 2726—2732.
    [19]叶晨波,高啸波,侍鼎等.微小腺病毒介导的人凝血因子Ⅸ基因治疗血友病B小鼠研究[J].中国科学C辑, 2003, 33(5): 446-453.
    [20] Gingrich J R. A tolerance and efficacy study of neoadjuvant intraprostatic GTx - 001 followed by radical prostatectomy in patients with locally advanced prostate cancer [J]. Protocol. 1999, 9: 319-338
    [21] Lemiale F, Kong WP, Akyurek LM, et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system [J]. Virol. 2003, 77: 10078–10087
    [22] Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity [J]. Nat Rev Immunol. 2004, 4: 699–710
    [23] Neutra MR, Kozlowski PA. Mucosal Vaccines: The Promise and the Challenge [J]. Nat Rev Immunol. 2006, 6: 148–158
    [24] Patel A, Zhang Y, Croyle M, et al. Mucosal delivery of adenovirus-based vaccine protects against Ebola virus infection in mice [J]. Infect Dis. 2007, 196: S413–S420.
    [25] Herrmann J E, Chen S C, Jones D H, et a1. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles[J]. Virology, 1999, 259: 148-153.
    
    [26] Putz M M, Bouche F B, de Swart R L, et al. Experimental vaccines against measles in a world of changing epidemiology [J]. Inter J Parasitol. 2003, 33: 525-545
    
    [27] Shanley J D, Wu C A. Intranasal immunization with a replication-deficient adenovirus vector expressing glycoprotein H of murine cytomegalovirus induces mucosal and systemic immunity [J]. Vaccine. 2005, 23: 996-1003
    
    [28] Robinson H L. New hope for an aids vaccine [J]. Nature Revi Immunol. 2002, 2: 239-250
    
    [29] Hammond J M, McCoy R J, Jansen E S, et al. Vaccination with a single dose of a recombinant porcine adenovirus expressing the classical swine fever virus gp55(E2) gene protect pigs against classical swine fever [J]. Vaccine. 2000, 18: 1040-1050
    
    [30] Hammond J M, Jansen E S, Morrissy C J, et al. Protection of pigs against‘in contact’challenge with classical swine fever following oral or subcutaneous vaccination with a recombinant porcine adenovirus [J]. Virus Res. 2003, 97: 151-157.
    
    [31] Johnson M A, Pooley C, Ignjatovic J, et al. A recombinant fowl adenovirus expressing the S1 gene of infectious bronchitis virus protects against challenge with infectious bronchitis virus [J]. Vaccine. 2003, 21: 2730-2736.
    
    [32] Ahmad K. Adenovirus vaccine works best [J]. The Lancet Oncol. 2003, 4: 558.
    
    [33] Reik A, Gregory P D, Case C C. An oncolytic adenovirus armed with a GM-CSF activating designed Zinc-finger protein transcription factor: a potential cancer vaccine approach [J]. Mol Ther. 2004, 9 (S1): S238.
    
    [34] Takayama K, Ikegami A, Inoue H, et al. VEGF promoter-based conditionally replicative adenoviruses are useful for the treatment of malignant pleural mesothelioma [J]. Mol Ther. 2004, 9(S1): S238.
    
    [35] Polo J M, Dubensky T W. Virus-based vectors for human vaccine applications [J]. Drug Discov Today. 2002, 7: 719-727.
    
    [36] Harris MP, Sutjipto S, Wills KN, et a1. Adenovirus mediated p53 gene transfer inhibits growth of human tumor cells expressing mustang:p53 protein [J]. Cancer Gene Ther. 1996,3(2):121-130
    [37]韩德民,黄志刚,张伟等.重组人p53腺病毒注射液治疗喉癌的I期临床试验及追踪观察[J].中华医学杂志,2003年, 83 (23):2029-2032.
    [38] Aurisicchio L, Bujard H, Hillen W, et al. Regulated and prolonged expression of mIFN(alpha) in immunocompetent mice mediated by a helper-dependent adenovirus vector [J]. Gene Ther. 2001, 8(24): I817-1825
    [39] Im SA, Kim JS, Gomez-Manzano C, et a1. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus mediated antisense-VEGF [J]. Br J Cancer. 2001, 84(9):l252一l257
    [40] Aurisicchio L, Bujard H, Hillen W, et a1. Regulated and prolonged expression of mIFN(alpha) in immunocompetent mice mediated by a helper-dependent adenovirus vector.[J]. Gene Ther. 2001, 8(24): 1817—1825
    [41] Im SA, Kim JS, Gomez-Manzano C, et al. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus mediated antisense-VEGF [J]. Br J Cancer. 2001, 84(9): l252-l257
    [42] Roth JA, Swisher SqMeyn RE. p53 tumor suppressor gene therapy for cancer [J]. Ontology (Huntingt). 1999, 13(4):148-154
    [43] Yoshida K, Nishizaki M, Hunt KK. Combination therapy of adenovirus-mediated overexpression of E2F-1 transcription factor and chemotherapy enhances growth suppression in breast cancer cells [J]. Proc Am Assoc Cancer Res. 2001, 42(7):855-903
    [44] Zhang Q, Nie M, Sham J, et a1. Effective gene-viral therapy for telomerase-positive cancers by selective replicativecompetent adenovirus combining with endostatin gene [J]. Cancer Res. 2004, 64:5390
    [1] Bosch FX, Lorincz A, Munoz N, et a1.The causal relation between human papillomavirus andcervical cancer [J]. Clin Pathol. 2002, 55:244–65.
    [2] Trottier H, Franco EL. The epidemiology of genital human papillomavirus infection [J]. Vaccine. 2006, 30, 24 Suppl 1: S1-15.
    [3] Bosch FX, Schiffman M, Solomon D. Future directions in epidemiologic and preventive research on human papillomaviruses and cancer [J]. Natl Cancer Inst Monogr. 2003, (31):1-130.
    [4] Mahdavi A, Monk BJ. Vaccines against human papillomavirus and cervical cancer: promises and challenges [J]. The Oncologist. 2005, 10(7): 528-538
    [5] Min W, wen-Li M, Bao Z, et a1. Oligonucleotide Microarray with RD-PCR Labeling Technique for Detection and Typing of Human Papillomavirus [J]. Current Microbiology. 2006, 52(3):204-209
    [6] de Villiers EM, Fauquet C, Broker TR et al. Classification of papillomaviruses [J]. Virology. 2004, 324, 17-27.
    [7] Poolman E M, Elbasha E H, Galvani A P. Vaccination and the evolutionary ecology of human papillomavirus [J]. Vaccine. 2008, 26 (Suppl 3): C25-30.
    [8] Munoz N, Bosch FX, De Sanjose S, et a1. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med.2003, 348(6): 518-527
    [9] WW Jung, T Chun, D Sul, et a1. Stategies against human papillomavirus infection and cervical cancer [J]. The journal of microbiology. 2004. 42: 255.
    [10] Lehtinen M, Apter D, Dubin G, Kosunen E, et al. Enrolment of 22000 adolescent women to cancer registry follow-up for long-term human papillomavirus vaccine efficacy: guarding against guessing [J]. Int JSTD AIDS. 2006, 17 (8): 517
    [11] Mao C, Koutsky LA, Ault KA, et a1. Efficacy of human papillomavirus-16 vaccine to prevent cervical intraepithe-lial neoplasia [J]. Obstet Gynecol. 2006, 107(1):18-27.
    [12] Harper DM, Franco EL, Wheeler CM, et a1. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial [J]. Lancet. 2006, 367(9518): 1247-1255
    [13] Govan V A. A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil) [J]. Ther Clin Risk Manag. 2008, 4(1):65~70
    [14] Heymann W R. The human papillomavirus vaccine [J]. J Am Acad Dermatol. 2008, 58(6):1047-1048
    [15] Keam S J, Harper D M. Human papillomavirus types 16 and 18 vaccine (recombinant, AS04 adjuvanted, adsorbed)[Ccrvarix] [J]. Drugs. 2008, 68(3): 359-372
    [16] Clifford G, Franceschi S, Diaz M, et a1. HPV type-distribution in women with and without cervical neoplastic disease [J]. Vaccine. 2006, 24[Suppl 3]: S26-S34
    [17]李庭芳,古丽娜-库尔班,王涛等.新疆伽师县夏普桃勒乡妇女子宫颈癌防治的研究[J].新疆医学院学报.1996,19:199-203
    [18]拉莱-苏祖克,古丽娜-库尔班,等.维吾尔妇女子宫颈癌中p53基因的表达和HPV DNA检测研究[J].新疆医学院学报.1997,20:77-81
    [19]马正海,张富春,梅新娣,马彩玲,刘开江新疆南部地区维吾尔族妇女宫颈癌组织中人乳头瘤病毒16型L1基因突变谱分析[J].中华医学杂志. 2004,84(12),987~991
    [20]马正海,梅新娣,张富春新疆南部地区维吾尔族妇女宫颈癌组织中人乳头瘤病毒16型L2基因多态性分析[J].中华微生物学和免疫学杂志. 2004,24(12)968~972.
    [21]马正海,张富春,梅新娣,马彩玲,刘开江新疆维吾尔族妇女宫颈癌组织中HPV-16型E6基因突变分析[J].癌症.2004,23(9)1016~1020.
    [22] Rudin A, Johansson EL, Bergquist C, et al. Differential kinetics and distribution of antibodies in serum and nasal and vaginal secretions after nasal and oral vaccination of humans [J]. Infect Immun. l998, 66(7): 3390-3396
    [23] Tatsis N, Ertl HC. Adenoviruses as vaccine vectors [J]. Mol Ther. 2004. l0(4): 616-629
    [24] Frazer I, Galloway D, Gissmann L, et a1. Technical workshop on cellular mediated immunity to HPV: Prospects for vaccine development. WHO/IVB/ 04.22. 18-19 April 2005. www.who.int/vaccines-documents/, 2010/5/14
    [25] Villa LL, Costa RL, Petta CA, et a1. High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years offollow-up [J].Br J Cancer. 2006, 95(11): 1459-1466.
    [26] Wheeler CM. Advances in primary and secondary interventions for cervical cancer: human papillomavirus prophylactic vaccines and testing [J]. Nat Clin Pract Oncol. 2007, 4(4): 224-235
    [27] Stanley M. HPV vaccines [J]. Best Pract Res Clin Obstet Gynaecol. 2006, 20(2):279-293
    [28] Insinga RP, Dasbach EJ, Elbasha EH. Assessing the annual economic burden of preventing and treating anogenital human papillomavirus-related disease in the US: analytic framework and review of the literature [J]. Pharrnaeoeconomies. 2005, 23(11): l107-1122
    [29] Schiller JT, Lowy DR. Prospects for cervical cancer prevention by human papillomavirus vaccination [J]. Cancer Res. 2006, 66(21):10229-10232
    [30] Yamada T, Manos MM, Peto J, et a1. Human papilomavirustype16 sequenee variation in cervical cancers:a worldwide perspective [J]. Virol. 1997, 71(3):2463-2472
    [31] Khan MJ, Castle PE, Lorincz AT, et al. The elevated 10-year risk of cervical precancer and cancer in women with human papillomavirus (HPV) type 16 or 18 and the possible utility of type-specific HPV testing in clinical practice [J]. J Natl Cancer Inst. 2005, 97(14): 1072~1079.
    [32] Munoz N, Bosch FX, de Sanjose S, et a1. Epidemiologic classification of human papillomavirus types associated with cervical cancer [J]. N Engl J Med. 2003, 348: 518-527.
    [33] Xiang Z Q, Pasquini S, Ertl H C J. Induction of genital immunity by DNA priming and intranasal booster immunization with a replication defective adenoviral recombinant [J]. J Immunol. 1999, 162: 6716-6723.
    [34] Christine BB, Alan A, Sally AS, et a1. Replication-defective recombinant adenovirus expressing the human immunodeficiency virus Env antigen can induce both humoral and CTL immune responses in mice [J]. General Virol. 1999, 80: 2621-2628
    [35] Lemiale F, Kong WP, Akyurek LM, et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system [J] Virol. 2003, 77: 10078–10087.
    [36] Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity [J] Nat Rev Immunol. 2004, 4: 699–710.
    [37] Neutra MR, Kozlowski PA. Mucosal Vaccines: The Promise and the Challenge [J]. Nat Rev Immunol. 2006, 6: 148–158.
    [38] Patel A, Zhang Y, Croyle M, Tran K, et al. Mucosal delivery of adenovirus-based vaccine protects against Ebola virus infection in mice [J]. Infect Dis, 2007, 196: S413–S420.
    [39] Herrmann J E, Chen S C, Jones D H, et a1. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles [J]. Virology, 1999, 259: 148-153.
    [40] Xiang Z, Ertl H C. Induction of mucosal immunity with a replication-defective adenoviral recombinant [J]. Vaccine, 1999, 17:2003-2008
    [41] Oomura K, Xin KQ, Takakura M, et a1.. Oral administration of the adenovirus vector induces systemic immunity rather than intestinal mucosal immunity [J].Vaccine. 2006, 24(8):1045–6.
    [42] Balmeli C, Roden R, Potts A, et a1. Immunization of mice with human papillomavirus type 16 virus-like particles elicits neutralizing antibodies in mucosal secretions [J]. Virol. l998, 72(10): 8220-8229
    [43] Pal S, Peterson EM, de la Maza LM. Intranasal immunization induces long -term protection in mice against a Chlamydia trachomatis genital challenge [J]. Infect Immun. l996, 64(12): 534l-5348
    [44] Harvey BG, Neil RH, Tarek E, et a1. Variability of human systemic humoral immune responses to adenovirus gene transfer vectors administrated to different organs [J]. Virol. l992, 99:67l9-6742
    [1] Litscher ES, Wassarman PM. Egg extracellular coat proteins: from fish to mammals [J]. Histol Histopathol. 2007, 22:337–347.
    [2] Rankin TL, O'Brien M, Lee E, et al.. Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development [J]. Development. 2001, 128:1119–1126.
    [3] Epifano O, Liang LF, Familari M, et al.. Coordinate expression of the three zona pellucida genes during mouse oogenesis [J]. Development. 1995, 121:1947–1956.
    [4] Dean J. Reassessing the molecular biology of sperm–egg recognition with mouse genetics [J]. Bioessays. 2004,26:29–38.
    [5] Hoodbhoy T, Aviles M, Baibakov B, et al.. ZP2 and ZP3 traffic independently within oocytes prior to assembly into the extracellular zona pellucida [J]. Mol Cell Biol. 2006, 26:7991–7998.
    [6] Bleil JD, Wassarman PM. Mammalian sperm-egg interaction: identification of a glycoproteinin mouse egg zonae pellucidae possessing receptor activity for sperm [J]. Cell. 1980, 20: 873–82.
    [7] Chakravarty S, Kadunganattil S, Gupta SK. Baculovirusexpressed recombinant human zona pellucida glycoprotein-B induces acrosomal exocytosis in capacitated spermatozoa in addition to zona pellucida glycoprotein-C [J]. Mol Hum Reprod. 2005, 11: 365–72.
    [8] Chakravarty S, Kadunganattil S, Bansal P, et al.. Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis [J]. Mol Reprod Dev. 2008, 75: 75–88.
    [9] Wassarman PM. Mammalian fertilization:molecular aspects of gamete dhesion, exocy-tosis, and fusion [J]. Cell. 1999, 96(2): 175–183.
    [10] Wassarman PM, Jovine L, Litscher. ESA profile of fertilization in mammals [J]. Nature Cell Biol. 2001, 3(2): E59–64.
    [11] Greenhouse S, Castle PE, Dean J. Antibodies to human ZP3 induce reversible contraception in transgenic mice with `humanized' zonae pellucidae [J]. Hum. Reprod. 1999, 14 (3): 593–600.
    [12] Paterson M,Jennings ZA, Wilson MR, et al. The contraceptive potential of ZP3 and ZP3 peptides in a primate model [J]. Repord Immunol. 2002, 53(1-2):99–107.
    [13] Smith LM, Lloyd ML, Harvey NL, et al. Species-specificity of a murine immunocontraceptive utilising murine cytomegalovirus as a gene delivery vector [J]. Vaccine. 2005, 23(23): 2959–2969.
    [14] Chalabi S, Panico M, Sutton-Smith M, et al. Differential O-glycosylation of a conserved domain expressed in murine and human ZP3 [J]. Biochemistry. 2006, 45(2): 637–647.
    [15] Turner JJW, Liu IK, Flanagan DR, et al. Porcine zona pellucida (PZP) immunocontraception of wild horses (Equus caballus) in Nevad: a 10 year study [J]. Reprod Suppl. 2002, 60(1):77–86.
    [16] Hosken F, Dookwah, Brandon CI. Immunocontrol in dogs [J]. Anim Reprod Sci. 2000, 60–61:365–73.
    [17] Frank ES, Sajdak SL, Teare JA. Long-lasting single dose immunocontraception of feral fallow deer in British Columbia [J]. Journal of Wildlife Management. 2002,66(4):1141–1148.
    [18] Shideler SE, Stoops MA, Gee NA, et al. Use of porcine zona pellucida (PZP) vaccine as a contraceptive agent in free-ranging tule elk (Cervus elaphus nannodes) [J]. Reprod Suppl. 2002, 60:169–76.
    [19] Bertschinger HJ, Kirkpatrick JF, Fayrer-Hosken RA, et al. Immunocontra -ception of African elephants [J]. Nature. 2000, 407(6801):149.
    [20] Brown RG, Bowen WD, Eddington JD, et al. Evidence for a long-lasting single administration contraceptive vaccine in wild grey seals [J]. Journal of Reproductive Immunology. 1997, 35:42–51.
    [21]王焱冰,李轶杰,张富春等.壳聚糖介导增强DNA疫苗皮肤免疫效果的研究[J].生物技术,2006,16(2):68–71.
    [22] Dave UP, Jenkins NA, Copeland NG. Gene therapy insertional mutagenesis insights [J]. Science. 2004, 303-333.
    [23] Christine BB, Alan A, Sally AS, et a1. Replication—defective recombinant adenovirus expressing the human immunodeficiency virus Env antigen can induce both humoral and CTL immune responses in mice [J]. Gen Virol, 1999, 80(10):2621–2628
    [24] Akhtar N, Padilla ML, Dickerson EB, et al. Interleukin-12 inhibits tumor growth in a novel angiogenesis canine hemangiosarcoma xenograft model [J]. Neoplasia. 2004, 6:106–116.
    [25] Liu CES, Litscher S, Mortillo Y. et al. Stewart & P. M. Wassarman. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice [J]. Proc Natl Acad Sci USA. 1996, 93 (11): 5431-5436.
    [26] Borillo J, Coonrod SA, Wu J, et al. Antibodies to two ZP3 B cell epitopes affect zona pellucida assembly [J]. Reprod Immunol. 2008, 78(2): 149-157.
    [27] Choudhury S, Ganguly A, Chakrabarti K, et al. DNA vaccine encoding chimeric protein encompassing epitopes of human ZP3 and ZP4: Immunogenicity and characterization of antibodies [J]. Reprod Immunol. 2008, 51(3):124-131.
    [28] Henderson CJ, Hulme MJ, Aitken RJ. Contraceptive potential of antibodies to the zona pellucida[J]. Reprod Fertil. 1988, 83 (1): 325-343.
    [29] Kerr PJ, Jackson RJ, Robinson AJ,et al. Infertility in female rabbits(oryctolagus cuniculus)allo immunized with the rabbit zona pellucida protein ZPB either as a purified recombinant protein or expressed by recombinant myxoma virus [J]. Biol Reprod, 1999, 61(3): 606-613.
    [30] Singleton GR, Farroway LN, Chambers LK, et al. Ecological basis for fertility control in the house mouse using immunocontraceptive vaccines [J]. Reproduction, 2002, 60 (1): 31–39.
    [31] Greenwood A, Sanchez S. Serological evidence of murine pathogens in wild grey squirrels (Sciurus carolinensis) in North Wales [J]. Vet Rec, 2002, 150(17):543–546.
    [32] Smith LM, Lloyd ML, Harvey NL, et al. Species-specificity of a murine immunocontr -aceptive utilising murine cytomegalovirus as a gene delivery vector [J]. Vaccine. 2005, 23(23): 2959–2969.
    [33] Christine BB, Alan A, Sally AS, et a1. Replication-defective recombinant adenovirus expressing the human immunodeficiency virus Env antigen can induce both humoral and CTL immune responses in mice [J]. General Virol. 1999, 80: 2621-2628
    [34] Lemiale F, Kong WP, Akyurek LM, et al. Enhanced mucosal immunoglobulin A response of intranasal adenoviral vector human immunodeficiency virus vaccine and localization in the central nervous system [J] Virol. 2003, 77: 10078–10087.
    [35] Kiyono H, Fukuyama S. NALT- versus Peyer’s-patch-mediated mucosal immunity [J] Nat Rev Immunol. 2004, 4: 699–710.
    [36] Neutra MR, Kozlowski PA. Mucosal Vaccines: The Promise and the Challenge [J]. Nat Rev Immunol. 2006, 6: 148–158.
    [37] Patel A, Zhang Y, Croyle M, et al. Mucosal delivery of adenovirus-based vaccine protects against Ebola virus infection in mice [J]. Infect Dis, 2007, 196: S413–S420.
    [38] Herrmann J E, Chen S C, Jones D H, et a1. Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles [J]. Virology, 1999, 259: 148-153.
    [39] Xiang Z, Ertl H C. Induction of mucosal immunity with a replication-defective adenoviral recombinant [J]. Vaccine, 1999, 17:2003-2008
    [40] Oomura K, Xin KQ, Takakura M, et al. Oral administration of the adenovirus vector induces systemic immunity rather than intestinal mucosal immunity.[J].Vaccine. 2006, 24(8):1045–6.
    [41] Harvey BG, Neil RH, Tarek E, et a1. Variability of human systemic humoral immuneresponses to adenovirus gene transfer vectors administrated to different organs [J]. Virol. l992, 99:67l9-6742
    [42] Lou Y, Ang J, Thai H, et al. A zona pellucida 3 peptide vaccine induces antibodies and reversible infertility without ovarian pathology [J]. J Immunol 1995, 155 (5): 2715-2720.
    [43] Hardy CM, ten Have JF, Mobbs KJ, et al. Assessment of the immunocontraceptive effect of a zona pellucida 3 peptide antigen in wild mice [J].Reprod Fertil Dev 2002, 14 (3-4): 151-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700