多功能质粒载体与组合Bt杀虫蛋白基因工程菌研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对小菜蛾、甜菜夜蛾、水稻二化螟等重要的农业害虫,以高效Bt C002菌株、可应用于植物病害生物防治的荧光假单胞菌P303、枯草芽孢杆菌B916和棉花叶面天然分离株B918等为试验材料,系统开展了多功能载体构建、Bt 质粒复制区与杀虫蛋白基因克隆、组合基因工程菌研制和Mini-Tn10微转座子转座研究等多项研究,主要研究结果总结如下:
     1 构建了两个新的质粒载体pSpcα-lac和pSpcPα-lac。无选择压条件下连续培养50小时穿梭载体pSpcPα-lac在P303中稳定性为100%,与假单胞菌穿梭质粒pJMS6α-lac亲和稳定性不低于99.94%/代。生物安全广宿主表达的壮观霉素抗性标记、pBlueScript KS(-)多克隆位点与α互补功能赋予了两种质粒多功能载体的优点,为基因克隆、测序、细菌复制区分离和复制机制研究的提供了易于操作的载体工具。
     2 利用载体pSpcPα-lac和枯草芽孢杆菌168研究系统,从Bt C002菌株克隆了一个6909 bps的新的质粒复制区片段,GenBank注册为AY126018。序列分析表明克隆DNA至少编码ORF145、ORF190和ORF200三个蛋白。ORF190为新的蛋白质,仅与细菌重组酶/整合酶有40%以下的一致性:ORF145和ORF200与Bt复制蛋白Rep9741两端保守核心序列有97%一致性,但大小不同。37℃连续培养55.5h复制区质粒在168菌中稳定性达98%,为建立拥有自主知识产权的Bt载体系统和进一步构建高效稳定工程菌株创造了条件。
     3 以pSpcP α-lac为载体构建了携带Bt crylAb基因的重组表达质粒pZY311和pZY313,分别与携带crylAc和cry2Aa双价基因的pJMS6α-lac衍生质粒共转化荧光假单胞菌P303,获得了三价Bt荧光假单胞菌工程菌BioP6和BioP8。连续培养和连续稀释培养72小时,BioP6和BioP8中两种质粒亲和稳定性分别为83.5%、89.1%和80.0%、84.8%。
     4 室内生测表明BioP6对小菜蛾杀虫活性与双价工程菌BioP202相当,BioP8则明显高于BioP202。2000~2001连续两年田间试验显示BioP8的10倍稀释液96h对小菜蛾田间虫口减退率分别为98.3%和94.8%,100倍稀释液虫口减退率为84.8%,BioP8田间防效与市售Bt制剂相当(86.1%)。越冬前后对2000年试验地土壤样品追踪检测没有发现工程菌株的残留与扩散,目前BioP8已获准进入环境释放试验研究。利用不同亲和群质粒稳定共存的特点研制的三价基因荧光假单胞菌工
    
     中国农业科学院博士学位论文 中文摘要
     程菌与国外转单价基因工程菌株混配策略明显不同,显示了本研究的特色,进一步
     促进了我国异源细菌转Bt杀虫蛋白基因微生物杀虫剂研究的产业化进程。
     5 以穿梭载体pHT315为载体自 Bt C002菌株分离克隆了 Cry]Cas和 CryZAb3基
     因,Genbank注册为 AF362020和 AF164666,并获 Bt cry基因国际命名委员会正
     式命名。进一步构建了一系列含不同Cry基因或基因组合的大肠杆菌一枯草芽胞杆
     菌穿棱和染色体整合重组质粒。遗传转化枯草芽抱秆菌168,获得了BS-IAb。
     Bs.IAb.ZAa、Bs.ZAa、BS.IAc和 Bs-IAc-ZAa单价或双价穿梭质粒工程菌株和
     BDs.IAbZAa、BDs.IAb、BDs.ICa和 BDs.ICa.ZAa染色体整合工程菌株。
     6 室内生测结果显示含CryjAb基因的工程菌对二化螟、亚洲玉米螟和欧洲玉米
     螟活性最强,含 CIy]Cas基因的工程菌株对二化螟、棉贪夜蛾具有高毒力;双价基
     因 cry1Ac+cryZAa和 cry1Ab+clyZAal程菌对供试害虫没有明显的协同增效或抑
     制作用,而cry]Cas化 双价基因工程菌株对甜菜夜蛾和棉贪夜蛾杀虫活性明
     显高于CryjCas单基因工程菌,校正死亡率分别为70%、37.5%和 100%、50%,
     可能存在增效作用。
     7 以水稻纹枯病菌生防菌Bgl6为受体,构建了单价和双价杀虫防病工程菌株
     Bgl6—IAb和 Bgl6—IAc-ZAa。研究表明工程菌4天对水稻二化螟初孵幼虫校正
     死亡率为 100%,7天对亚洲玉米螟和棉铃虫初孵幼虫体重抑制率分别为 97石7%和
     98%。连续培养 42小时工程菌株稳定性高于 79.5%,并保持了出发菌株对水稻纹
     枯病菌良好的抑菌活性,显示了杀虫防病枯草芽抱杆菌工程菌株的良好应用前景。
     吕 研究发现枯草芽抱秆菌Bgls不仅能形成结实的生物膜(Biofilms),而且具有
     类似子实体特征的立体结构。遗传转化研究表明电击转化适用于Bgl6和B918,转
     化效率为 10\fu/PgDNA。微转座于质粒 pHV1249转化 Bgls,构建了 Bgls微转
     座子插入突变库,诱导转座效率为 2.66X 10\ 为进一步分离克隆 Bgls抗酉相关
     基因(簇)和阐明类子实体结构形成的信号传导与分化发育机制奠定了基础。
Aiming at biocontrol of important agricultural insect pests such as Plutella xylostella, Spodotera exigua and Chilo suppresalis, the commercialized biocontrol bacteria Pseudomonas flurescens P303, Bacillus subtilis B916, a natural isolates B. subtilis B918 from cotton leaves and Bt C002 with high insecticidal toxicity were selected and the construction of versatile plasmid vectors, cloning of Bt cry genes and plasmid replicon, transposition of mini-TnlO transposon and development of genetically modified P. flurescens and B. subtilis were systematically studied. The major research results are summarized as follows.
    1 Novel E. coli and E. coli-Pseudomonas shuttle plasmid vectors pSpca-/ac and pSpcPoc-/flc were constructed. After continuous culturing for 5 Oh without antibiotic selecting press, the stability of P. flurescens P303 carrying pSpcPa-lac was 100% stability. No deletion, rearrangement and a -complementary function altering could be detected in pSpcPa -lac. Research proved that plasmid pSpcPot -lac and pJMS6a -lac are well compatible with a 99.94% co-existing stability per generation in P303o The biosafety and expressing in different bacteria of spectinomycin resistant gene, the Multi-Cloning-Sites (MCS) and the a-complementation function of plasmid pBlueScript KS(-) contributed to two versatile plasmids, which could be useful and easily manipulating for gene cloning, sequencing and isolation of bacterial plasmid replicon and research on replicating mechanism,
    2 With plasmid pSpcPa-/ac and B. subtilis 168 research system, a 6909 bps DNA fragment carrying a novel plasmid replicon was isolated from Bt C002 and registered in GenBank as AY1260180 Sequence analysis showed that there are at least three ORF (Open Reading Frame) in the cloned DNA, i.e. ORF145> ORF190 and ORF200 respectively. ORF 190 is a novel protein which only has less than 40% identities with Integrase/recombinase family from bacteria; Both ORF 145 and ORF200 have 97% identities with the N-and C-conserve core sequence of Bt Replicating related protein Rep9741, but with different molecular weighto After continuous culturing for 55.5h at 37℃ without antibiotic selecting press, the stability of plasmid carrying cloned replicon in B. subtilis 168 was 98%. This work laid a foundation for further construction of stable vectors system and genetically modified Bt strains.
    
    
    3 Recombinant shuttle plasmids pZY311 and pZY313 were constructed by inserting full length Bt crylAb gene in the MCS of pSpcP a-lac. Plasmids pZY311 and pZY313 with pJBT2008 a derivative of pJMS6cc-/ac carried crylA and cry2Aa were co-transferred into P. flurescens P303 respectively, the engineered strains with three Bt cry genes were designed as BioP6 and BioPS . After continuous and successive diluting culture for 72h, the plasmids compatible stabilities in BioP6 and BioPS were 83.5%, 89.1% and 80.0%, 84.8%, respectively.
    4 Results of lab bioassay showed that BioP6 and BioP202(P303 with pJBT2008) have the same insecticidal activities against P. xylostella, while BioPS is much more toxic than BioP202. In year 2000 and 2001, BioPS was tested in the fields for biocontrol of P. xylostella and the larvae decrease rate ( LDR ) after treating 96h using its 10 times diluting ferment were 98.3% and 94.8%, and the LDR for 100 times diluting ferment was 84.8% which is equal to commercialized Bt product (86.1%). No remnants and diffuse could be detected in
    the soil samples from tested field in year 2000. BioPS has been granted to release in field trial. It is just the characteristic of this work that using the compatibility between plasmids from different computable groups to construct genetically modified bacteria carrying three different Bt cry genes, which is quite different from the strategy combining different modified bacteria carrying one cry gene, e.g. the Cellcap system. It greatly promoted the commercializing proceeding of inter-genus recombinant bacteria by transferring Bt cry genes.
    5 Bt crylCaS and cry2Ab3 gene were cloned from the strain C002
引文
1.陈志谊,拮抗细菌B916防治水稻纹枯病作用机制研究.南京农业大学博士学位论文,1998。
    2.陈志谊,殷尚智,筛选和利用拮抗细菌防治水稻纹枯病和恶苗病的研究.生物防治通报,1992,8(2):79~82。
    3.陈志谊,高太东,严大富等,枯草芽孢杆菌B916防治水稻纹枯病的田间试验.中国生防防治,1997,13(2):75~78。
    4.陈中义,张杰,曹景萍,丁之铨,黄大方,陈志谊,杀虫防病基因工程枯草芽孢杆菌的构建.生物工程学报,1999,15(2):215-220.
    5.陈中义,吴限,管宇,姚江,张杰,黄大昉.荧光假单胞菌(Psedomonas fluorescens)工程菌株田间残留和扩散的追踪检测。应用与环境生物学报,2002,8(1):83-86
    6.陈中义,陆伟,林敏,黄大昉,农业重组微生物的生物安全性.农业微生物基因工程.黄大昉,林敏编。北京,科学出版社,2001.p457~493。
    7.陈中义,林敏,黄大昉,首例属间遗传工程微生物进入有限商品化生产.农业生物技术通报,1998,6:41~41.
    8.丁之铨,张杰,陈中义,黄大昉,李季伦.遗传工程荧光假单胞菌的生物学特性研究.微生物学报,2001,41(1):3-8.
    9.丁之铨,张杰,宋福平等,双价杀虫蛋白基因在荧光假单胞菌中的表达及增效.微生物学报,2000,40:573-578.
    10.谌晓曦,陈卫良,马志超,阮红,抗水稻纹枯病菌拮抗蛋白质的理化性质研究。浙江农业大学学报,1999,5(10):491-494.
    11.范青,田世平,李永兴,汪沂,徐勇,李久蒂.枯草芽孢杆菌(Bacillus subtilis)B-912对采后柑桔果实青、绿霉病的抑制效果.植物病理学报,2000,30(4):343-352.
    12.胡剑,赵永歧,忘五岳.枯草芽孢杆菌BS-98分泌的抗真菌蛋白的分离纯化及其部分性质的研究.微生物学报,1997,24:2~6。
    13.黄大昉.生物技术在生防微生物遗传改良中的应用.1995,植物病虫害生物学研究进展:植物病虫害生物学国家重点实验室研究论文选,何礼远,中国农业科学出版社。
    14.孔建,王文夕,赵白鸽,申效诚,枯草芽孢杆菌B-903菌株的研究 Ⅰ.对植物病原菌的抑制的作用和防治试验.中国生物防治,1999,4(11)P.157-161
    15.孔建,王文夕,赵白鸽,申效诚.枯草芽孢杆菌B-903菌株的研究Ⅲ.影响抗菌物质产生和积累的主要因素.中国生物防治,2000a,2:65-68.
    16.孔建,王文夕,赵白鸽,申效诚.枯草芽孢杆菌B-903菌株的研究Ⅱ.抗菌物质的理化特性.中国生物防治,2000b,1:12-14。
    
    
    17.孔建,王文夕,赵白鸽等1992,Bacillus subtilis B903抗菌活性的初步研究。中国生物防治,1992,8(2):91-92.
    18.孔建,赵白鸽,王文夕等,Bacillus subtilis B-903对Fusarium oxysporum抗菌机制的显微镜研究,植物病理学报,1998,28(4):337-340.
    19.李长友,对鳞翅目害虫高毒力Bt菌株B-Hm-16和B-Pr-88的分子生物学研究.东北农业大学博士学位论文,2001。
    20.李华荣,蜡质芽孢杆菌R2防治水稻纹枯病研究.生物防治通报,1993,23(2):101~104。
    21.林东,徐庆,刘忆舟,魏军明,瞿礼嘉,顾红雅,陈章良,2001,枯草芽孢杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化,农业生物技术学报,V.9,1:77-80.
    22.刘进元,潘乃穟,陈章良,抗菌蛋白LCIIB的分离纯化及性质。微生物学报,1993,33(4):268~273。
    23.刘伊强,陈章良.利用原生质体融合技术选育防治植物病害的基因重组菌株.遗传学报,1993,20(6):524~530。
    24.刘伊强,陈章良.芽孢杆菌原生质体的形成、再生及中间融合的研究.微生物学报,1994,34(1):76~80。
    25.刘颖,徐庆,陈章良抗真菌肽LP-1的分离纯化及特性分析。微生物学报,1999,39(5):441~447。
    26.刘云霞,Bt杀虫基因向水稻内生菌中的克隆.中国农业大学博士论文,1996。
    27.陆燕君,短小芽孢杆菌A3菌株对泡桐腐烂病菌的拮抗作用,生物防治通报,1993,9(4):170~172。
    28.裴炎,李先碧,彭红卫,陈祥贵,刘建国,抗真菌肽APS-1的分离纯化及特性。微生物学报,1999,39(4):344~349。
    29.孙良武.电脉冲穿孔法将苏云金芽孢杆菌δ-内毒素基因导入野生型芽孢杆菌,生物工程学报,1994,10(1):1~6。
    30.孙良武,苏云金芽孢杆菌δ-内毒素基因穿梭质粒的构建,微生物学报,1996,36(1):69~72。
    31.宋福平,张杰,丁之铨等,苏云金芽孢杆菌cry基因PCR-RFLP鉴定体系的建立.中国农业科学,1998,31:13-18.
    32.唐文华.原生质体融合子CF103的构建及大田应用效果.全国生物防治学术讨论会论文摘要集,1995,p330。
    33.童有仁,马志超,陈卫良,李德葆,枯草芽孢杆菌B034拮抗蛋白的分离纯化及特性分析。微生物学报,1999,39(4):339~343。
    34.王平,胡正嘉,李阜棣,荧光假单胞菌在植物根际定殖研究进展.应用与环境生物学报.1996.2(4):408-414
    
    
    35.王雅平,陈章良,枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究.生物防治通报,1992,8(2):54~57。
    36.王雅平,陈章良1993.枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报,9(2):63~68。
    37.王雅平,刘伊强,潘乃穟,陈章良,抗真菌蛋白BII,的分离纯化及其性质研究。生物化学与生物物理学报,1993,25(4):389~397。
    38.王益民,几丁质酶基因和β-1,3-葡聚糖酶基因的克隆及其在枯草芽孢杆菌B908中的表达.中国农业大学博士学位论文,1997.
    39.谢栋,彭憬,王津红,胡剑,王岳五,枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质。微生物学报,1998,38(1):13~19。
    40.辛玉成,秦淑莲,李宝笃,尹士采,丁锡花,雷彩霞,枯草芽孢杆菌XMl6菌株制剂对苹果霉心病的防治及病原的抑制作用.植物病理学报,2000a,30(1):66-70.
    41.辛玉成,秦淑莲,刘希光,金静等,1999a,枯草芽孢杆菌XM18菌株对植物防病增产效应的研究。山东农业大学学报,增刊(5):P176-178。
    42.辛玉成,秦淑莲,刘希光等,1999b,几种拮抗菌株对苹果霉心病菌抑制作用研究,中国果树,3:15。
    43.辛玉成,祝庆岱,郝寿青,徐月华,衣先家,枯草芽孢杆菌CN620菌株制剂对板栗烂果病的防治及病原的抑制作用初报.莱阳农学院学报,2000b,4(12):247-249.
    44.杨大旗,水稻丰收菌代谢产物分析.植物有益微生物的研究与应用-水稻丰产菌,科学技术出版社,1992,p40~49。
    45.张光焰,张杰,黄大昉1995.用电激转化构建杀虫防病荧光假单胞菌.中国农业科学,28(4):8~13。
    46.张光焰,张杰,黄大昉.1993.运用电激转化技术构建杀虫工程菌.生物防治通报,4:185。
    47.张杰,彭于发,黄大昉.1993.“荧光205、荧光212”等杀虫防病工程菌的创建.中国农业科学,26(3):89。
    48.张宁,潘乃穟,陈章良,细菌中一种抗菌蛋白的分离纯化及特性分析。植物学报,1993,35(5):342~348。
    49.张学军,王金生,枯草芽孢杆菌B3菌株在小麦根系和茎基部的定殖作用.生物防治通报,1994,10(4):171~174。
    50. Anagnostopoulos C, and Spinizen J. Requirements for transformation in Bacillus subtilis. J Bacteriol., 1961, 81:741-746.
    51. Aoki Y, M Yamamoto, SM Hosseini-Mazinani, N Koshikawa, K Sugimoto, and M Arisawa. Antifungal azoxybacilin exhibits activity by inhibiting gene expression ofsulfite reductase. Antimicrob. Agents Chemother., 1997, 40:127-132.
    52. Aoki Y; Kondoh M; Nakamura M; Fujii T; Yamazaki T; Shimada H., 1994. A new methionine antagonist that has antifungal activity: mode of action.J. Antibiot, 47,
    
    8,909-916.
    53. Aono R, Hammura M, Yamamoto M, Asano T. Isolation of extracellular 28-and 42-kilodalton beta-l,3-glucanases and comparison of three beta-l,3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol. 1995,
    54. Arima K, Kakinuma A, and Tamura G, Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis isolation , Characterization and its Inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31 : 488.
    55. Asaka O, and M Shoda. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 1996, 62: 4081-4085.
    56. Ausubel FM, R Brent, RE Kingston, et al. , Short protocools in molecular Biology: A compendium of methods from protocools in Molecular Biology, Third Eds. 1995, John Wiley & Sons, Inc. .
    57. Babasaki K, takao T, Shimonishi Y and Kurahashi K, Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J biochemishtry (Tokyo), 1985, 98:585-603.
    58. Bacon CW, Yates IE, Hinton DM, et al. Biological control of fusarium moniliforme in maize. Environ. Health Perspect, 2001,109 Supp2:325~332.
    59. Baker K. F. Evolving concepts of biological control of plant pathogens[J]. Ann Rev. Phytopathol., 1987,25:67-85.
    60. Banerjee S and Hansen JN, Structure and expression of a gene encoding the precursor of subtilin. a small protein antibiotic. J. Biol. Chem., 1988, 263, 9508.
    61. Belshaw PJ, Walsh CT, Stachelhaus T, Aminoacyl-coAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 1999, 284:486-489.
    62. Bender J and N. Kleckner, IS 10 transposase mutations that specifically alter target site recognition. EMBO J. , 1 992, 1 1 :74 1-750.
    63. Benhamou N, Kloepper JW, Tuzun S, Induction of defensre-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 1996, 112: 919-29.
    64. Berg CD. Berg, and E. Groisman, Transposable elements and the genetic engineering of bacteria. In D.berg and M Howe (ed) Mobile DNA. 1990, American Society for Microbiology. Washington D.C.
    65. Besson F, F Peypoux, G Michel, and L Delcambe. The structure of bacillomycin L, an antibiotic from Bacillus subtilis . Eur. J. Biochem. 77: 61-67.
    66. Besson F, Michel G. Bacillomycins Fb and Fc: isolation and characterization. J.Antibiot. 1988,41,282-288.
    67. Besson F, Michel G. Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis. Microbios. 1990, 62:93-9.
    68. Besson F; Michel G. Isolation and characterization of new iturins: iturin D and
    
    iturinE. J. Antibiot., 1987,40: 437-442.
    69. Biopesticide, 2001, http://www.epa.gov/pesticides/biopesticides. Office of Pestcide program, EPA, USA.
    70. Blakeman JP and Fokkema N. J. Potential for biological control of plant diseases on the phylloplane. Ann. Rev Phytopathol. 1982,20:167-192.
    71. Bone EJ. Transformatiom of Bacillus thuringiensis by electroporation. FEMS Microbiol. Lett. 1989, 58:171~178.
    72. Borchert S, Stachelhaus T, Marahiel MA. Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis. J. Bacteriol., 1994, 176(8) :2458-62.
    73. Branda ST, Gonzalez-Padtor JE, Ben-Yehuda S, et al., Fruiting body formation by Bacillus subtilis. PNAS, 2001, 98: 11621-11626.
    74. Bron S. Plasmid instability and molecular cloning in Bacillus subtilis. Res. Microbiol. 1991. 142:875~883.
    75. Cane DE and Walsh CT. The parallel and convergent universes of polyketide synthases and nonribosomal peptide syntheases. Chem Biol., 1999, 6:8319-325.
    76. Cane DE, Walsh CT, Khosla C, Harnessing the biosynthetic code: combinations, permutations, and mutations. Science, 1998,282:63-68.
    77. Chen CL; Chang LK; Chang YS; Liu ST; Tschen JSM, 1995, Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Molecular and General Genetics. 248: 2, 121-125.
    78. Chernin LS, De la Fuente L, Sobolev V, Haran S, Vorgias CE, Oppenheim AB, Chet I.Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Appl Environ Microbiol. 1997, 63(3) :834-9.
    79. Citernesi AS, Filippi C, Bagnoli G, Giovannetti M. Effects of the antimycotic molecule Iturin A2, secreted by Bacillus subtilis M51, on arbuscular mycorrhizal fungi. Microbiol. Res, 1994, 149(3) : 241-246.
    80. Conti E, Stachelhaus T, marahiel MA and Brick P. structural basis for the activation of phenylalanine in the nonribosomal biosynthesis of gramicidin S. EMBO. J., 1997, 16: 4174-4183.
    81. Conti E, Franks NP, and Brick P. Crystal structure of firefly luciferase throws lights on a superfamily of adenylate-forming enzymes. Structure, 1996, 4: 287-298.
    82. Cosmina P, F. Rodriguez, F de Ferra, G Grandi, M Perego, G Venema, and D van Sinderen. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 1993, 8:821-831.
    83. Crickmore N and Ellar HR. Involvement of a possible chaperonin in the efficient expression of a cloned cryllA δ-endotoxin gene in Bacillus thuringiensis. Mol. Microbiol. 1992, 6:1533~1537.
    
    
    84. Crickmore N, Bacillus thuriniensis toxin nomenclature. 2002, WWW site: http://epunix.biols.susx.ac.ulc/Home/Neil Crickmore/Bt/index.html.
    85. Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH, Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins.Microbiol Mol Biol Rev. 1998, 62(3) :807-13.
    86. Crickmore N, Wheeler VC and Ellar DJ. Use of an operon fusion to induce expression and crystallisation of a Bacillus thuringiensis 5-endotoxin encoded by a cryptic gene. MGG. 1994, 242:365-368.
    87. Dankocsik C, Donovan WP, Jany CS. Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity.Mol Microbiol. 1990, 4(12) :2087-94.
    88. De Ferra F, Rodriguez F, Tortora O, Tosi C, Grandi G, 1997, Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides. J Biol Chem 272: 25304-25309.
    89. Debora CM Gland, Patrick Verheggen Timo Jansen et al.Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat. Appl. Environ. Microbiol. 2001,67:3371-3378.
    90. Devine KM, Replication and segreational stability of Bacillus plasmid pBAAl. J. Bacteriol. 1989, 171: 1166-1172.
    91. Diekmann R, Lee YO, Liempt H van, Dohren H von, Kleinkauf H. Expression an active adenylate-forming domain of peptide synthetases corresponding to acyl-coA-synthetases. FEBS Lett. 1995, 357:212-216.
    92. Distler J, Mansouri K, and Piepersberg W, Streptomycin biosynthesis in Streptomyces griseus. II. Adjacent genomic location of biosynthetic genes and one of two streptomycin resistance genes. FEBS Microbiol. Lett.. 1985, 30. 151.
    93. Doekel S, Marahiel MA Dipeptide formation on engineered hybrid peptide synthetases. Chem Biol., 2000, 7:373-384
    94. Du L, Chen M, Sanchez C, Shen B An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. FEMS Microbiol Lett. 2000, 189:171-175
    95. Dubnau D. Genetic competence in Bacillus subtilis. Microbiological Reviews, 1991, 55:395~424.
    96. Duitman EH, LW Hamoen, M Rembold, et al., The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA, 1999, 96:13294-13299.
    97. Ehmann DE, Trauger JW, Stachelhaus T, Walsh CT Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases. Chem Biol., 2000, 7: 765-772
    
    
    98. Ehrlich SD. Plasmid replication and structural stability in Bacillus subtilis . Res. Microbiol., 1991, 142:869-873.
    99. Eisner A, Engert H, Saenger W, Hamoen L, Venema G, Bernhard F, Substrate specificity of hybrid modules from peptide synthetases. J Biol Chem., 1997, 272: 4814-4819.
    100. Emmert E, and Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective. FEMs Microbiol. Lett, 1999,171(1) : 1-9.
    101. Eppelmann K, Doekel S, and Marahiel MA. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J. Biol. Chem., 2001,276 (37) : 34824-34831.
    102. Errington J. Determination of cell fate in Bacillus subtilis. Trends in Genetic, 1996, 12:31~34.
    103. Eshita SM, Roberto NH, Beale JM, Mamiya BM, Workman RF, Bacillomycin Lc, a new antibiotic of the iturin group: isolations, structures, and antifungal activities of the congeners. Journal of Antibiotics. 1995, 48: 1240-1247 .
    104. Fabret C, Quentin Y, Guiseppi A, Busuttil J, Haiech J, denizort F, Analysis of errors in finish DNA sequence: the surfactin operon of Bacillus subtilis as an example. Microbiol., 1995, 141: 345-350.
    105. Fiddaman PJ; Rossall S, 1993, The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology. 74: 2, 119-126.
    106. Fiddaman PJ; Rossall S, 1994, Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. Journal of Applied Bacteriology. 76: 4, 395-405.
    107. Frandberg E, Schnurer J, Antifungal activity of chitinolytic bacteria isolated from airtight stored cereal grain. Canadian Journal of Microbiology. 1998, 44: 2, 121-127.
    108. Froshov, O. 1974. Bacitracin biosynthesis by three complementary fractions from Bacillus licheniformis. FEBS Lett. 44. 75.
    109. Fujikawa, R, Sakamoto, Y, and Kurahaski, K, 1971. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC8185 II further purification of components I and II and their functions in tyrocidine synthesis. J. Biochem. 69: 869.
    110. Fujiu M; Sawairi S; Shimada H; Takaya H; Aoki Y; Okuda T; Yokose K, 1994, Azoxybacilin, a novel antifungal agent produced by Bacillus cereus NR 2991. Production, isolation and structure elucidation. Journal of Antibiotics. 47: 7, 833-835.
    11 l.Gehring AM, Mori I, Perry RD, Walsh CT, The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry, 1998, 37: 11637-11650.
    112. Gelernter W and Schwab GE. Transgenic bacteria, Viruses, algae and other microorganisms as Bacillus thuringiensis Toxin delivery systems. in Bacillus
    
    thuringiensis, an environmental biopesticide, theory and practice. Entwistle, P.F. et al Eds. 1993, John wiley and sons Inc." p89~104.
    113. Gevers W, Kleinkauf H, and Lipmann F, Peptide transfer in gramicidin S biosythesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. U.S.A.1969, 63: 1335.
    114. Gevers W, Kleinkauf H, Lipmann F The activation of amino acids for biosynthesis of gramicidin S. Proc Natl Acad Sci USA, 1968, 60:269-276
    115. Ghosh SK, Majumder S, Mukhopadhyay NK, and Bese SR, Functional characterization of constituent enzyme fractions of mycobacillin synthetase. Biochem. J. 1985, 230: 785.
    116. Gleave AP, Williams R, Hedges RJ.Screening by polymerase chain reaction of Bacillus thuringiensis serotypes for the presence of cryV-like insecticidal protein genes and characterization of a cryV gene cloned from B. thuringiensis subsp. kurstaki.Appl Environ Microbiol. 1993, 59(5) : 1683-7.
    117. Gonzalez JM, Dulamage, HT, and Carlton, BC. Correlation between specific plasmids and 8-endotoxin production in Bacillus thuringiensis. Plasmid 1981, 5: 351~365.
    118. Grossman AD and Losick R, Extracellular control of spore formation in Bacillus subtilis.Proc.Natl.Acad. Sci. U.S.A. 1988, 85: 4369.
    119. Guenzi E, Galli G, Grgurina I, Gross DC, Grandi G Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J Biol Chem., 1998a, 273:32857-32863.
    120. Guenzi E, Galli G, Grgurina I, Pace E, Ferranti P, Grandi G, Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and activity of the multienzyme complex. J Biol Chem., 1998b, 273:14403-14410.
    121. Guerout-Fleury AM, Shazand K, Frandsen N, and Stragier P. Antibiotic resistance cassettes for Bacillus subtilis. Gene, 1995, 167: 335-336.
    122. Guillen N, Weinrauch Y, and Dubnau DA, Cloning and characterization of the regulatory Bacillus subtilis competence genes. comA and comB. J. Bacteriol. 1989, 171: 5354.
    123. Haese A, Schubert M, Herrmann M, Zocher R. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol Microbiol. 1993,7:905-914.
    124. Haldenwang WG. The sigma factors of Bacillus subtilis. Microbiological reviews , 1995, 59: l~30.
    125. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol., 1998, 5:245-249.
    126. Harwood CR. and Cutting SM. (ed.), Molecular biological methods for Bacillus.
    
    John wiley and Sons, 1990, Chichester, United Kindom.
    127. Hathout Y, Ho YP, Ryzhov V, Demirev P, fenselau C. Kustakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod., 2000, 63(11) : 1492-6.
    128. He H; Silo Suh LA; Handelsman J; Clardy J, Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron Letters. 1994, 35: 16, 2499-2502.
    129. Herrera G, Snyman SJ, and Thomson JA. Construction of a bioinsecticidal strain of Pseudomonas flurecens active against the sugarcane borer, Eldana saccharina. Appl. Environ. Microbiol. 1994, 60:682-690.
    130. Hilton MD, Alaeddinoglu NG, and Demain AL, Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acids pathway. J. Bacteriol., 1988b, 170: 482.
    131. Hilton MD, Alaeddinoglu NG, and Demain AL. Bacillus subtilis mutant deficient in the ability to produce the dipeptide antibiotic bacilysin: Isolation and mapping of the mutation. J. Bacteriol. 1988a.l70: 1018.
    132. Hinrichseri P, and Vicuna R, Possible onitial steps in the catabolism of 1,2-diphnylethanone (deoxybenzoin) by Pseudomonas fluorescens DB-5. Appl. Environ. Microbiol. 1993, 59: 3477-3479.
    133. Hiraoka H, T Ano, and M Shoda. Molecular cloning of a gene responsible for the biosynthesis of the lipopeptide antibiotics iturin and surfactin. J. Ferment. Bioeng. 1992, 74:323-326.
    134. Hopwood DA, Malpartida F, Kieser HM, et al., Production of 'hybrid' antibiotics by genetic engineering. Nature. 1985, 314: 642,
    135. Hori K, Yamamoto Y, Minetoki T, et al., Molecular cloning and nucleotide sequence of the gramicidin S synthetase I gene. J. Biochem., 1989, 106: 639.
    136. Huang CC, T Ano, and M Shoda. Nucleotide sequence and characteristics of the gene, lpa-14, responsible for biosynthesis of the lipopeptide antibiotics iturin A and surfactin from Bacillus subtilis RB14. J. Ferment. Bioeng. 1993, 76:445-450.
    137. Husi H, Schorgendorfer K, Stempfer G, et al, Prediction of substrate-specific pockets in cyclosporin synthetase. FEBS Lett, 1997, 414:532-536.
    138. Hyun-Woo P. Expression and synergistic effect of three types of crystal protein genes in Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 1995, 214: 602-607.
    139. Inbar J and Chet J. Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol. Biochem.,1991,23 (10) : 973-978.
    140. Ishihara H and Shimura K, Biosynthesis of bacitracin. III. Partial purification of a bacitracin synthesizing enzyme system from Bacillus licheniformis. Biochim. Biophys. Acta. 1974, 338: 588.
    
    
    141 .Ishihara H and Shimura K, Further evidence for the presence of a thiazoline ring in the isoleocylcysteine dipeptide intermediate in bacitracin biosynthesis. FEBS Lett. 1988, 226: 319.
    142. Ishihara H, Endo Y, Abe S,et al, The presence of 4'-phosphopantelheine in the bacitracin synthetase. FEBS Lett. 1975, 50: 43.
    143. Ishihara H., Kara, N., and Iwabuchi, T, Molecular cloning and expression in Escherichia coli of the Bacillus licheniformis bacitracin synthetase 2 gene. J. Bacteriol. 1989, 171. 1705.
    144. Ivanovics G and Alfoldi J, A new antibacterial principle: megacine. Nature, 1954, 4:427-465.
    145. Jack RW, Tagg JR and Ray B, Bactericins of gram-positive bacteria. Microbiological Review, 1995, 59:171-200.
    146. Jetiyanon K, Tuzun S, Kleopper JW, et al., Lightification, peroxidase and superoxide dismatase as early plant defense reactions associated with PGPR-mediated induced systemic resistance. Phytopahtology, 1997, 86:114.
    147. Karyala SV, Gay PA, Carey J, Cleveland TE, Woods F, Tuzun S. Cloning of bacterial genes encoding chitinases that inhibit mycotoxin producing fungi. Phytopathology; 1993, 83: 1360.
    148. Keating TA, Walsh CT.Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr Opin Chem Biol 1999, 3:598-606
    149. Kenji S, A Yokota, H Kurokawa, M Wakayama, and M Moriguchi. Purification and Characterization of Three Thermostable Endochitinases of a Noble Bacillus Strain, MH-1, Isolated from Chitin-Containing Compost. Appl. Envir. Microbiol., 1998, 64: 3397-3402.
    150. Kenji Tsuge, Takanori Akiyama, and Makoto Shoda. Cloning, sequencing, and characterization of the Iturin operon. J bacteriol. 2001, 183: 6265-6273.
    151. Kleinkauf H, von Dohren H. 1990, Nonribosomal biosynthesis of peptide antibiotics. Eur. J Biochem, 192:1-15.
    152. Kleinkauf, H. and ton Dohren, H., 1987. Biosynthesis of peptide antibiotics. Annu. Rev. Microbiol. 41. 259.
    153. Kloepper JW. Toward agricultural implementation of PGPA-mediated induced systemic resistance against crop pesists.in "dvances in biological control of plant disesdes , proceeding of international workshop on biological control of plant diseases, " , Wenhua Tang, Cook, R.J. and Rovira A., Eds., China Agricultural University Press, 1996 ,p165~174.
    154. Kobayashi H, Shimada A, Kuroda S. Isolation of antifungal bacillomycin D and its derivatives produced by Bacillus subtilis KDK strain. J. Pharm. Sci. 1987, 76: 5187.
    155. Konda Y, Nakagawa A, Harigaya Y, Onda M, Masuma R, Omura S.Aurantinin B, a new antimicrobial antibiotic from bacterial origin. J Antibiot (Tokyo) 1988,
    
    41(2) :268-70
    156. Konz D, Klens A, Schorgendorfer K, Marahiel MA, The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol1997, 4:927-937.
    157. Konz D, Marahiel MA, How do peptide synthetases generate structural diversity? Chem Biol, 1999a, 6:39-48.
    158. Konz D, S Doekel and MA Marahiel, Molecular and Biochemical Characterization of the Protein Template Controlling Biosynthesis of the Lipopeptide Lichenysin. J. Bacteriol. 1999, 181: 133-140.
    159. Konz D, S Doekel, and MA. Marahiel. 1999b. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J. Bacteriol. 181:133-140.
    160. Korsnes L, Gulliksen, O.-M., Sundan A., and Nerland, A., 1986. Cloning of genes from Bacillus licheniformis involved in synthesis of the peptide antibiotic bacitracin. in Bacillus Molecular Genetic and Biotechnology Applications. Ganesan. A. T. and Hoch. J. A. Eds.. Academic Press. Orlando. FL. 283.
    161. Kratzschmar J, Krause M, Marahiel MA.Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid mioesterases.J Bacteriol 1989, 171(10) :5422-9.
    162. Krause M, Marahiel MA, ven Dokren H, and Kleinkauf H, Molecular cloning of an ornithine activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in Escherichia coli. J. Bacteriol. 1985, 162. 1120.
    163. Krause M. and Marahiel, M. A., Organizalion of the biosynthesis genes for the peptide antibiotic gramicidin S. J. Bacferiol. 1988, 170: 4669-4674.
    164. Krebs B, Junge H, Ockhardt A, Hoding B, Heubner D, Erben U, Bacillus subtilis an effective biocontrol agent. Pesticide Science. 1993, 37: 427-429 .
    165. Kunst F, Oebarbouille M, Msadek T, Young M, Mauel C, Karamah D, Klier A, Rapopert G, and Dedonder R. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol. 1988, 170. 5093.
    166. Kunst F, Msadek T, Bignon J, Rapoport G. The Deg/Degu and ComP/coma two-component systems are part of a network controlling degradative enzyme synthesis and compentence in Bacllus subtilis. Res Microbiool. Boil. 1994, 145: 393-402 .
    167. Kunst F, N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo,M. G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier,A. Brans, M. Braun, S. C. Brignell, S. Bron, S. Brouillet, C. V. Bruschi, B.Caldwell, V. Capuano, N. M. Carter, S. K. Choi, J. J. Codani, I. F. Connerton,A. Danchin, et al. The complete genome sequence of the grampositive bacterium Bacillus subtilis. Nature 1997, 390:249-256.
    168. Kuo WS and Chak, JF, Identification of novel cry-type genes from Bacillus
    
    thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Envion. Microbial., 1996, 62 (4) : 1369-1377.
    169. Lalarid SG and Zimmer TL, The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. 1973, Essays Biochem. 9. 31.
    170. Lambalot RH, AM Gehring, RS Flugel, et al. A new enzyme superfamily-the phosphopantetheinyl transferases. Chem. Biol. 1996, 3:923-936.
    171. Lampel J, Integrative cloning, expression, and stability of the crylA(c) gene from Bacillus thuringiensis subsp. kustaki in a recombinant strain of Clvibacter xyli subsp.cynodotis. Appl. Environ. Microbiol. 1994. 60(2) :501~508o
    172. Lebbadi M; Galvez A; Maqueda M; Martinez Bueno M; Valdivia E, Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M 4. Journal of Applied Bacteriology. 1994, 77: 1, 49-53.
    173. Lee MK, A Curtiss, Synergistic effect of the Bacillus thuringiensis toxins cry1Aa and cry1Ac on the Gypsy Month, Lymantria dispar. Appl. Environ Microbiol. 1996, 62:583-584.
    174. Lee MK, RM Aguda, MB Cohen, FL Gould, and DH Dean.Determination of Binding of Bacillus thuringiensis (delta)-Endotoxin Receptors to Rice Stem Borer Midguts, Appl. Envir. Microbiol. 1997, 63: 1453-1459.
    175. Lee SG, Roskoski RJr, Bauer K, and Lipmann F, Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry. 1973, 12: 398.
    176. Leifert C, Li H, Chidburee S, Hampson S, Workman S, Sigee D, Epton HAS, Harbour A, Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Bacteriology. 1995, 78: 2, 97-108 .
    177. Lereclus D, Arante O, Chaufaux J, et al. transformation and expression of a cloned dlta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol.lett, 1989, 60: 211-218.
    178. Lereclus D, H Agaise, C Grandvalet, ey al., Regulation of toxinand virulence gene transcription in Bacillus thuringiensis. Int. Med. Microbiol., 2000, 290: 295-299.
    179. Lereclus D, Menou G, and Lecadet M, Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcusfaecalis plasmid pAMβ1. MGG, 1983, 191:307-313,
    180. Lin GH, CL Chen, JSM Tschen, SS Tsay, YS Chang, and ST Liu. Molecular Cloning and Characterization of Fengycin Synthetase Gene fenB from Bacillus subtilis. J. Bacteriol. 1998, 180: 1338-1341.
    181. Lin TS, CL Chen, LK Chang, JS Tschen, and ST Liu. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol. 1999, 181:5060-5067.
    182. Lipmann F, 1980. Bacterial production of antibiotic polypeptides by thiollinked synthesis on protein templates. Adv. Microb. Physiol.21. 227
    
    
    183. Lipmann F, Gevers W, Kleinkauf H, and Roskoski R. Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. 1971, 35. 1.
    184. Chang Lk, Construction of Tn917 acl ,a transponson useful for mutagenesis and cloning of Ballus subtilis genes .Gene, .1994, 150:129~134.
    185. Losick, R, Youngman, P., and Piggot, P. J., Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 1986, 20. 625.
    186. Maget-Dana R, and F Peypoux. Iturins, a special class of poreforming lipopeptides: biological and physicochemical properties. Toxicology, 1994, 87: 151-174.
    187. Majumder SK and Bose SK, Mycobacillin. A new antifungal antibiotic produced by Bacillus subtilis. Nature. 1958, 181. 134.
    188. Marahiel MA, Krause M and Skarpeid HJ, Cloning of the tyrocidine synthetase 1 gene from Bacillus brevis and its expression in Escherichia coli. Mol. Gen. Genet. 1985, 201. 234.
    189. Marahiel MA, Nakano MM. and Zuber P. Regulation of peptide antibiotic production in Bacillus. Mol. Microbiol. 1993, 7:631~636.
    190. Marahiel MA, T Stachelhaus, and HD Mootz. 1997a, Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651-2673.
    191. Marahiel MA. Protein templated for the biosynthesis of peptide antibiotics. Chem. Biol., 1997b, 4: 561-567.
    192. Marahiel, MA, Zuber P, Czekay G, and Losick R, Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus Subtilis. J. Bacterio1. 1987, 169. 2215.
    193. Martin DF, Priest FG, Todd C, Distribution of beta-glucanases within the genus Bacillus. Appl. Environ. Microbiol, 1980, 40(6) : 1136-1138.
    194. Masson L. Transformation of Bacillus thuringiensis vegetative cells by electroporation. FEMS Microbiol. Lett., 1989. , 60:273-278 .
    195. Mastak T, Dartois V, Kunst F, et al, ClpP of Bacillus subtilis is required for competence development, motility, degradative emzyme sunthesis, growth at high temperature and sporulation. Mol. Microbiol., 1998, 27: 899-914.
    196. Mcdonald IR, Factors affecting the electroporation of Bacillus subtilis. J. Applied Bacteriology, 1995, 79:213~218.
    197. Mittenhuber G, Weckermann, R., and Marahiel, M. A., Gene cluster containing the genes for tyrocidine synthetase 1 and 2 from Bacillus brevis. Evidence for an operon, J. Bacteriol. 171, 4881. 1989.
    198. Moar, WJ, Insecticidal activity of the cryIIA protein from the Nrd-12 isolate of Bacillus thuringiensis subsp. kustaki expressed in Escherichia coli and Bacillus thuringiensis and in a lesf-colonizing strain of Bacillus cereus Appl. Environ. Microbiol. .1994, 60:896-902.
    
    
    199. Monica L E, Elizabeth A D J, William E B J, et al. Viability and stability of biological control agents on cotton and snap bean seeds. Pest Manag Sci, 2001, 57(8) : 695-706.
    200. Mootz HD, and Marahiel MA, 1997a. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J. Bacteriol. 179:6843-6850.
    201. Mootz HD, Marahiel MA: Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol, 1997b, 1:543-551.
    202. Mootz HD, Schwarzer D, Marahiel MA. 2000. Construction of hybrid peptide synthetases by module and domain fusions. Proc Natl Acad Sci USA 97:5848-5853
    203. Mootz, H. D., and M. A. Marahiel. 1999. Design and application of multimodular peptide synthetases. Curr. Opin. Biotechnol. 10:341-348.
    204. Murphy, RC and Stevens SE Jr. Cloning and expression of the cryIVD gene of Bacillus thuringiensis subsp. israelensis in the cyanobacterium A. quadruplicatum PR-6 and its resulting larvicidal activity. Appl. Environ. Microbiol. 1992, 58: 1650~1655.
    205. Nakano MM and Zuber P. Molecular biology of antibiotic production in Bacillus. Cretical reviews in biotechnology, 1990, 10 (3) : 223~240.
    206. Nakano MM, Corbell N, Besson J, Zuber P. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet., 1992, 232: 313-321.
    207. Nakano MM. and Zuber P., Cloning and characterization of srfB. a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J. Bacteriol. 1989, 171. 5347.
    208. Nakano MM., Marahiel, M. A., and Zuber, P., Identification of genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 1988, 170. 5662.
    209. Nambiar PTC. Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea Cajanus cajan by engineering the expression of an entomocidal gene in its root nodules. Appl. Environ. Microbiol., 1990, 56:2866-2869.
    210. Neumuller AM, Konz D, Marahiel MA. The two-component regulatory system BacRS is associated with bacitracin 'self-resistance' of Bacillus licheniformis ATCC 10716. :Eur J Biochem2001, 268(11) :3180-9.
    211. Nieto CE, Tresguerres F, Sanchez N, et al., Cloning vectors from a naturally occurring plasmid of Pseudomonas savastanoi, especially tailored for genetic manipulation in Pseudomonas. Gene, 1990, 87: 145-49.
    212. Nishikiori T, Naganawa H, Muraoka Y, et al. Plipastatins:new inhibitors of phosphlipase A2, produced by Bacillus cereus BMG302-fF67. III. Stucture elucidations of plipastatins. J antibiotics. (Tokyo) 1986, 39:755-761.
    213. Nishio C, Komura, S., and Kurahashi, X., Peptide antibiotic subtilin are
    
    synthesized via precursor proteins. Biochem. Biophys. Res. Commun. 1983, 116:751.
    214. Obukowicz MG. Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene. 1986a, 45: 327-331.
    215. Obukowicz MG. Tn5-mediated integration of the 8-endotoxin gene from Bacillus thuringiensis into the chromosome of root-colonizing Pseudomonads. J.Bacteriol. 1986b, 168:982~989o
    216. Pavela-Vvrancic M, Diekmann R, von Dohren H and Kleinkauf H. Editing of noncognate amino acyl adenylatee by peptide synthetase . Biochem. J., 1999, 342: 715-719.
    217. Perkins JB. and Youngman PJ, Construction and properties of Tn917-lac, a transposon derivative that mediates tanscriptional gene fusion' s in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 1986, 83: 140.
    218. Petit MA, C Bruand, L Janniere and SD Ehrlich. TnlO-derived transposons active in Bacillus subtilis. J. Bacteriol. 1990, 172:6736-6740.
    219. Peypoux F, F Besson, G Michel, and L Delcambe. Structure of bacillomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 1981, 118: 323-327.
    220. Peypoux F, G Michel, and L Delcambe. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot(Tokyo). 1986, 39:636-41.
    221. Peypoux F, Marion D, Maget-Dana R, Ptak M, Das BC, and Michel G. Structure of bacillomycin F, a new peptidolipid antibiotic of the iturin group. Eur. J. Biochem. 1985,153(2) :335-40.
    222. Peypoux F, Pommier MT, Das BC, Besson F, Delcambe L, MichelG.Structures of bacillomycin D and bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J Antibiot (Tokyo). 1984,37(12) : 1600-4.
    223. Peypoux, F., J. M. Bonmatin, and J. Wallach. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 1999, 51:553-563.
    224. Peypoux, F., M. Guinand, G. Michel, L. Delcambe, B. C. Das, and E. Lederer. Structure of iturin A, peptidolipid antibiotic from Bacillus subtilis. Biochemistry, 1978, 17:3992-3996.
    225. Phae CG; Shoda M; Kita N; Nakano M; Ushiyama K, Biological control of crown and root rot and bacterial wilt of tomato by Bacillus subtilis NB22. Annals of the Phytopathological Society of Japan. 1992, 58: 3, 329-339.
    226. Podlesek Z, Comino A, Herzog-Velikonja B, Grabnar M.The role of the bacitracin ABC transporter in bacitracin resistance and collateral detergent sensitivity. 2000, FEMS Microbiol Lett 188(1) : 103-6.
    227. Podlesek Z., and Grabnar, M., Genetic mapping of the bacitracin synthetase gene(s) in Bacillus licheniformis. J. Gen. Microbiol. 1987, 133: 3093.
    228. Pospiech A, Bietenhader J, Schupp T, Two multifunctional peptide synthetases and
    
    an O-methyltransferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mxl from Myxococcus xanthus. Microbiology, 1996, 142:741-746.
    229. Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT, Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry, 1998, 37: 1585-1595.
    230. Raaymakers JB, Van der Sluis I, Koster M, Bakker PA, schippers B. utilization of heterologous siderophores and rhizosphere compentence of fluorescent Pseudomonas spp. Can. J. Microbiol., 1995, 41:126-135.
    231. Rang C, Lacey LA, Frutos R. The crystal proteins from Bacillus thuringiensis subsp. thompsoni display a synergistic activity against the codling moth, Cydia pomonella. Curr Microbiol 2000;40(3) :200-204.
    232. Ritsema T, Gehring AM, Stuitje AR, van der Drift KM, Dandal I, Lambalot RH, Walsh CT, Thomas-Oates JE, Lugtenberg BJ, Spaink HP. Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition. Mol Gen Genet, 1998, 257:641-648.
    233. Roscoe J and Abraham EP, Experiments relating to the biosynthesis of bacilysin. Biochem. J. 1966, 99: 793.
    234. Saito F, Hori K, Kanda M, Kurotsu T, Saito Y. Entire nucleotide sequence for Bacillus brevis Nagano Grs2 gene encoding gramicidin S synthetase 2: a multifunctional peptide synthetase. J Biochem (Tokyo), 1994, 116:357-367.
    235. Sakajob M, Solomon NA and Demain AL, Cell-free synthesis of the dipeptide antibiotic bacilysin. J. Int. Microbial. 1987, 2: 201 .
    236. Sambrook J, EF Fritsch, and T Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    237. Sayonara MP.1996. Biocontrol of Xanthomonas campestris pv.campestris on kale with Bacillus spp. and endophyti bacteria.in "dvances in biological control of plant disesdes , proceeding of international workshop on biological control of plant diseases, " , Wenhua Tang, Cook, R.J. and Rovira A., Eds., China Agricultural University Press, 1996 ,p347~353.
    238. Schauwecker F, Pfennig F, Grammel N, Keller U Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides. ChemBiol., 2000, 7:287-297.
    239. Schneider A, Marahiel MA, Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch Microbiol., 1998, 169:404-410.
    240. Schneider AT, Stachelhaus and MA Marahiel. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 1998, 257:308-318.
    241. Schneider J, Taraz K, Budzikiewicz H, et al. The structure of two fengycins from
    
    Bacillus subtilis S499. Z Naturforsch., 1999, 54(11) : 859-865.
    242. Schnepe E. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998, 62:775-806.
    243. Schwarzer D and Marahiel MA. Multimodular biocatalysts for natural product assemble. Naturwissenschaften, 2001, 88:93-101.
    244. Sengupta S, and Rose SK, Peptides from a mycobacillin synthesizing cell-free system, Biochem. J. 1972, 128: 47.
    245. Sezonov G, Blanc V, Bamas-Jacques N, Friedmann A, Pernodet JL, Guerineau M: Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol., 1997, 15:349-353.
    246. Shivakumar AG, Gene dosage efect on the expression of the 5-endotoxin genes of Bacillus thuringiensis subsp.kustaki in Bacillus subtilis and Bacillus megatehum, Gene, 1989, 79:21-31.
    247. Shivakumar, AG. Vegetative expression of the 5-endotoxin genes of Bacillus thuringiensis subsp. kustaki in Bacillus subtilis. J. Bacteriol., 1986, 166:194-204.
    248. Shoda M and Takashi A. Basic analysis of Bacilus subtilis NB22 and its application to biological control, Recombinant microbes for industrialo and agricultural application. 1996. p641-664.
    249. Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89:515-521.
    250. Silo-Suh LA, Lethbridge BJ, Raffel SJ, He H,.Biologicol activities of two fungistatics antibiotics producced by Bacillus cereus UW85. Appl. Environ. Microbio. 1994, 60:2023-2030 .
    251. Simi K, The chitinase encoding Tn7-based chiA gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil. Gene, 1994, 147:81-83.
    252. Soares GG Jr. Review of new Cellcap(?) products and strategies for their use.in" Program and Abstracts: SIP 30th annual meeting and IIIrd international colloquium on Bacillus thuringiensis, society for invertibrat pathology eds" , 1996, p78.
    253. Solar GD, Giralda R, Ruiz-echevarria MJ, et al., Rplication and control of circular bacterial plasmids. Microbiol. Mol. Boil. Rev., 1998,62:434-464.
    254. Solenberg PJ, Matsushima P, Stack DR, WilkiebSC, Thompson RC, Baltz RH. Production of hybrid glycopeptide antibiotic in vitro and in Streptomyces toyocaensis. Chem Biol. 1997, 4:195-202.
    255. Sonenshein AL, R Losick and JA Hoch(ed.). Bacillus subtilis and its closest relatives: from genes to cells. 2002, American Society for Microbiology, Washington D. C.
    256. Stachelhaus T, Huser A and Marahiel MA.Biochemical characterization of
    
    peptideyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthysetase. Chem. Biol. 1996, 3: 913-921.
    257. Stachelhaus T, Marahiel MA. Modular structure of peptide synthetases revealed by dissection of the ultifunctional enzyme GrsA. J Biol Chem. 1995 270: 6163-6169
    258. Stachelhaus T, Mootz HD, Bergendahl V, Marahiel MA, Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol Chem. 1998,273:22773-22781.
    259. Stachelhaus T, Mootz HD, Marahiel MA, 1999, The specificity code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6:493-505.
    260. Stachelhaus T, Schneider A, Marahiel MA 1995 Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269:69-72
    261. Stachelhaus T, Walsh CT. Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry. 2000, 39: 5775-5787
    262. Stachelhaus T, A Schneider and MA. Marahiel. Engineered biosynthesis of peptide antibiotics. Biochem. Pharmacol. 1996,. 52:177-186.
    263. Stein T, Borchert S, Kiesau P, Heinzmann S, Kloss S, Klein C, Helfrich M, Entian KD. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Mol Microbiol., 2002, 44(2) :403-16.
    264. Stein T, J Vater, V Kruft, A Otto, B Wittmann-Liebold, P Franke, M Panico, R. McDowell and HR Morris. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J. Biol. Chem. 1996, 271: 15428-5435.
    265. Stein T, Kluge B, Vater J, Franke P, Otto A, Wittmann-Liebold B, Gramicidin S synthetase 1 (phenylalanine racemase), a prototype of amino acid racemases containing the cofactor 4'-phosphopantetheine. Biochemistry. 1995, 34(14) : 4633-42.
    266. Steinmeta M and R Richter, Easy cloning of Mini-Tn10 insertions from the Bacillus subtilis chromosome. J. Bacteriol. 1994, 176:1761-1763.
    267. Steller S, Vollenbroich D, Leenders F, Stein T, Conrad B, Hofemeister J, Jacques P, Thonart P, Vater J 1999, Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31-41.
    268. Stephenson M, and Jarrett P. Transformation of Bacillus subtilis by electroporation. Biotechnol. Techni. 1991, 5: 9-12.
    269. Stewart SD, Adamczyk JJ Jr, Knighten KS, Davis FM. Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J Econ Entomol. 2001, 94(3) : 752-60.
    270. Stindl A, and Keller U. Epimerization of the D-valine portion in the biosynthesis
    
    of sctinomycin D. Biochemistry, 1994, 33: 9358-9364.
    271. Stock CA. Expression of a Bacillus thuringiensis crystal protein gene in Pseudomonas cepacia 526. Can.J. Microbiol. .1990, 36:879~884.
    272. Stoek JR, Ninfa AJ, and Stock AM, Potein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 1989, 53. 450.
    273. Stohl EA, Milner JL, Handelsman J, Zwittermicin A biosynthetic cluster.Gene 1999b, 237(2) :403-11.
    274. Stohl EA., Sean F. Brady, Jon Clardy, and Jo Handelsman. ZmaR, a Novel and Widespread Antibiotic Resistance Determinant That Acetylates Zwittermicin A. J. Bacteriol. 1999a,181: 5455-5460.
    275. Stoll E, FroSho O, Holm H, Zimmer TL, and Laland SG., On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett. 1970, 11. 348.
    276. Stover AG, Driks A.J Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol 1999b, 181(17) : 5476-81.
    277. Stover AG, Driks A.Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein.J Bacteriol 1999a, 181 (5) : 1664-72.
    278. Sullivan ER , Molecular genetics of biosurfactant production. Cur. Opin Biotechnol., 1998, 9: 263-269.
    279. Sundheim L. Molecular cloning of two chitinase genes from Serratia marcescens and their expression in Pseudomonas species. Physiological and Molecular Plant Pathology. 1988, 33:483-491.
    280. Suo Z, Walsh CT, Miller DA 1999. Tandem heterocyclization activity of the multidomain 230 kDa HMWP2 subunit of Yersinia pestis yersiniabactin synthetase: interaction of the 1-1382 and 1383-2035 fragments. Biochemistry 38: 14023-14035 [published erratum Biochemistry 38:17000, 21 December 1999]
    281. Tabashnik BE, Evaluation of synergism among Bacillus thuringiensis Toxins. Appl Environ Microbiol. 1992, 58: 3343-3346.
    282. Takahashi H, Sato E, and Kurahashi K. Racemization of phenylalanine by adenosine triphosphate-dependent phenylalanine recemase of Bacillus brevis Nagano. J. Biochem., 1971, 69. 973.
    283. Takayanagi T, Ajisaka K, Takiguchi Y, Shimahara K. Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochim Biophys Acta 1991, 1078(3) :404-10
    284. Tanka H and Watanabe T. Glucanases and chitinases of Bacillus circulans WL-12. J Ind Microbiol., 1995,14(6) : 478-83.
    285. Tannabalu T, Expression of the mosquitocidal toxin sof Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biocontrol of aquatic insect larvae. Appl. Environ. Microbiol. 1992, 58: 905~910.
    
    
    286. Thomashow LS, DM Weller, RF Bonsall, and LS Pierson. Production of antibiotic phenazine-1-carboxylic acid by flurescent Pseudomonas species in the rhizoshere of wheat. Appl. Environ. Microbiol. 1990, 56: 908-912.
    287. Tognoni A, E. Franchi, C. Magistrelli, E. Colombo, P. Cosmina, and G. Grandi. A putative new peptide synthase operon in Bacillus subtilis: partial characterization. Microbiology, 1995, 141:645-648.
    288. Tomino S, Yamada M, Itoh H, Kurahashi K Cell-free synthesis of gramicidin S. Biochemistry 1967, 6:2552-2560
    289. Tosato V, AM Albertini, M Zotti, S Sonda, and CV Bruschi. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology, 1997, 143:3443-3450.
    290. Trauger JW, Kohli RM, Mootz HD, Marahiel MA, Walsh CT 2000 Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215-218
    291. Tsuge K T. Ano, M. Hirai, Y. Nakamura, and M. Shoda. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 1999, 43:2183-2192.
    292. Tsuge K, Ano T, Shoda M, Characterization of Bacillus subtilis YB8, coproducer of lipopeptides surfactin and plipastatin Bl.Journal of General and Applied Microbiology. 1995, 41: 6, 541-545.
    293. Tsuge K, T Ano, and M Shoda. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin Bl and surfactin in Bacillus subtilis YB8. Arch. Microbiol. 1996, 165:243-251.
    294. Turgay K, Marahiel MA. The gtcRS operon coding for two-component system regulatory proteins is located adjacent to the grs operon of Bacillus brevis. DNA Seq 1995, 5(5) :283-90.
    295. Turgay K, Krause D, Marahiel MA. Four homologous domains in the primary structure of GrsB are related to domains in a surperfamily of adenylate-formaing enzymes, Mol. Microbiol., 1992, 6: 529-546.
    296. Udayasuriyan V. Transfer of an insecticidal protein gene of B. thuringiensis into plant-colonizing Azospirillum. World J. Microbiol. Biotechnol. 1995, 11:163-167.
    297. Umezawa HT, Aoyagi, T. Nishikiori, A. Okuyama, Y. Yamagishi, M. Hamada, and T. Takeuchi. Plipastatins: new inhibitors of phospholipase A2, produced by Bacillus cereus BMG202-fF67. I. Taxonomy, production, isolation and preliminary characterization. J. Antibiot. 1986, 39:737-744.
    298. van der Bij AJ, de weger L, Tucker WT, Lugtenberg JJ. Plasmidd stability in Pseudomonas fluorescens in the rhizoshpere. Appl. Environ. Microbiol. 1996, 62: 1076-1080.
    299. Van Frankenhuyen K, and C Nystrom. The Bacillus thuringiensis toxin specificity database. 2002, http://www.glfc.cfs.nrcan.gc.ca/bacillus/btrearch.cfm.
    
    
    300. Vanittanakom, N; Loeffler, W; Koch, U; Jung, G. 1986, Fengycin a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F 29-3. Journal of Antibiotics. 39:7, 888-901.
    301. Volpon L, Besson F, Lancelin JM.NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A(2) .FEBS Lett. 2000, 17;485(1) :76-80.
    302. Volpon L, Besson F, Lancelin JN. NMR structure of active and inactive forms of the sterol-dependent antifungal antibiotic bacillomycin L.Eur J Biochem. 1999, 264(1) :200-10.
    303. Von Dohren H, Keller U, Vater J, Zocher R, 1997, Multifunctional peptide synthetases. Chem Rev 97:2675-2705.
    304. Walker JE and Abraham, E. P., The structure of bacilysin and other products of Bacillus subtilis. Biochem. J. 1970, 118. 563.
    305. Ward ES, Bacillus thuringiensis vai.israelensis 5-endotoxin cloning and expression of the toxin in sporogenic and asporogenic strains of Bacillus subtilis.J. Mol. Biol. 1986, 191:13-22.
    306. Weber G, Schorgendorfer K, Leitner E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45. 8 kilobase open reading frame. Curr Genet., 1994, 26:120-125
    307. Weckermann R., and Furban, R., and Marahiel, M. A., Complete nucleotide sequence of the tyc gene coding the tyrocidine synthetase 1 from Bacillus brevis. Nucleic acids Res. 1988, 16: 11841.
    308. Wei G, Kloepper JW, and Tuzun S.1996. Evaluation of induced systemic resistance and plant growth-promoting rhizobacteria strains in the field.in "dvances in biological control of plant disesdes , proceeding of international workshop on biological control of plant diseases" , Wenhua Tang ,et al.,Eds., China Agricultural University Press, 1996 ,p223~226.
    309. Weller, D.M., Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 1988, 26:379-407 .
    310. Wenhua Tang ,et al.,Eds., 1996, Avances in biological control of plant disesdes, proceeding of international workshop on biological control of plant diseases, China Agricultural University Press .
    311. West SE , Schweizer HP , Dall C , et al , Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene, 1994, 148: 81-86.
    312. Wilson KE, Flor JE, Schwartz RE, Joshua H, Smith JL, Pelak BA, Liesch JM, Hensens OD. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization. J Antibiot (Tokyo) 1987, 40( 12) : 1682-91.
    313. Winkelmann G; Allgaier H; Lupp R; Jung G. Iturin Al: a new long chain iturin A
    
    possessing an unusual high content of C16 beta amino acids. J.Antibiot: 36 (11) : 1983, 1451-1457.
    314. Wunn J, Kloti A, Burkhardt PK, et al, Transgenic indica rice breeding line IR58 expressing a synthetic crylAb gene from Bacillus thuringiensis provides effective insective pest control. Bio/technology, 1996,14:171-176.
    315. Yakimov, MM, A. kroger, TN.Slepak, L.Giuliano, KN. Timmis, and PN Golyshin. A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim. Biophys. Acta, 1998, 1399:141-153.
    316. Yazgan A, Ozcengiz G, Marahiel MA.TnlO insertional mutations of Bacillus subtilis that block the biosynthesis of bacilysin.Biochim Biophys Acta 2001, 1518(l-2) :87-94.
    317. Youngman P, Perkins JB, Losick R, 1984, A novel method for rapid cloning in Escherichia coli of Baciluus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol. Gen. Genet., 195: 424-433.
    318. Youngman P, Perkins JB, Losick R, Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococus feacalis transposon Tn917. Proc. Natl. Acad. Sci. USA, 1983, 80:2305-2309.
    319. Youngman P., Zuber, P., Perkins, J. B., Sandman, R., Igo, M. and losick, R., 1985. New ways to study developmental genes in spore forming bacteria. Science. 228. 285-291.
    320. Yu YM, M Ohba and K Aizawa. Synergistic effects of the 65-and 25-kildalton proteins of Bacillus thuringiensis PG-14 (Serotype 8A:8B) in mosquito larvicidal activity. J Gen Appl Microbiol. 1987, 33:459-462.
    321. Zheng G. and MR Slavik, Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Letters in Appied Microbiology, 1999a, 28:363-367.
    322. Zheng GL, Hehn R,AND Zuber P. Mutational Analysis of the sbo-alb Locus of Bacillus subtilis:Identificalion of Genes Required for Subtilosin Production and Immunity. J.Bacteriol., 2000, Vol. 182, (11) : 3266-3273.
    323. Zheng GL, Yan LZ., VEDERAS JC.and ZUBER P. Genes of the sbo-alb Locus of Bacillus subtilis Are Required for Production of the Antilisterial Bacteriocin Subtilosin. J. Bacteriol.l999b, Vol. 181 (23) : 7346-7355
    324. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000, 54:49-79.
    325. Davey ME, O'toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000,64(4) : 847-67.
    326. Velicer GJ, Kroos L, Lenski RE.Loss of social behaviors by myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci USA. 1998, 95(21) :12376-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700