大白菜分子遗传图谱的构建及重要农艺性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大白菜(Brassica.campestris L.ssp.pekinensis)原产我国,是我国栽培面积最大的蔬菜作物,构建一张较高密度的永久分子遗传图谱将具有重大意义。本研究利用不同生态型的结球白菜栽培种高代自交系177和276杂交配制杂交组合,通过单粒传代的方法获得102份F_6重组自交系。以此重组自交系(RIL)群体为作图群体,通过AFLP和RAPD两种分子标记的遗传分析,构建大白菜分子遗传图谱并进行重要农艺性状的QTL定位研究。
     RIL群体中,AFLP和RAPD标记均出现较高比例的偏分离,两种标记偏分离比例接近。分子标记的分离分析发现,来源于两个亲本的标记座位在群体中的分离比例接近;每个位点上,两个亲本基因频率的平均值比较接近,并没有发现群体有偏向某一亲本的现象。表明该群体总体上未出现严重的偏分离。
     利用AFLP和RAPD两种分子标记构建了包含17个连锁群,由352个遗传标记组成的大白菜连锁图谱,其中包括265个AFLP标记和87个RAPD标记,图谱覆盖基因组2665.7cM,平均图距7.6cM。每个连锁群上的标记数在6~43之间,平均图距在3.4~13.0cM之间,连锁群长度在20.3~400.7cM范围内。连锁群上有13.92%的分子标记出现偏分离,偏分离标记在连锁群上聚集出现。该图谱是国内第一张结球白菜分子遗传图谱,将为基因定位、比较基因组学和重要农艺性状的QTL定位等研究打下良好基础。
     采用复合区间作图的方法对控制大白菜耐热性的数量性状基因位点进行定位和遗传效应研究。用苗期热害指数进行耐热性表型鉴定,共检测到5个耐热性QTL,分布于3个连锁群上。5个QTL中,3个表现为增效加性效应,2个表现为减效加性效应。5个QTL的遗传贡献率在7.00%~18.53%之间,ht-2对大白菜耐热性的遗传贡献率最大,可能为主效基因位点。
     采用复合区间作图的方法对大白菜叶球相关的8个农艺性状进行QTL定位及遗传效应研究。在16个连锁群上定位了8个叶球相关性状的44个QTL,每个性状3-11个QTL,其加性效应各不相等,各位点的遗传贡献率介于4.72%~21.04%之间,其
    
     大白菜分子遗传图谱构建及重要农艺性状的QTL定位2
     中控制生育期的QTL有3个,控制外叶数的QTL有3个,控制球高的OTL有7个,
     控制球径的OTL有5个,控制球形指数的QTL有11个,控制球叶数的QTL有4个,
     控制球重的QTL有4个,控制荒重的OTL有7个。
     采用复合区间作图的方法对大白菜9个形态性状进行OTL定位及遗传效应研
     究。在14个连锁群上检d到9个形态性状勺50个叮L,每个性刁4-7个叮L;其
     加性效应各不相等,各位点的遗传贡献率介于 5.17%-21.50%之间。其中控制株型
     的QTL有5个,控制株高的叮L有6个;控制开展度的QTL有5个,控制最大叶长
     白OTL有7个,控制最大叶宽的QTL有4个,控制叶形指数的gTL 有6个,控制中
     肋长的叮L有7个,控制中肋宽的叮L有4个,控制抽墨性的叮L有6个。
To Chinese cabbage, the most important economic crop, it is more meaningful to construct a molecular genetic map. A population of Fe generation including 102 recombinant inbred lines was derived from the cross of two advanced lines 177 and 276 of cultivated Chinese cabbage (Brassica. campestris L. ssp. pekinensis), using single seed descendant method. In this paper, the AFLP and RAPD markers were employed in constructing a molecular genetic map and mapping QTL controlling heat tolerance and some agronomically important traits in Chinese cabbage.
    In this RIL population, Distorted segregation is a universal phenomenal, and the frequency of distorted segregation markers was similar for AFLP or RAPD. Out of 492 markers, the number of markers came from male parent and female parent agrees with the Mendel ratio 1:1. To single marker, the frequency of band from two parents was closely, and not deflected to either parent. It could be concluded that no obvious distorted segregation in the population.
    A molecular genetic map of Chinese cabbage was constructed using AFLP and RAPD markers. 352 markers including 265 AFLP markers and 87 RAPD markers were integrated into 17 linkage groups. It covered a total of 2665.7 cM with an average interval of 7.6 cM. Number of markers in linkage groups varied from 6 to 43, average interval distance from 3.4 cM to 13.0 cM and the total map distance from 20.3 to 400.7cM. A total of 13.92% distorted markers distributed in the map. The molecular genetic map is fundamental for gene localization, comparative genomics, and QTL mapping of agronomically important traits.
    Composite interval mapping method was employed in mapping and analysis QTL controlling heat tolerance and some important agronomical traits in Chinese cabbage.
    
    
    
    These results will provide useful information for molecular assistant selection of some important agronomic traits in breeding programmes of Chinese cabbage.
    Heat damage index in seedlings was used as phenotypic value to detect QTL cntrolling heat tolerane in Chinese cabbage. Five putative QTL were mapped in three linkage groups. Three loci including ht-\, ht-3 and ht-5 showed positive additive effect, while ht-2 and ht-4 showed negative additive effect. Phenotypic variation explained by the putative QTL varied from 7.00% to 18.53%. ht-2 had the highest contribution to heat tolerance, and it may be a major gene locus.
    Forty-four QTL controlling agronomic traits related to head were mapped on 16 linkage groups. These QTL included three for days to harvesting, three for number of non-wrapper leaves, seven for head length, five for head diameter, eleven for head length /head diameter ratio, four for number of head-forming leaves, seven for head weight and seven for gross weight There was unequal gene effects on the expression of many agronomic traits related to head, and the variation explained ranged from 4.72% to 21.04%.
    The number, location, variation explained and additive effect of QTL underlying nine morphological traits were also determined. Fifty putative QTL, including five for plant growth habit, six for plant height, five for plant diameter, seven for leaf length, four for leaf width, six for leaf length/leaf width ratio, seven for petiole length, four for petiole width and six for bolting character, were mapped on 14 linkage groups. There was unequal gene effects on the expression of many morphological traits, and the variation explained ranged from 5.17% to 21.50%.
引文
[1]程斐等.大白菜抽薹性状的遗传规律的研究.南京农业大学学报,1999,1:26~28
    [2]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.“863"生物高技术丛书,北京:科学出版社,2002
    [3]惠大丰等,数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129~136
    [4]卢刚,曹家树,陈杭等.白菜几个重要园艺性状的QTLs分析.中国农业科学,2002,35(8):969-974
    [5]卢刚,白菜分子遗传图谱的构建及其重要农艺性状的基因定位研究.浙江大学博士学位论文,浙江,2001.5
    [6]李维明,唐定中,吴为人等.用籼/籼交重组自交系群体构建的分子遗传图谱及其与籼粳交群体的分子图谱的比较(英文).中国水稻科学,2000,14(2):71~78
    [7]林鸿宣.应用RFLP标记定位水稻产量及其它有关性状的数量性状的基因座位.中国水稻所1994博士论文,杭州.
    [8]罗少波,李智军等,大白菜品种耐热性鉴定方法.中国蔬菜,1996(2):16~18
    [9]沈利爽,何平,徐云碧等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115~1122
    [10]司家钢,孙日飞等.高温胁迫对大白菜耐热性相关生理指标的影响.中国蔬菜,1995(4):4~6,15
    [11]谭震波等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析.作物学报,1997,23(3):289-295
    [12]涂金星.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16(2):112-117
    [13]王晓武.甘蓝显性雄性不育基因的分子标记及延长随机引物扩增DNA标记的建立.北京:中国农科院蔬菜花卉所资料室,1998.23~25.
    [14]吴国胜,曹婉虹等,细胞膜热稳定性及保护酶和大白菜耐热性的关系.园艺学报,1995b,22(4):253~258
    [15]吴国胜,王永健等.大白菜耐热性遗传效应研究.园艺学报,1997,24(2):141~144
    [16]吴国胜,王永健等.大白菜热害发生规律及耐热性筛选方法的研究.华北农学报,1995a,10(1):111~115
    [17]吴为人,李维明,卢浩然.建立一个重组自交系群体所需自交代数(英文).福建农业大学学报,1997,26(2):129~132
    [18]刑永忠,徐才国,华金平等,水稻株高和抽穗期基因定位和分离。植物学报,2001,43(7):721-726
    [19]徐云碧等,分子数量遗传学,北京:中国农业出版社,1994
    [20]叶陈亮,柯玉琴.大白菜耐热性生理研究Ⅱ叶片水分和蛋白质代谢与耐热性.福建农业大学学报,1996,25(4):490~493
    [21]张连宗.结球白菜耐热性育种,夏季蔬菜生产改进研讨会专辑,1985,33~53
    [22]张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建,植物学报,2000,42(5):484~489.
    
    
    [23]张鲁刚,中国白菜分子标记遗传图谱的构建及QTL定位研究,西北农业大学1999届博士论文,陕西杨凌,1999.
    [24]郑晓鹰,王永健等.大白菜耐热性分子标记的研究.中国农业科学,2002,35(3):309~313
    [25]中华人民共和国农业部.植物新品种特异性、一致性和稳定性测试指南—大白菜(Brassica campestris L.ssp.pekinensis).2001年试用版.2001.2.
    [26]Ajisaka H,Kuginuki Y,Hida K,Enomoto S,Hirai M.A Linkage map of DNA markers in campestris.Breed Sci,1995,45(suppl.)195.
    [27]Ajisaka H.,Kuginuki Y,et al.Mpping of loci affecting the cultural efficiency of microspore culture of Brassica rapa L.sny.Campestris L.using DNA
    polymorphism.Breeding-Science,1999,49:187~192
    [28]Ajisaka H.,Kuginuki Y,Yui S.,Enomoto S.,Hirai M..Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage(Brassica rapa ssp.pekinensis syn.campestris L.)using bulked segregant analysis.Euphytica,2001,118:75~81.
    [29]Armstrong S J,Howell E C,et al.Integrating the genetic and physical chromosome maps of brassica oleracea var.alboglabra.Acta Hort.,2000,539:77~82
    [30]Benoit S,Landry,Stexen E,et al.A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistence genes to race 2 of plasmodiophora brassicea(woronin).Genome,1992,35:380~384.
    [31]Bohuon E J R et al,Alignment of the conserved C genomes of Brassica oleracea and Brassica napus.TAG,1996,93(5/6):833~839
    [32]Bohuon E J R,Ramsay L D,Craft J A,et al.The association of flowering time QTL with duplicated regions and candidate Loci in Brassica olerocea.Genetics,1998,150(1):393~401.
    [33]Camargo L E A,Osborn T C,Mapping loci controlling flowering time in Brassica oleracea.TAG,1996,92(5): 610~616
    [34]Camargo L E A,Williams P H,Osbom T C.Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv.campestris.Phytopathology,1995,85(10):1296~1300.
    [35]Chen B Y,Heneen W K,Simonsen V.Genentics of isozyme loci in Brassica campestris L.and in the progeny of a trigenomic hybrid between B.napus L.and B.campestris L..Genome,1990,33: 433~440.
    [36]Chen B Y,Heneen W K,Simonsen.Comparative and genetic studies of isozymes in esynthesized and cultivated Brassica napus L.,B.campestris L.and B.alboglabra.Bailey Theor Appl Genet,1998,77:637~679.
    [37]Cheung W Y,Champagne G,Hubert N,et al.Conservation of s-locus for self-incompatibility in Brassica napus L.and Brassica oleracea L..Theor Appl Genet,1997,95:73~82.
    [38]Cheung W Y,et al.Comparsion of the genetic maps of Brassica napus and Brassica oleracea.1996,TAG 94:569~582
    
    
    [39]Chevre A M,This P,Eber F,et al.Characterization of disomic additionlines Brassica napus.Theor Appl Genet,1991,81:43~49.
    [40]Chyi Y S et al,Chromosome location of the SI gene in three Brassica species,Cruciferae Newsletter,1994,16:41
    [41]Chyi Y S,Hoenecke M E,Sernyk J L.A genetic map of restriction fragment length polymorismloci for Brassica rapa(syn.campestris).Genome,1992,25 (5):746~757.
    [42]De Vicente M C,Tanksley S D.QTL analysis of transgressive segregation in an intrespecific tomtto cross.Genetics,1993,134:585~596
    [43]Delourme R,Bouchereau A,Hubert N,et al.Identification of RAPD markers linked to a fertility restorer gene for the Ogura radish cytoplasmic male sterility of rapeseed(Brassica napus L.).TAG,1994,88:741~748
    [44]Dorell D G,and Downey R K.The Inheritance of erucic acid content in rape seed(Brassica campestris).Can.J.Plant Sci.,1964,44:499~504
    [45]Dorweiler j,Stec A,Kermicle J,Doebley J.Tesominte glu me architecture Ⅱ.A genetic loci controlling a key step in maize evolution.Science,1993,262:233~235
    [46]Dunford R P,Kurata N,Laurie D A,et al.Conservation of fine-scale DNA marker order in the genomes of rice and Triticeae.Necleic Acids Res,1995,23:2724~2728
    [47]Eshed Y,Zamir,D.An introgression line population of lycepersion penellii in the cultivated tomato enables the identification and fine mapping of yield-associated.Genetics,1995,141:1147~1162
    [48]Ferreira M E,Satagoban J,Yandell B S,et al.Mapping loci controlling rern alization requirement and flowering time in Brassica napus.Theor Appl Genet,1995,90:727~732.
    [49]Ferreira M E,Williams P H,RFLP mapping of Brssica napus using doubled haploid lines.1994,TAG,89(5)615~621
    [50]Foisset N et al.Molecular mapping analysis in Brassica napus using isozyme,RAPD,RFLP markers on a doubled haploid progeny.TAG,1996,93:1017~1025
    [51]Frary A,Nesbitt T C,et al.fw2.2:A quantitative trait locus key to the evolution of tomato fruit size.Science,2000,289:85~88
    [52]Furuya Y,Ikehashi H.Identification of acid phosphatase and esterase isozyme loci in Brassica campestris.Japan J Breed,1991,41:61~71.
    [53]Gotoh S,Ikehashi H.Survey of isozyme genes by polyacry-lamide gel electrophoresis in cauliflower,broccoli and cabbage(Brassica oleracea).Japan J Breed,1992,42:23~32.
    [54]Haanatra J P W,Wye C,Verbakel H.An intergrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum XL.pennellii F_2 populations.Theor Appl Genet.1999,99:254~357.
    [55]Haley S J,et al.A simple regression method for mapping quantitative trait loci in line crosses using flanking markers.Heredity,1992,69:315~324
    [56]Hasterok R,et al.Ribosomal DNA is an effective marker of Brassica chromosomes.TAG,2001,103:486~490
    [57]Hawk J A.Single gene control of seedcolor and hypocotyl color in turnip rape.Can.J.Plant Sci.,1982a,62:331~334
    
    
    [58]Hawk J A.Tight linkage of two seeding mutants in early-flowering turnip rape (Brassica campestris).1982b,Can J.Genet Cotol 24:475~478
    [59]Helentjaris T,B Burr,1989.Development and application of molecular markers to problems in plant genetics.Cold Spring Press,1989:1~165
    [60]Hyne V,Kearsey M J.QTL analysis:Futher uses of marker regression.Theor Appl Genet,1995,91:471-476
    [61]Ignatov A.N.,Kuginuki Y.,Suprunova T.P.,Pozmogova G.E.,Seitova A.M.,Dorokhov D.B.,Hirai M..RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent.Genetika Moskva,2000,36:3,357~360.
    [62]Irwn L.Goldman,et al,Molecular markers associated with maize kernel oil concentration in an illinois high protein×illinois low protein cross,Crop Science,34:908~915
    [63]Jean M,Brown G G,Landry B S.Genetic mapping of nuclear fertility restorer genes of the Polima'cytoplasmic male sterility in canola(Brassica napus L.)using DNA markers.1997,95:321~328
    [64]Kennard W C,Slocum M K,Figdore,et al.Genetic analysis of morpholocigical variation in Brassica oleracea using molecular markers.Theor Appl Genet,1994,87:721~732.
    [65]Kianian S F and Quiros C F,Generation of a Brassica oleracea composite RFLP map:Linkage arrangements among various populations and evolutionary implication.TAG 1992,84(5/6):544~554
    [66]Kinishita T.Report of the committee on gene symbolization,nomenclature and linkage group.Rice Genet neusl,1991,8:2~37
    [67]Kinishita T.Report of the committee on gene symbolization,nomenclature and linkage group.Rice Genet neusl,1993,10:7~39
    [68]Kole C,et al.Genetic linkage map of a Brassic rapa recombination inbred population,The Journal of Heredity,1997,88(6):553~556
    [69]Kole C,et al.Linkage mapping of genes controlling resistance to white rust(Albugo candida)in Brassica rapa(syn.campestris)and comparartive mapping to Brassica napus and Arabidopsis thaliana.Genome,2002,45:22~27
    [70]Kole C,et al.Molecular mapping of a locus controlling resistance to Albulo candida in Brassic rapa.1996,86(4):367~369
    [71]Kou L G,Tsay J S.Physiological responses of Chinese cabbage under high temperature.In:Talckar N S,Griggs T D.Chinese Cabbage proceeding of the first international symposium,1981.217~224
    [72]Kowalski S P,Lan T H,Feldmann K A,et al.Comparative mapping of Arabiopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved.Organization Genetics,1994,138:499~510.
    [73]Lagercrantz U,Joanna P,Coupland G,et al.Comparative mapping in Arabidopsis and Brassica,fine scale genome collinerity and congruence of genes controlling flowering time.The Plant Journal,1996,9 (1):13~20.
    [74]Lagercrantz U,Lydidiatet D.RFLP mapping in Brassica nigra indicated differing recombination rates ini male and female meiosis.Genome 1995,38(2):255~264
    
    
    [75]Lander E.S.,Botstein.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics.1989,121:185~199
    [76]Landry B S,et al.A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences.Genome,1991,34:543~552
    [77]Landry B S,et al.A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance gebes to race 2 of Plasmodiophora brassica(Woronin),Genome,1992,35:409~420
    [78]Li Z K,Pinson S R,Park W D,et al.Epistasis for three grain yield components in rice(Oryza sativa L).Genetics,1997,145:453~465
    [79]Lin Y R,Schertz K F,Paterson A T.Comparative analysis of QTLS affecting plant height and maturity across the poaceae,in reference to an interspecific sorghum population.Genetics,1995,141:391~411.
    [80]Lu C,et al.comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population.Theor Appl Genet,1996,93:1211~1217
    [81]Lydiate D,Sharpe A,Lagercrantz U,et al.Mapping the Brassica genome.Outlook Agric,1993,22:85~92.
    [82]Martinez O,Curnow R N.Estimating the location and the sizes of the effect of quantitative trait lici using flanking markers.Theor Appl Genet,1992,85:480~488
    [83]Matsumoto E.,Yasui C.,Ohi M.,Tsukada M..Linkage analysis of RFLP marker for clubroot resistance and pigmentation in Chinese cabbage(Brassica rapa ssp.pekinensis).Euphytica,1998,104:2,79~86.
    [84]Mindrinos M,Katagiri F,Yu G L,et al.The athanliana disease-resistant gene RPS2 encodes a protein repeats.Cell,1994,78:1089~1099.
    [85]Moncada P,Martinez C P,et al,Quantitative trait loci for yield and yield components in an Oryza sativa×Rryza rufipogon BC_2F_2 population evaluated in an upland environment.Theor.Appl.Genet.,2001,102:41~52
    [86]Novakova B.et al.Construction of a linkage map for Brasssica campestrs L.Genetika-a Slechteni,1996,32(4):1123~1129
    [87]Nozaki T,Anji T,Takahashi,et al.Analysis of isozyme loci and their likages in Brassica campestris L..Breed Sci,1995,45:57~64.
    [88]Nozaki T.,et al.Linkage analysis among loci for RAPDs,isozymes and some agronomic traits in Brassica campestris L..Euphytica,1997,95:115~123
    [89]Ooijen J W.Accuracy of mapping quantitative trait loci in autogamous species.Theor Appl Genet,1992,84:803~811
    [90]Opena R T,Lo S H.Genetics of heat tolerance in heading chinese cabbage.Hort.Sci.,1979,14(1):33-34
    [91]Osborn T C,Kole C,Parkin I A P,et al.Comparison of flowering time genes in Brassica rapa,B.napus and Arabidopsis thaliana.Genetics,1997,156:1123~1129.
    [92]Paran I,RW Michelmore.Theor Appl Genet,1993,85:985~99
    [93]Parkin L A P et al.Identification of the A and C genomes of amphidiploid Brassica napus
    
    (oilseed rape).Genome,1995,38(6):1122~1131
    [94]Paterson A H,Deverna J W,Lanini B,et al.Fine mapping of quantitative trait loci using selected overlapping recombbinant chromosomes in an interspecies cross of tomato.Genetics,1991,124:735~742
    [95]Paterson A H,Lander S E,Hewitt J D,et al.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphism.Nature,1988,335:721~726
    [96]Powell W.Analysis of quantitative traits in barley by the use of Amplified Fragment Length Polymorphisms.Heredity,1996,79:48~59.
    [97]Qi X,Stam P,Lindhout P.Use of locus-specific AFLP markers to construct a high-density molecular map in barley.Theor.Appl.Genet.,1998,96:376~384.
    [98]Rajcan.Detection of molecular markers associated with linolenic and erucic-acid levels in spring rapeseed(Brassica napus L.).Euphytics,1999,105(3):173~181
    [99]Rodolphe F,Lefort M A.A multi-marker model for detecting chromosomal segment displaying QTL activity.Genetics,1993,134:1277~1288
    [100]Schwetta A.Inheritance of seed colour in turnip rape (Brassica campestris L.).Theor Appl Genet,62:161-169
    [101]Sharpe A G et al,Frequent nonreciprocal translations in the amphidiploid genome of oilseed rape(Brassica napus).Genome,1995,38 (6):1111~1121
    [102]Slocum M K,et al.Linkage arrangment of restriction length polymorphism loci in Brsssica oleracea.TAG,1990,80:57~64
    [103]Slocum M K.Analyzing the genomic structure of Brassica spiecies and sub-species using RFLP analysis[A].Development and application of molecular markers to problems in plant genetics[C].Cold Spring Harbor Laborayory Press:Cold Spring Harbor,N Y,1989.73~80.
    [104]Song K.M.,Slocum M.K.Osbom T.C..Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn.campestris).Theoretical and Applied Genetics,1995,90:1~10.
    [105]Song K.M,Suzuki J Y,Slocum M K,Williams P H,Osborn T C.A linkage map of Brassica rapa base on restriction fragment length polymorphism loci.Theor Appl.Genet.,1991,82:296~304.
    [106]Stringam G R.Inheritance of chlorotic cotyledon in Brassica campestris L..Can.J.Genet Cotol,1971,13:924~927
    [107]Stringam G R.Inheritance of seed colour in turnip rape.Can.J.Plant Sci.,1980,60:331~335
    [108]Sun S.K.,Jin Y.M.,Cho Y.G.,Park H.G.,Chung T.Y..Identification of AFLP markers linked to TuMV resisitance gene by bulked segregant analysis in Chinese cabbage(Brassica pekinensis).Proceedings of the 8th SABRO General Congress and Annual Meeting of the Korea Breeding Society,24-28 September 1997,Seoul,Korea Republic.199~200.
    [109]Tanhuanpaa P K et al.Identification of RAPD markers for palmitic acid concentration in
    
    the seed oil of spring turnip rape.1995,TAG 91(3):477~480
    [110]Tanhuanpaa P K et al.Mapping ofa QTL for oleic concentration in spring turnip rape (B.rapa ssp oleifera).TAG 1996,92(8):952~956
    [111]Tanksley S D,McCouch S R.Seed bank and molecular maps:unlocking genetic potential from the wild.Science,1997,277:1063~1066
    [112]Tanksley S D,Nelson J C.Advanced backcross QTL analysis:a method for unadapted germplasm into elite breeding lines.Theor Appl Genet,1996,92:191~203
    [113]Tanksley S D.Mapping polygenes.Annu.Rev.Genet.1993,(27):205~233
    [114]Teutonico R A,et al.Genetic analysis and mapping of genes controlling freezing tolerance in oilseed Brassica.Molecular Breeding,1996,1:329~339
    [115]Teutonico R A,et al.Mapping loci controlling vernalization requirement in Brassica rapa.TAG,1995,91:1279~1283
    [116]Teutonico R A,Osbom T C.Mapping of RFLP and quantitative trait loci in Brassica rapa and comarison to the linkage maps of B.napus,B.oleracea,and Arabidopsis thaliana.TAG,1994,89:885~894
    [117]Toroser D.RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate in oilseed rape(B.napus).TAG,1995,91:802~808
    [118]Truco M J et al,Intea-and intra-genomic homology of he Brassica genomes:implication for their origin and evolution.1996,TAG,93(8):1225~1233
    [119]Uzunova M et al.Mapping the genome of repeseed(Brassica napus L.)I.Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content.TAG,1995,90(2):194~201
    [120]Voorips R E,Jongerius M C,Kanne H J.Mapping of two genes for resistance to Clubroot(Plasmodiophora brassicea)in a population of doubed haploid lines ofBrassica oleracea by means of RFLP and AFLP markers.Theor Appl Genet,1997,94:75~82.
    [121]Vuylsteke M,Antonise R,Bastiaans E,Lynn Senior M,Stuber C W,Kuiper M.A high density AFLP linkage map ofZeamays L.In:Plant and Genome V,poster abstract,1997,206.
    [122]Walsh J Band Lynch.Mapping and characterizing QTL,In:Fundament of Quantitative Genetics,Chap.14.Sinauer Associates,Inc.1996
    [123]Wang Y H,Thomas C E,Dean R A.A genetic map of melon(Cucunis melon L.)based on amplified fragment length polymorphism(AFLP)markers.Theor.Appl.Genet,1779,95:791~798.
    [124]Mas J G,Oliver M,Paniagua H G,et al.Comparing AFLP,RAPD and RFLP markers for measuring genetic diversity in melon.Theor.Appl.Genet,2000,101:860~864.
    [125]Williams J C K,et al.DNA polymorphism amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Research.1990,18(22):6531~6535
    [126]Williams P H.Crucifer Genetics Cooperative:resource book.Crucifer Genetics Cooperative,1985,Madison,Wis.
    [127]Wu W R,Li W M.A new approach for mapping quantitative trait loci using complete genetic marker linkage maps.Theor Appl Genet,1994,89:535~539
    
    
    [128]Xiao J,Li J,Yuan L,et al.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross.Theor Appl Genet,1996,92:230~244
    [129]Xu S J,Singh R J,Hymowitz T.Establishment of a cytogenetic map soybean:progress and prospective. Soybean Genet.Newslet.,1997,24:121~122.
    [130]Xu S Z.A comment on the simple regressiojn method for interval mapping.Genetics 1995,141:1657~659
    [131]Xu S Z.Futher investigation in the regression method of mapping quantitative trait loci.Heredity,1998,80:364~373
    [132]Yan J Q,Zhu J.et al.Molecular dissection of developmental behavior of plant height in rice.Genetics,1998b,150:1257~1265
    [133]Yan J Q,Zhu J.et al.Quantitative trait loci analysis for developmental behavior of tiller number in rice.Theor Appl Genet,1998a,97:267~274
    [134]Yano Masahiro,Sasaki Takuji.Genetic and molecular dissection of quantitative traits in rice.Plant Molecular Biology,1997,35:145~153
    [135]Yasuhisa Kuginuki,Hidetoshi Ajisaka,Mamiko Yui,et al.RAPD marker linked to a clubroot-resistance locus in Brassica rapa L..Euphytica,1997,98:149~154
    [136]Zeng,Z B.Precision mapping of quantitative trait loci.Genetics,1994,136:1457-1468.
    [137]Zhuang J Y,et al.Analysis of QTL×environment interaction for yields components and plant height in rice.Theor Appl Genet,1997,95:799~808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700