VEGF对多巴胺能细胞的保护作用及VEGF基因治疗帕金森病的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分VEGF对6-羟多巴胺诱导PC12细胞损伤的保护作用
     目的探讨血管内皮生长因子(VEGF)对6-羟基多巴胺(6-OHDA)诱导的PC12细胞变性损伤的保护作用及机制。方法用PC12细胞制作帕金森病细胞模型,采用四甲基偶氮唑盐法检测暴露于梯度浓度VEGF165后细胞的活性;流式细胞术检测对照组、损伤组(单加6-OHDA)、VEGF组(单加VEGF165)和VEGF保护组(同时加6-OHDA和VEGF165)细胞凋亡率(每组5个样本);免疫印迹法检测PC12细胞VEGF165及其受体fms样酪氨酸激酶-1(Flt-1)、胎肝激酶-1(Flk-1)、神经纤毛蛋白-1(Nrp-1)的表达,并观察VEGF165及其受体中和抗体对VEGF165作用的影响。结果随着VEGF165的浓度增加到50~100 ng/ml时,PC12细胞吸光度由0.14±0.06逐步上升至0.35±0.08(P <0.01),随后又稍下降;细胞凋亡率VEGF保护组(29.65%±6.63%)低于损伤组(57.10%±5.66%),但高于VEGF组(3.67%±1.51%)和对照组(4.76 %±1.06%),P <0.01;免疫印迹实验检测到PC12细胞有VEGF165及Flt-1和Nrp-1的表达,而未检测到Flk-1;抗VEGF165和抗Nrp-1中和抗体可阻断VEGF165的作用,而抗Flt-1抗体无作用。结论VEGF165可保护PC12细胞因6-OHDA造成的损伤, Nrp-1受体在其中发挥重要作用。
     第二部分腺病毒介导的VEGF165基因转移保护6-羟多巴胺诱导的PC12细胞损伤
     目的探讨腺病毒介导的血管内皮生长因子(VEGF)基因转移对6-羟多巴胺(6-OHDA)诱导的多巴胺能细胞损伤的保护作用。方法用腺病毒载体携带VEGF165基因(Ad-VEGF165)感染PC12细胞,并设腺病毒携带的β-半乳糖苷酶基因(Ad-LacZ)感染组和磷酸盐缓冲液(PBS)处理组作对照,基因转移成功后,用6-OHDA处理细胞,另加设不用6-OHDA处理的正常对照组。四甲基偶氮唑盐法(MTT)测定细胞活性,免疫荧光细胞化学法检测细胞酪氨酸羟化酶(TH)表达,高效液相色谱检测细胞分泌功能。结果腺病毒在30 MOI以上感染强度时能高效感染PC12细胞。Ad-VEGF165感染组的PC12细胞经6-OHDA处理后吸光度A570 (0.31±0.07)高于Ad-LacZ感染组(0.15±0.07)和PBS处理组(0.13±0.05),但低于正常对照组细胞(0.55±0.10),P < 0.01;免疫荧光染色显示Ad-VEGF组细胞胞浆平均荧光强度(86.75±21.62)高于Ad-LacZ组(51.53±17.49)及PBS组(54.19±15.82),但低于正常对照组(110.39±24.21)(P < 0.05);Ad-VEGF感染组细胞培养液中多巴胺和去甲肾上腺素含量也高于Ad-LacZ感染组和PBS处理组。结论腺病毒介导的VEGF基因转移对6-OHDA诱导的多巴胺能细胞损伤具有保护作用。
     第三部分腺病毒介导的VEGF基因转移对帕金森病大鼠多巴胺能神经元的保护作用
     目的探讨血管内皮生长因子(VEGF)基因转移对帕金森病(PD)大鼠多巴胺能神经元的保护作用。方法携带VEGF165基因的腺病毒(Ad-VEGF165)载体感染大鼠一周后,纹状体注射6-羟基多巴胺制作大鼠多巴胺能神经元损伤的PD模型。采用大鼠旋转行为观察、免疫组织化学方法和高效液相色谱技术检测VEGF165基因转移的PD大鼠行为学变化、黑质纹状体酪氨酸羟化酶(TH)、层粘蛋白(laminin)和胶质纤维原性酸性蛋白(GFAP)的表达以及纹状体区多巴胺(DA)及代谢产物含量变化。并与重组腺病毒载体(Ad-LacZ)组及磷酸盐缓冲液(PBS)组进行比较。结果Ad-VEGF165成功感染PD大鼠并高表达目的基因和蛋白。感染Ad-VEGF165的大鼠获得行为学改善,其黑质和纹状体TH阳性细胞数和纤维密度与对侧半球的比值(0.42±0.11和0.56±0.10)高于Ad-LacZ组(0.20±0.10和0.28±0.09)和PBS组(0.22±0.13和0.24±0.08),P<0.01;纹状体区血管和胶质细胞数量均明显增多;Ad-VEGF165感染组大鼠纹状体区DA及代谢产物含量与对侧比值也高于对照组。结论Ad-VEGF基因转移能保护PD大鼠多巴胺能神经元,血管和胶质细胞的增生可能参与了VEGF对在体多巴胺能神经细胞的保护机制。
     第四部分纹状体内VEGF基因转移挽救帕金森病大鼠多巴胺能神经元
     目的观察血管内皮生长因子基因转移能否挽救帕金森病(PD)大鼠多巴胺能神经元变性损伤。方法先采用6-OHDA注射制备纹状体损伤的大鼠PD模型,一周后,腺病毒载体携带VEGF165基因(Ad-VEGF165)感染PD模型大鼠纹状体,观察大鼠旋转行为及黑质和纹状体区酪氨酸羟化酶(TH)免疫组织化学变化。并与重组腺病毒载体(Ad-LacZ)组及磷酸盐缓冲液(PBS)组进行比较。结果腺病毒(Ad)感染PD大鼠后高表达目的基因和治疗蛋白;Ad-VEGF165感染组动物行为学获得改善,同时其黑质和纹状体TH阳性细胞数和纤维密度与对侧半球的比值(0.34±0.13和0.38±0.14)高于Ad-LacZ组(0.21±0.10和0.25±0.08)和PBS对照组(0.22±0.13和0.20±0.11),P<0.01。结论Ad介导的VEGF基因转移能部分挽救PD模型大鼠多巴胺能神经元,抑制其变性损伤。
Part I Vascular endothelial growth factor protects PC12 cells against 6-hydroxydopamine-induced degeneration
     Objective To approach the protective effect of vascular endothelial growth factor (VEGF) on PC12 cells against 6-hydroxydopamine-induced degeneration and its mechanism. Methods Neuronal PC12 cells impaired by 6-hydroxydopamine(6-OHDA)were used as the cell model of Parkinson’s disease, MTT (methyl thiazolyl tetrazolium) was used to assay viability and the metabolism state of the PC12 cells exposed to gradient concentration VEGF165; Flow cytometry was used to analyse the apoptosis ratio of the PC12 cells among the groups of control, 6-OHDA, VEGF and VEGF plus 6-OHDA; Western blot was used to examine the express of VEGF165 and its receptors Flt-1, Flk-1 and Nrp-1 of neuronal PC12 cells, and the neutralizing antibodies of VEGF165, Flt-1 and Nrp-1 were used to block VEGF165 and the correspond receptors to observe their influence on the effect of VEGF165. Results The viability (represented by A570) of PC12 cells upgraded gradually to 0.35±0.08 from 0.14±0.06 with the increase of VEGF165 concentration to 50~100 ng/ml, P<0.01, and then declined slightly; The flow cytometry showed that the apoptosis ratio of VEGF plus 6-OHDA(29.65%±6.63%)was lower than that of group of 6-OHDA(57.10%±5.66%),but higher than that of control(4.76%±1.06%)and group of VEGF(3.67%± 1.51%),P < 0.01;Western blotting indicated that the neuronal PC12 cells express VEGF165, Flt-1 and Nrp-1, but Flk-1 has not been detected; the experiment of neutralizing antibody revealed that the antibodies against VEGF165 and Nrp-1 could block the effect of VEGF165 completely while the neutralizing antibodies to Flt-1 were invalid. Conclusion VEGF165 protects neuronal PC12 cells against 6-hydroxydopamine-induced degeneration, Nrp-1 receptor plays an important role in the process.
     Part II Adenoviral vector mediated vascular endothelial growth factor165 gene transfer protects dopaminergic cells against 6-hydroxydopamine-induced degeneration.
     Objective To explore the protective effect of vascular endothelial growth factor165 (VEGF165) gene transfer on dopaminergic cells against 6-hydroxydopamine-induced degeneration. Methods Adenovirus vector carrying the gene of VEGF165 (Ad-VEGF165) was used to infect PC12 cells , and groups of adenovirus vector carryingβ-galactosidae gene (Ad-LacZ) and phosphate buffered solution (PBS) were set for controls, and then the cells were exposed to 6-hydroxydopamine(6-OHDA)as the cell model of Parkinson’s disease. Methyl thiazolyl tetrazolium (MTT) and immunofluorescence- cytochemistry were used to assay the viability of PC12 cells and the expression of the tyrosine hydroxylase (TH), and HPLC-ECD was performed to detect the secretion function of the PC12 cells. Results MTT showed that the absorbance A570 of Ad-VEGF165 group (0.31±0.07) was higher than that of Ad-LacZ group (0.15±0.07) and PBS group (0.13±0.05), but lower than that of normal control (0.55±0.10), P < 0.01; TH immunofluorescence showed that the mean fluorescence intensity in the Ad-VEGF group (86.75±21.62) was higher than that of Ad-LacZ group (51.53±17.49) and PBS group (54.19±15.82), but lower than that of normal control (110.39±24.21), P < 0.05; HPLC-ECD showed that the levels of dopamine and noradrenaline in the culture fluid of Ad-VEGF165 group increased than that of Ad-LacZ group and PBS group. Conclusions Gene transfer of Ad-VEGF165 has the effect of protection on dopaminergic cells against 6-hydroxydopamine-induced degeneration.
     Part III Adenovirus mediated vascular endothelial growth factor gene transfer protects dopaminergic neurons in Parkinson’s disease: experiment with rats
     Objective To evaluate the protective effect of adenovirus mediated vascular endothelial growth factor165 (VEGF165) gene transfer on dopaminergic neurons in Parkinson disease(PD). Methods Adenovirus vector coding for VEGF165 (Ad-VEGF165) was injected into the striatum of 16 SD rats, and adenovirus Ad-LacZ was injected into 25 rats and phosphate-buffered saline (PBS) was injejected into 16 rats as controls. Then, 6-hydroxydopamine (6-OHDA) was injected into establish PD model. X-gal staining was used to detected the expression of the report gene LacZ in the brain of the Ad-LacZ group 3 d, 2 w, and 6 w after injection, 3 rats in each time-point. RT-PCR was used to detect the VEGF165 mRNA exprssion in the striatum of rats of the 3 groups 2 weeks after injection, 3 rats for each group. Western blot were performed to check the protein expression of VEGF165 in the striatum of the rats of the 3 groups 2 weeks after injection, 3 rats for each group. A certain numbers of rats in each group underwent rotational behavioral anylysis 1,2, and 6 weeks after the 6-OHDA lesion. Immunohistochemistry was used to examine the number of tyrosine hydroxylase (TH) positive neuron in nigra substance, density of TH-positive fiber in striatum, and lamilin-positive vessel density, and glial fibrillary acidic protein (GFAP) positive glial cells. High performance liquid chromatography combined with electric chemical detection (HPLC-ECD) was performed to assess the contents of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum. Resultsβ-gal was expressed in the striatum of all Ad-LacZ transfected rats, showing the successful transfection of LacZ gene. The mRNA expression and protein expression of VEGF165 in the striatum were significantly higher in the Ad-VEGF165 group than in the other 2 groups. The apomorphine-induced rotation number in the Ad-VEGF165 group was 8.3 turns/min±8.7 turns/min 1 week after the transfection, then gradually decreased, and become 5.0 turns/min±4.4 turns/min 6 weeks after. The rotation number of the Ad-LacZ and PBS group were 14.7 turns/min±11.2 turns/min and 13.9 turns/min±8.3 turns/min respectively 1 week after the injection, then increased gradually, and became 20.2 turns/min±13.6 turns/min and 21.8 turns/min±11.8 turns/min respectively 6 weeks later,all significantly higer than those of the Ad-LacZ group (all P < 0.01). The ratios of TH-positive cells in the nigra substance in the transfected side was 0.56±0.10 in the Ad-VEGF165 group, both both significantly higher than those of the Ad-LacZ group (0.20±0.10 and 0.28±0.09) or PBS injection (0.22±0.13 and 0.24±0.08), (all P < 0.01). The ratios of lamilin-positive vessel desity of the transfected side to that of the contralateral side in the Ad-VEGF165 group was 2.09±0.42, and the ratio of GFAP-positive glial cells of the striatum of the transfected side to that of the contralateral side was 2.77±1.21 in the Ad-VEGF165 group, both significantly higher than those in the Ad-LacZ group (1.01±0.16 and 1.64±0.28) and the PBS group (1.04±0.09 and 1.56±0.62) (P < 0.01 and 0.05). HPLC-ECD showed that the contents of DA, HAV and DOPAC of the striatum at the lesioned side in the Ad-VEGF165 group were all significantly higher than those in the other 2 groups (all P < 0.01). The ratio to the DA, DOPAC, and HVA of the lesioned side striatum to those of the contralateral side in the Ad-VEGF165 group was 0.35±0.11, 0.46±0.09, and 0.38±0.09 respectively, all significantly higher than those in the Ad-LacZ group (0.17±0.15, 0.21±0.07, and 0.16±0.05) and PBS (0.19±0.06, 0.20±0.09, and 0.14±0.03) (all P < 0.01). Conclusion Gene transfer of Ad-VEGF165 has a protective effect on rat dopaminergic neurons of PD. The proliferations of vessels and glial cells induced by VEGF may involve in the process of neuroprotection to the dopaminergic neurons of PD.
     Part IV Intrastriatal gene transfer of vascular endothelial growth factor rescues the dopaminergic neurons from degeneration in a rat model of Parkinson disease
     Objective To approach the ability of intrastriatal gene transfer of vascular endothelial growth factor165 mediated by adenoviral vector to rescue dopaminergic neurons in a rat model of Parkinson’s disease (PD). Methods we constructed recombinant replication-deficent adenoviral vectors carrying the gene of VEGF165 (Ad-VEGF), and injected Ad-VEGF (or Ad-LacZ and PBS as controls) into the striatum of rats at 7 days after the lesion by 6-hydroxydopamine. The rat rotational behavior analysis and tyrosine hydroxylase (TH) immunohistochemistry were performed to assess the change of dopaminergic neurons. Results The rats receiving Ad-VEGF injection displayed a significant improvement in apomorphine-induced rotational behavior and a significant preservation of TH-positive neurons and fibers compared with control animals. The ratios of TH-positive cells in the substantia nigro and the density of fibers in the striatum to the contralateral side of the rats infected by Ad-VEGF165 (0.34±0.13 and 0.38±0.14) were higher than those of infected by Ad-LacZ (0.21±0.10 and 0.25±0.18) and PBS injection (0.22±0.13 and 0.20±0.11), P < 0.01. Conclusions Intrastriatal gene transfer of VEGF165 mediated by adenovirus is able to partly rescue dopaminergic neurons and inhibit the neurodegeneration in PD models.
引文
1. Lin L.F.,Doherty D.H.,Lile J.D.,et al.GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science,1993; 260:1130-1132.
    2. Hou J.G.,Lin LF, Mytilineou C. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methy-4-phenyl-pyridinium. J. Neurochem.,1996;66:74-82.
    3. Sun M, Kong L, Wang X, et al. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res., 2005;1052(2):119-129.
    4. Saarma M. GDNF - a stranger in the TGF-beta superfamily? Eur. J. Biochem., 2000; 267(24):6968-6971.
    5. Kordower JH. In vivo gene delivery of glial cell line--derived neurotrophic factor for Parkinson's disease. Ann Neurol. 2003;53 Suppl 3:S120-132.
    6. Shingo T, Date I, Yoshida H,et al. Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson's disease.J Neurosci Res.,2002;69(6):946-954.
    7. Ferrari G, Toffano G, Skaper SD. Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor.J Neurosci Res.,1991; 30(3):493-497.
    8. Ylikorkala A, Rossi DJ, Korsisaari N, et al. Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice. Science, 2001,293:1323-1326.
    9. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection.Bioessays,2004;26: 943-954.
    10. Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue--beyond blood vessels.Exp. Neurol.,2004;187:246-253.
    11. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004;429:413-417.
    12. Timothy JS,William DA.Transmitter,ion channel and receptor properties of pheochimomocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology,1991;12:473-492.
    13.李雪莉,孙圣刚,陈吉相,等.雌激素对MPP+诱导的PC12细胞损伤的防护作用.中华神经科杂志,2003;36:324-327.
    14. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor.Proc Natl Acad Sci U S A,1976;73:2424-2428.
    15.田有勇,孙圣刚.帕金森病神经保护的试验研究进展.国外医学神经病学神经外科学分册,2005;32(2):113-116.
    16. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci, 1999;19:5731–5740.
    17.岳阳,张锦,瞿秀岩,等.血管内皮细胞生长因子在糖尿病大鼠坐骨神经中的表达.中华神经科杂志,2004;37:184.
    18. Jin KL,Mao XO,Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci,2000,14:197–203.
    19. Yasuhara T, Shingo T, Kobayashi K,et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci,2004;19:1494-1504.
    20. Soker, S, Takashima, S, Miao, H.Q,et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell,1998;92: 735–745.
    21. Beker PM,Waltenberger J,Yachechko R,et al.Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res, 2005;94:1257-1265.
    22. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia.Proc Natl Acad Sci U S A,2000; 97:10242-10247.
    23. Wick A, Wick W, Waltenberger J,et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci,2002 ;22:6401-6407.
    1. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-bonding growth fator specific for vascular endothelial cells.Biochem Biophys Res Commun, 1989;161:851-858.
    2. Senger DR, Galli SJ, Dvorak AM, et al.Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science;1983;219:983-985.
    3. Anne M B, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J. Cell. Mol. Med. 2005;9 (4):777-794.
    4. Shen F, Su H, Fan Y, et al.Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke. 2006;37(10):2601-2606.
    5. Ding XM, Mao BY, Jiang S,et al. Neuroprotective effect of exogenous vascular endothelial growth factor on rat spinal cord neurons in vitro hypoxia. Chin Med J (Engl).2005;118(19):1644-1650.
    6. Carmeliet P.Angiogenesis in health and disease.Nat. Med. 2003;9:653-660.
    7. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays;2004, 26: 943-954.
    8. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci,1999;19:5731–5740.
    9. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA,2000, 97:10242-10247.
    10. Sun Y, Jin K, Xie L,et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest,2003;111(12):1843-1851.
    11. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration.Nat Genet.2001;28(2):131-138.
    12. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004,429:413-417.
    13. Storkebaum E, Lambrechts D, Dewerchin M,et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci. 2005;8(1):85-92.
    14.田有勇,孙圣刚,汤翠菊,等.血管内皮生长因子通过神经纤毛蛋白-1受体防护6-羟多巴胺诱导的PC12细胞损伤.中华神经科杂志,2006;39(6):369-373.
    15. Silverman WF, Krum JM, Mani N, et al. Vascular, glial and neuronal effects of vascularendothelial growth factor in mesencephalic explant cultures. Neuroscience, 1999;90:1529–1541.
    16.王崇全,王家宁,黄永章,等.携带人VEGF165的腺病毒载体的构建及鉴定.临床检验杂志,2002;20:156-158.
    17.王家宁,黄永章,王俊峰,等。重组β-半乳糖苷酶腺病毒载体的构建及其在血管平滑肌细胞中的表达。郧阳医学院学报,2000;19(4):193-196。
    18.曹亚主编。实用分子生物学操作指南。北京:人民卫生出版社,2003。
    19. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal.J Mol Neurosci,2000;14:197–203.
    20. Matsuzaki H, Tamatani M, Yamaguchi A, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J,2001;15:1218-1220.
    21. Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab,2002;22:1170–1175.
    22. Yasuhara T, Shingo T, Kobayashi K,et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci,2004;19:1494-1504.
    23. Bilang-Bleuel, A., Revah, F., Colin, P.,et al. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA, 1997;94:8818-8823.
    24. Dowd, E., Monville, C., Torres, E.M., et al. Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur. J. Neurosci., 2005;22:2587-2595.
    25. Muramatsu, S., Wang, L., Ikeguchi, K., et al. Recombinant adeno-associated viral vectors bring gene therapy for Parkinson’s disease closer to reality. J. Neurol., 2002; 249:II36-II40.
    26.叶刚,金锡御。目的基因的转导策略与方法。重庆医学,2003;32(7):933-935。
    27. Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab,2002;22:1170–1175.
    1.鲁玲玲,苏月,段春礼,等.多巴胺合成酶相关基因治疗帕金森病的实验研究.中华医学杂志,2004;18:36-40.
    2.陈彪,马敬红,邹海强.帕金森病基因治疗展望.中华神经科杂志,2005;38:346-347.
    3. During MJ, Kaplitt MG, Stern MB, et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther. 2001;12(12):1589-1591.
    4.沈扬,樊东升,王立军,等。帕金森病大鼠三重目的基因共表达的长期行为改善。中华神经科杂志,2002;35(1):16-18。
    5. Alicia BB, Frédéric R, Phillippe C, et al. Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proc. Natl. Acad. Sci. USA, 1997;94:8818-8823.
    6. Sun M, Kong L, Wang X,et al. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res. 2005;1052(2):119-129.
    7. Cunningham LA, Su C. Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson's disease. Exp Neurol, 2002;174:230-242.
    8.张文华,王晓民,杨扬,等.人胶质细胞源性神经营养因子基因工程细胞保护多巴胺能神经元的实验研究.中华医学杂志,2001;22:1384-1386.
    9.孙宁玲,王鸿懿.血管内皮生长因子基因治疗可缓解冠心病患者心绞痛并改善心功能.中华医学杂志,2002;6:70-71.
    10. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays, 2004;26:943-954.
    11. Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue--beyond blood vessels. Exp Neurol. 2004;187(2): 246-253.
    12. Storkebaum E, Carmeliet P. VEGF: a critical player in neurodegeneration. J Clin Invest,2004;113(1):14-18.
    13. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA, 2000;97:10242–10247.
    14. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 1999;19:5731–5740.
    15. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induceschemotaxis and proliferation of microglial cells. J Neuroimmunol, 2002;132:93–98.
    16. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature, 2004;429:413-417.
    17. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal.J Mol Neurosci, 2000;14:197–203.
    18. Sun Y, Jin K, Xie L,et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.J Clin Invest. 2003 Jun;111(12):1843-51.
    19. Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab, 2002;22:1170–1175.
    20. Yasuhara T, Shingo T, Kobayashi K, et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci, 2004;19:1494-1504.
    21. Silverman WF, Krum JM, Mani N, et al. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience,1999;90:1529–1541.
    22.田有勇,孙圣刚,汤翠菊,等.血管内皮生长因子通过神经纤毛蛋白-1受体防护6-羟多巴胺诱导的PC12细胞损伤.中华神经科杂志,2006;39(6):369-373.
    23.田有勇,孙圣刚,王家宁,等.腺病毒介导的血管内皮生长因子165基因转移保护6-羟多巴胺诱导的多巴胺能细胞损伤。中华老年医学杂志,2007;26(2):140-144.
    24.王崇全,王家宁,黄永章,等.携带人VEGF165的腺病毒载体的构建及鉴定.临床检验杂志,2002;20:156-158.
    25.王家宁,黄永章,王俊峰,等。重组β-半乳糖苷酶腺病毒载体的构建及其在血管平滑肌细胞中的表达。郧阳医学院学报,2000;19(4):193-196。
    26.王平宇主编,大白鼠中枢神经系统解剖学基础。北京:人民卫生出版社,1986年第一版。
    27. Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke. 2006;37(10):2601-2606.
    28. Dowd E, Monville C, Torres EM, et al. Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur J Neurosci, 2005;22:2587-2595.
    29.叶刚,金锡御。目的基因的转导策略与方法。重庆医学,2003;32(7):933-935。
    30. Hudson JL, van Horne CG, Stromberg I,et al. Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats.Brain Res.1993;626:167-174.
    31. Matsuzaki H, Tamatani M, Yamaguchi A, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J. 2001;15:1218–1220.
    32. Sondell, M., and Kanje, M. Postnatal expression of VEGF and itsreceptor flk-1 in peripheral ganglia. Neuroreport,2001;12:105–108.
    1. Jeffrey H, Kordower, Marina E. et al. Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson's Disease. Science,2000;290: 767-773.
    2. Choi-Lundberg DL, Lin Q, Chang YN, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science. 1997;275:838-841.
    3. Gill SS, Patel NK, Hotton GR, et al.Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9(5):589-595.
    4. Slevin JT, Gash DM, Smith CD, et al. Unilateral intraputaminal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year each of treatment and withdrawal. Neurosurg Focus. 2006;20(5):E1.
    5. Carmeliet, P. Angiogenesis in health and disease. Nat Med,2003;9:653–660.
    6. Shen F, Su H, Fan Y, et al. Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke,2006;37(10):2601-2606.
    7. Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J Neurobiol. 2006;66(3):236-242.
    8. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays, 2004;26:943-954.
    9. Erik Storkebaum, Peter Carmeliet. VEGF: a critical player in neurodegeneration. J Clin Invest,2004;113:14–18.
    10. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet, 2003;34:383–394.
    11. M Azzouz, GS Ralph, E Storkebaum,et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature,2004;429: 413-417.
    12. Yasuhara T, Shingo T, Kobayashi K, et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease. Eur J Neurosci,2004;19:1494-1504.
    13. Silverman WF, Krum JM, Mani N, et al. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience,1999;90:1529–1541.
    14.田有勇,孙圣刚,汤翠菊,等.血管内皮生长因子通过神经纤毛蛋白-1受体防护6-羟多巴胺诱导的PC12细胞损伤.中华神经科杂志,2006;39(6):369-373.
    15.田有勇,孙圣刚,王家宁,等.腺病毒介导的血管内皮生长因子165基因转移保护6-羟多巴胺诱导的多巴胺能细胞损伤.中华老年医学杂志,2007;26(2):
    16.田有勇,孙圣刚,王家宁,等.腺病毒介导的血管内皮生长因子基因转移对帕金森病大鼠多巴胺能神经元的保护作用.中华医学杂志,2006;86(29):2054-2059。
    17.王崇全,王家宁,黄永章,等.携带人VEGF165的腺病毒载体的构建及鉴定.临床检验杂志,2002;20:156-158.
    18.王家宁,黄永章,王俊峰,等.重组β-半乳糖苷酶腺病毒载体的构建及其在血管平滑肌细胞中的表达.郧阳医学院学报,2000;19(4):193-196。
    19. Przedborski S, Levivier M, Jiang H,et al. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 1995;67: 631- 647.
    20.王平宇主编,大白鼠中枢神经系统解剖学基础.北京:人民卫生出版社,1986年,第一版.
    21. Sun Y, Jin K, Xie L,et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.J Clin Invest,2003;111:1843- 1851.
    22. Yasuhara T, Shingo T, Muraoka K,et al. Neurorescue effects of VEGF on a rat model of Parkinson's disease. Brain Res,2005;1053:10-18.
    23. Hudson JL, van Horne CG, Stromberg I,et al. Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats.Brain Res,1993;626:167-174.
    24. Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue--beyond blood vessels. Exp Neurol,2004;187:246-253.
    25. Yunjuan Sun, Kunlin Jin, Lin Xie,et al. VEGF-induced neuroprotection, neurogenesis,and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 2003;111:1843–1851.
    1. Double KL, Halliday GM, Henderson J, et al. The dopamine receptor agonist lisuride attenuates iron-mediated dopaminergic neurodegeneration.Exp. Neurol.,2003;184(1): 530-535.
    2. Yoshioka M,Tanaka K,Miyazaki I,et al. The dopamine agonist cabergoline provides neuroprotection by activation of the glutathione system and scavenging free radicals.Neurosci. Res., 2002;43(3):259-267.
    3. Tatton W, Chalmers-Redman R, Tatton N. Neuroprotection by deprenyl and other propargylamines: glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm,2003;110(5):509-515.
    4. Tabakman R, Lecht S, Lazarovici P. Neuroprotection by monoamine oxidase B inhibitors: a therapeutic strategy for Parkinson's disease? Bioessays, 2004;26(1):80-90.
    5. Am OB, Amit T, Youdim MB. Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci Lett;2004,355(3):169-172.
    6. Shachar DB, Kahana N, Kampel V,et al. Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology, 2004;46(2):254-263.
    7. Rajendra W, Armugam A, Jeyaseelan K. Neuroprotection and peptide toxins.Brain Res Brain Res Rev,2004,45(2):125-141.
    8. Boje KM. Nitric oxide neurotoxicity in neurodegenerative diseases.Front Biosci,2004; 9(1):763-776.
    9. Liu Y, Qin L, Li G,et al. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.J Pharmacol Exp Ther,2003;305(1):212-218.
    10. Liu Y, Qin L, Wilson BC, et al. Inhibition by naloxone stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons.J Pharmacol Exp Ther,2002;302(3):1212-1219.
    11. Carrasco E, Werner P. Selective destruction of dopaminergic neurons by low concentrations of 6-OHDA and MPP+: protection by acetylsalicylic acid aspirin.Parkinsonism Relat Disord, 2002;8(6):407-411.
    12. Cunningham LA, Su C. Astrocyte delivery of glial cell line-derived neurotrophic factor in a mouse model of Parkinson's disease.Exp Neurol,2002;174(2):230-242.
    13. Oiwa Y, Yoshimura R, Nakai K, et al. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease.Brain Res,2002;947(2):271-283.
    14. Chuenkova MV, Pereira MA. PDNF, a human parasite-derived mimic of neurotrophic factors, prevents caspase activation, free radical formation, and death of dopaminergic cells exposed to the Parkinsonism-inducing neurotoxin MPP+. Brain Res Mol Brain Res,2003; 119(1):50-61.
    15. Masutani H, Bai J, Kim YC, et al. Thioredoxin as a neurotrophic cofactor and an important regulator of neuroprotection.Mol Neurobiol, 2004, 29(3):229-242.
    16. Singh A, Naidu PS, Kulkarni SK. FK506 as effective adjunct to L-dopa in reserpine-induced catalepsy in rats.Indian J Exp Biol,2003;41(11):1264-1268.
    17. Tanaka K, Ogawa N. Possibility of non-immunosuppressive immunophilin ligands as potential therapeutic agents for Parkinson's disease.Curr Pharm Des,2004;10(6): 669-677.
    18. Gelinas S, Bureau G, Valastro B,et al. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress. Neurotox Res,2004;6(2):141-148.
    19. Quesada A, Micevych PE. Estrogen interacts with the IGF-1 system to protect nigrostriatal dopamine and maintain motoric behavior after 6-hydroxdopamine lesions.J Neurosci Res, 2004;75(1):107-116.
    20. Sawada H, Ibi M, Kihara T,et al. Estradiol protects dopaminergic neurons in a MPP+ Parkinson's disease model. Neuropharmacology, 2002; 42(8):1056-1064.
    21. Lo Bianco C, Schneider BL, Bauer M, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease.Proc Natl Acad Sci U S A,2004,101(50):17510-17515.
    22. Piallat B, Benazzouz A, Benabid AL. Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies.Eur J Neurosci, 1996,8(7):1408-1414.
    23. Srinivasan J, Schmidt WJ. Treatment with alpha2-adrenoceptor antagonist, 2-methoxy idazoxan, protects 6-hydroxydopamine-induced Parkinsonian symptoms in rats: neurochemical and behavioral evidence.Behav Brain Res, 2004,154(2):353-363.
    24. Schwarzschild MA, Xu K, Oztas E, et al. Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson's disease.Neurology, 2003,61(11 Suppl 6):S55-61.
    25. Yasuhara T, Shingo T, Kobayashi K, et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease.Eur J Neurosci, 2004,19(6):1494-1504.
    1. Emborg ME, Carbon M, Holden JE,et al.Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab, 2007;27(3):501-509.
    2. Lo Bianco C, Schneider BL, Bauer M,et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson's disease.Proc Natl Acad Sci U S A,2004;101(50):17510-17515.
    3. Hashimoto M, Rockenstein E, Mante M,et al. An antiaggregation gene therapy strategy for Lewy body disease utilizing beta-synuclein lentivirus in a transgenic model.Gene Ther, 2004;11(23):1713-1723.
    4. Haywood AF, Staveley BE. Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease. Genome,2006;49(5):505-510.
    5. Monville C, Torres E, Thomas E,et al. HSV vector-delivery of GDNF in a rat model of PD: partial efficacy obscured by vector toxicity.Brain Res,2004;1024(1-2):1-15.
    6. Muramatsu S, Wang L, Ikeguchi K,et al. Recombinant adeno-associated viral vectors bring gene therapy for Parkinson's disease closer to reality.J Neurol,2002;249(Suppl2): II36-40.
    7. Cockrell AS, Kafri T. HIV-1 vectors: fulfillment of expectations, further advancements, and still a way to go.Curr HIV Res. 2003;1(4):419-439.
    8. Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction.Curr Gene Ther. 2004;4(4):357-372.
    9. Lampela P, Huotari M, Harjula A,et al.Production of functional recombinant tyrosine hydroxylase by the BPV-1 expression plasmids in the cell cultures.Plasmid,2003; 50(3): 230-235.
    10. Chen S, Xianwen C, Dehua X,et al. Behavioral correction of Parkinsonian rats following the transplantation of immortalized fibroblasts genetically modified with TH and GCH genes.Parkinsonism Relat Disord. 2003;9(Suppl 2):S91-7.
    11. Ryu MY, Lee MA, Ahn YH, et al.Brain transplantation of neural stem cells cotransduced with tyrosine hydroxylase and GTP cyclohydrolase 1 in Parkinsonian rats. Cell Transplant. 2005;14(4):193-202.
    12. Zhang Y, Calon F, Zhu C,et al. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14(1):1-12.
    13. Xie XG, Liu J, You C,et al. Construction of tyrosine hydroxylase gene modified mesencephalic astrocytes.Sichuan Da Xue Xue Bao Yi Xue Ban,2004;35(5):603-606.
    14. Bankiewicz KS, Eberling JL, Kohutnicka M,et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach.Exp Neurol,2000;164(1):2-14.
    15. Duan CL, Su Y, Zhao CL,et al.The assays of activities and function of TH, AADC, and GCH1 and their potential use in ex vivo gene therapy of PD.Brain Res Brain Res Protoc, 2005;16(1-3):37-43.
    16. Sun M, Kong L, Wang X,et al. Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson's disease.Hum Gene Ther, 2004;15(12):1177-1196.
    17. Lang AE, Gill S, Patel NK, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease.Ann Neurol, 2006;59(3):459-466.
    18. Tian YY, Sun SG, Wang JN,et al. Adenovirus mediated vascular endothelial growth factor gene transfer protects dopaminergic neurons in Parkinson's disease: experiment with rats. Zhonghua Yi Xue Za Zhi,2006;86(29):2054-2059.
    19. Fink DJ, Glorioso J, Therapeutic gene transfer with herpes-based vectors: studies in Parkinson's disease and motor nerve regeneration.Exp Neurol.2003;184(Suppl 1):S19-24.
    20. Eberhardt O, Coelln RV, Kugler S,et al. Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.J Neurosci. 2000;20(24):9126-9134.
    21. Mochizuki H, Hayakawa H, Migita M,et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson's disease.Proc Natl Acad Sci U S A,2001;98(19):10918-10923.
    22. Kaur D, Yantiri F, Rajagopalan S,et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease. Neuron,2003;37(6):899-909.
    23. Barkats M, Horellou P, Colin P,et al.1-methyl-4-phenylpyridinium neurotoxicity is attenuated by adenoviral gene transfer of human Cu/Zn superoxide dismutase. J Neurosci Res,2006;83(2):233-242.
    24. During MJ, Kaplitt MG, Stern MB,et al. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation.Hum Gene Ther. 2001;12(12):1589-1591.
    25. Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V,et al. Differentiation and transcription factor gene therapy in experimental parkinson's disease: sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration.Mol Ther. 2004;10(3):507-524.
    26. Suwelack D, Hurtado-Lorenzo A, Millan E,et al. Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson's disease.Gene Ther. 2004;11(24):1742-1752.
    27. Vercammen L,Van der Perren A,Vaudano E,et al. Parkin protects against neurotoxicity in the 6-hydroxydopamine rat model for Parkinson's disease.Mol Ther. 2006;14(5):716-723.
    28. Paterna JC, Leng A, Weber E,et al. DJ-1 and Parkin Modulate Dopamine-dependent Behavior and Inhibit MPTP-induced Nigral Dopamine Neuron Loss in Mice. Mol Ther. 2007;15(4): 698-704.
    1. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection.Bioessays,2004;26(9):943-954.
    2. Rosenstein JM, Krum JM. New roles for VEGF in nervous tissue--beyond blood vessels.Exp Neurol, 2004;187(2):246-253.
    3. Savlen P,Lymboussaki A,Heikkila P, et al.Vascular endothelial growth factors VEGF-B and VEGF-C are expressed in human tumors.Am J Pathol,1998;153(1):103-108.
    4. Shalaby F, Rossant J, Yamaguchi TP,et al. Failure of blood-island formation and vasculogenesis in FLK-1-deficient mice. Nature,1995;376(6535):62-66.
    5. de Vries C, Escobedo JA, Ueno H, et al. The fms-like tyrosine kinase, a receptor for vascula endothelial growth factor. Science, 1992;255(5047):989-991.
    6. Goldberg MA,Schneider TJ. Similarities between the Oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem,1994;269(6):4353-4359.
    7. Barleon B, Siemeister G, Martiny-Baron G,et al. Vascular endothelial growth factor up-regulates its receptor fms-lilk tyrosine kinasel (FLT-1) and a soluble variant of Flt-1 in human vascular endothelial cells. Cancer Res. 1997;57:5421-5425.
    8. Raab S, Beck H, Gaumann A, et al. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor.Thromb Haemost. 2004;91(3):595-605.
    9. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia.Proc Natl Acad Sci U S A, 2000;97(18):10242-10247.
    10. Sun Y, Jin K, Xie L,et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.J Clin Invest, 2003;111(12):1843-1851.
    11. Manoonkitiwongsa PS, Schultz RL, McCreery DB,et al. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis.J Cereb Blood Flow Metab,2004;24(6):693-702.
    12. Fischer S, Renz D, Schaper W, et al. In vitro effects of dexamethasone on hypoxia-induced hyperpermeability and expression of vascular endothelial growth factor.Eur J Pharmacol,2001;411(3):231-43.
    13. Yasuhara T, Shingo T, Kobayashi K,et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson's disease.Eur J Neurosci.2004;19(6):1494-1504.
    14. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration.NatGenet.2001;28(2):131-138.
    15. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model.Nature,2004;429(6990):413-417.
    16. Bernaudin M, Nedelec AS, Divoux D,et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain.J Cereb Blood Flow Metab,2002;22(4):393-403.
    17. Mu D, Jiang X, Sheldon RA,et al. Regulation of hypoxia-inducible factor 1alpha and induction of vascular endothelial growth factor in a rat neonatal stroke model.Neurobiol Dis, 2003;14(3):524-534.
    18. Jin KL, Mao XO, Nagayama T,et al. Induction of vascular endothelial growth factor and hypoxia-inducible factor-1alpha by global ischemia in rat brain.Neuroscience,2000;99(3):577-585.
    19. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia.Proc Natl Acad Sci U S A,2000;97(18):10242-10247.
    20. Wick A, Wick W, Waltenberger J,et al. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt.J Neurosci, 2002;22(15):6401-6407.
    21. Alavi A, Hood JD, Frausto R, et al.Role of Raf in Vascular Protection from Distinct Apoptotic Stimuli.Science,2003;301(5692):94-96.
    22. Ylikorkala A, Rossi DJ, Korsisaari N,et al. Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice.Science,2001;293(5533):1323-1326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700