不同营养条件下铝与酚类物质对杉木无性系苗若干生理生化过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杉木(Cunninghamia laceolata)是我国南方特有的速生用材林树种,其地力退化、生产力锐减一直是制约林业生产的重大疑难问题。随着大气环境日益恶化,土壤酸化已成为人工杉木林地力衰退、更新困难的重要原因。土壤酸化的一个严重后果是土壤中铝离子含量增大,对植物产生毒害作用。另外,杉木自毒作用所分泌的酚酸类物质将进一步加剧土壤酸化,一方面可能会加深铝毒对杉木的影响,另一方面,一定浓度的酚酸也可能与铝螯合,降低Al的活度从而降低对植物的毒害。鉴于此,本项目拟在原有研究工作的基础上,利用已分离出的酚酸类物质(邻羟基苯甲酸)与活性铝相结合,同时考虑不同营养条件,采用3因素5水平的二次旋转回归正交方法,人工模拟对杉木无性系进行逆境胁迫,测定其相对电导率,丙二醛含量,超氧化物歧化酶活性和叶绿素荧光动力学参数等若干生理生化指标并建立数学模型,以期为培育杉木耐铝及酚酸类物质植物品种提供理论依据和实验基础。主要研究结果概括如下:
     在杉木不同无性系的不同胁迫时期,各个生理生化过程的回归模型复相关系数F2的显著性检验均达到显著水平,说明试验所建立的回归方程与实际情况拟合较好,能够反映不同胁迫时期中各生理生化指标与各试验因素(自变量)之间的综合关系。在本试验条件下,可以用所建立的回归模型预测或模拟各生理生化指标的变化。
     1、复合胁迫对杉木不同无性系叶片相对电导率的影响
     在胁迫不同时期,影响杉木不同无性系相对电导率的主要因素各不相同。对于无性系FS01,在胁迫三个时期,都存在营养条件的非线性作用(X32)对相对电导率有显著影响。另外还有活性铝和邻羟基苯甲酸的线性作用以及三个因子间的交互作用在不同胁迫时期分别对相对电导率产生不同影响。其中,活性铝与营养条件的交互作用(X1X3)以及邻羟基苯甲酸与营养条件的交互作用(X2X3)在胁迫前期对相对电导率发挥了显著影响,且该影响表现为物质浓度高时相互增效,浓度低时相互拮抗;胁迫中期,活性铝与营养条件的交互作用(X1X3)以高浓度时相互拮抗,低浓度相互增效的方式对相对电导率产生显著影响;胁迫后期,活性铝与邻羟基苯甲酸的交互作用(X1X2)对相对电导率发挥了显著作用,该作用在物质浓度高时表现为相互增效,浓度低时相互拮抗;对于无性系FS11,在不同胁迫时期对相对电导率有显著影响的因素主要是三个因子的线性作用以及因子间的交互作用。其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)在胁迫前期对相对电导率表现为高浓度时相互增效,低浓度时相互拮抗,而在胁迫后期则刚好相反。活性铝与营养条件的交互作用(X1X3)在胁迫中期显著影响FS11的相对电导率,且该影响表现为高浓度时相互增效,低浓度时相互拮抗。
     2、复合胁迫对杉木不同无性系叶片丙二醛(MDA)含量的影响
     在胁迫不同时期,影响杉木不同无性系MDA含量的主要因素各不相同。对于无性系FS01,胁迫的三个时期中铝浓度与酚酸浓度的交互作用(X1X2)对MDA含量都有显著影响,但胁迫前期为正相关,胁迫中期和后期是负相关。三个因子的线性作用和非线性作用也在不同胁迫时期对MDA含量产生不同的显著影响。其中,在胁迫前期,存在活性铝与邻羟基苯甲酸的交互作用(X1X2)以及邻羟基苯甲酸与营养条件的交互作用(X2X3)对FS01的MDA含量有显著影响,且该影响都在物质浓度高时相互增效,物质浓度低时相互拮抗;在胁迫中期和后期,活性铝与邻羟基苯甲酸的交互作用(X1X2)都以高浓度时相互拮抗,低浓度相互增效的方式对MDA含量产生显著影响。对于无性系FS11,在胁迫前期,只有活性铝与邻羟基苯甲酸的线性作用(X1,X2)对MDA含量有显著影响,随着胁迫时间的延长,显著影响MDA含量的因素逐渐出现了三个因子的非线性作用,到了胁迫后期,还有邻羟基苯甲酸与营养条件的交互作用(X2X3)也对MDA含量发挥显著影响,该影响在邻羟基苯甲酸浓度和营养条件水平较高时相互拮抗,较低时相互增效。
     3、复合胁迫对杉木不同无性系叶片超氧化物歧化酶(SOD)活性的影响
     影响杉木不同无性系SOD活性的主要因素在不同胁迫时期各不相同。对于无性系FS01,在胁迫前期和后期,都存在活性铝浓度和邻羟基苯甲酸浓度的线性作用(X1,X2)以及活性铝与营养条件的交互作用(X1X3)对SOD活性有显著影响,在胁迫中期,对SOD活性有显著影响的则是三个因子的非线性作用(X12,X22,X32)。活性铝与营养条件的交互作用(X1X3)在胁迫前期表现为高浓度时相互增效,低浓度时相互拮抗,在胁迫后期时则正好相反;对于无性系FS11,在胁迫前期和中期,对SOD活性有显著影响的因素都是活性铝和邻羟基苯甲酸的非线性作用(X12,X22)。在胁迫后期,除了活性铝的非线性作用(X12)外,还有活性铝和邻羟基苯甲酸的线性作用(X1,X2)以及两者间的交互作用(X1X2)对SOD活性有显著影响,其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)在物质浓度高时表现为相互拮抗,浓度低时表现为相互增效。
     4、复合胁迫对杉木不同无性系叶片初始荧光值Fo的影响
     影响杉木不同无性系初始荧光值Fo的主要因素在不同胁迫时期不尽相同。对于无性系FS01,在胁迫的不同时期,活性铝的线性作用(X1)对Fo都有显著影响,除此之外,活性铝的非线性作用(X12)、邻羟基苯甲酸和营养条件的线性作用(X2,X3)以及因子间的交互作用也在不同胁迫时期对初始荧光值Fo发挥了不同的影响,其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)以及邻羟基苯甲酸与营养条件的交互作用(X2X3)分别在胁迫中期和后期对Fo的变化产生显著影响,且该影响都表现为高浓度时相互增效,低浓度时相互拮抗;对于无性系FS11,在胁迫三个时期,对Fo有显著影响的因素都较少,分别包括活性铝的线性作用和非线性作用(X1,X12)、邻羟基苯甲酸的线性作用(X2)以及活性铝与营养条件的交互作用(X1X3),其中,活性铝与营养条件的交互作用(X1X3)在胁迫前期以高浓度时相互增效,低浓度时相互拮抗的形式对Fo产生显著影响。
     5、复合胁迫对杉木不同无性系叶片PSⅡ最大光化学效率FV/Fm的影响
     在胁迫不同时期,对杉木不同无性系PSⅡ最大光化学效率FV/Fm有显著影响的因素各不相同,但都包括活性铝的线性作用(X1)。对于FS01,活性铝的非线性作用(X12)、邻羟基苯甲酸的线性作用(X2)以及因子间的交互作用也在胁迫不同时期对FV/Fm产生了不同的影响,其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)在胁迫中期对FV/Fm有显著影响,该影响在活性铝与邻羟基苯甲酸浓度高时相互拮抗,浓度低时相互增效。活性铝与营养条件的交互作用(X1X3)在胁迫后期时显著影响FV/Fm,但该影响则表现为高浓度时相互增效,低浓度时相互拮抗;对于无性系FS11,在胁迫三个时期,活性铝与邻羟基苯甲酸的交互作用(X1X2)都对FV/Fm有显著影响,并且在胁迫三个时期都表现为高浓度时相互拮抗,低浓度相互增效。胁迫前期,还有活性铝的非线性作用(X12)也显著影响FV/Fm的变化,胁迫中期,三个因子的非线性作用都对FV/Fm有显著影响。
     6、复合胁迫对杉木不同无性系叶片实际光化学效率φPSⅡ的影响
     在胁迫不同时期,影响杉木不同无性系实际光化学效率φPSⅡ的主要因素各不相同。对于无性系FS01,在胁迫三个时期,活性铝和邻羟基苯甲酸的线性作用(X1、X2)对φPSⅡ都表现出显著的负相关,另外活性铝和营养条件的非线性作用(X12,X32)以及活性铝与邻羟基苯甲酸的交互作用(X1X2)也在不同胁迫时期对FS01的实际光化学效率φPSⅡ发挥了不同影响,其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)在胁迫后期以高浓度时相互拮抗,低浓度时相互增效的形式对φPSⅡ产生显著影响。对于无性系FS11,在胁迫三个时期对φPSⅡ都有显著影响的因素包括活性铝的线性和非线性作用(X1,X12),另外,在不同胁迫时期,还有邻羟基苯甲酸和营养条件的线性作用(X2、X3)、邻羟基苯甲酸的非线性作用(X22)以及活性铝与邻羟基苯甲酸的交互作用(X1X2)分别对实际光化学效率φPSⅡ发挥了不同影响。其中,活性铝与邻羟基苯甲酸的交互作用(X1X2)在胁迫中期和后期都对φPS有显著影响,且该影响都表现为高浓度时相互拮抗,低浓度时相互增效。
Chinese fir is China's fast-growing timber tree species endemic in southern, their soil degradation, productivity reduction has been a major constraint problems of forestry production. With the atmospheric environment is deteriorating, soil acidification has become the important reason to soil degradation and update difficulties of Chinese fir plantation. A serious consequence of soil acidification is aluminum content in soil increased and the the plants were poisoned. In addition, The phenolic acids secreted by the auto-toxicity caused by Chinese fir would be further exacerbated soil acidification, on the one hand, aluminum toxicity on the impact of Chinese fir may be enhanced , on the other hand, A certain concentration phenolic acids may chelate with the aluminum ,then reduce the activity of aluminum thereby reducing the toxicity of plants.
     In view of this, this paper will base on existing research, use the separated and identified phenolic acids(o-hydroxybenzoic acid) to combine with active aluminum,considering different nutritional conditions,artificial simulate the adversity stress on chinese fir clones by using orthogonal rotary regression of three factors and five levels, and determine some physiological indexes such as relative conductivity, malondialdehyde(MDA) content, superoxide dismutase(SOD) activity and chlorophyll fluorescence kinetics parameters ,etc. Combined the analysis of variance to the index and the factors, the series of the quadratic equation of three factors were optimized and established. At the same time, the interaction between nutritional conditions, phenolic acids and active aluminum will be studied to provide the theoretical and experimental basis for cultivating aluminum-tolerant and phenolic acids-tolerant varieties of Chinese fir , extend and enrich the research of aluminum toxicity to Chinese fir The main results were as follows:
     To different physiological and biochemical processes of different Chinese fir clones at different stress periods,the significance test on the multiple correlation coefficient of regression model all reached significant level ,which illustrated that the regression equation can fitted actual situation well,and it can ues to reflect the relationship between the experimental factors and different physiological and biochemical processes. So the regression model established under this experimental condition can predict and simulate the changes of different physiological and biochemical processes.
     1. Effects of combined stress on the relative conductivity of different Chinese fir clones leaves
     At different stress periods, the factors that impacted the relative conductivity of different Chinese fir clones leaves are different. To No.01, the nonlinear interaction of nutritional conditions(X32) impacted the relative conductivity at all three stress periods. Besides, the linear interactions of phenolic acids and active aluminum and the interaction between three influencing factors brought different degree effect on the relative conductivity respectively at different stress periods. Among them, the interaction between active Al and nutritional conditions(X1X3) and the interaction between o-hydroxybenzoic acid and nutritional conditions(X2X3) played a significant role at the initial stage of stress, and the influences shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration. At the middle stage of stress, the interaction between active Al and nutritional conditions(X1X3) impacted the relative conductivity in the way of mutual antagonistic in higher concentration and mutual promotion in lower concentration. At the later stage of stress, the interaction between active Al and o-hydroxybenzoic acid(X1X2) had a significant effect on the relative conductivity,and the effect was mutual promotion in higher concentration and mutual antagonistic in lower concentration.
     To No.11, the factors that impacted the relative conductivity at different stress periods were the linear interactions and the interaction between three influencing factors. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration at the initial stage of stress, and just the opposite at the later stage of stress. The interaction between active Al and nutritional conditions(X1X3) impacted the relative conductivity significantly at the middle stage of stress, and the influences shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration.
     2. Effects of combined stress on the malondialdehyde(MDA) content of different Chinese fir clones leaves
     At different stress periods, the factors that impacted the MDA content of different Chinese fir clones leaves were different. To No.01, at three stress periods, the interaction between active Al and o-hydroxybenzoic acid(X1X2) was all existed to play a significant role to the MDA content. There was a positive correlation between the interaction and the MDA content at the initial stage of stress, but a negative correlation at the middle and later stage of stress. The linear and nonlinear interactions of three influencing factors also had different effects on the MDA content respectively at the different stress periods. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) and the interaction between o-hydroxybenzoic acid and nutritional conditions(X2X3) affected the MDA content significantly at the initial stage of stress, and they both shown as mutual promotion when the material concentration was higher and mutual antagonistic when material concentration was lower. At the middle and later stage of stress, the interaction between active Al and o-hydroxybenzoic acid(X1X2) impacted the MDA content in the way of mutual antagonistic in higher concentration and mutual promotion in lower concentration.
     To No.11, there were only the linear interactions of active Al and o-hydroxybenzoic acid(X1,X2) that had significantly influence on the MDA content at the initial stage of stress, with the stress time prolonging , the nonlinear interactions of three influencing factors gradually appeared as the factors that impact the MDA content. The interaction between o-hydroxybenzoic acid and nutritional conditions (X2X3) also played a important role to the MDA content at the later stage of stress, which shown as mutual antagonistic when the concentration of o-hydroxybenzoic acid and the level of nutritional conditions were high, and as mutual promotion when the opposite.
     3. Effects of combined stress on the superoxide dismutase(SOD) activity of different Chinese fir clones leaves
     The factors that impact the SOD activity of different Chinese fir clones leaves were not the same at different stress periods. To No.01, the linear interactions of active Al and o-hydroxybenzoic acid(X1,X2)and the interaction between active Al and nutritional conditions(X1X3) impacted the SOD activity significantly both at the initial and later stage of stress. At the middle stage of stress, the factors that impacted the SOD activity were the nonlinear interactions of three influencing factors(X12,X22,X32). The interaction between active Al and nutritional conditions(X1X3) shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration at the initial stage of stress, and shown as the opposite at the later stage of stress.
     To No.11, the factors that impacted the SOD activity were the nonlinear interactions of active Al and o-hydroxybenzoic acid(X12,X22)both at the initial and middle stage of stress. Including the nonlinear interactions of active Al(X12), the linear interactions and interaction between active Al and o-hydroxybenzoic acid(X1,X2,X1X2) also had significantly influence on the SOD activity. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) shown as mutual antagonistic when the material concentration was higher and mutual promotion when material concentration was lower.
     4. Effects of combined stress on the initial fluorescence(Fo) of different Chinese fir clones leaves
     The main factors that impact the initial fluorescence (Fo) of different Chinese fir clones leaves at different stress periods are not the same. To No.01, the linear interactions of active A(lX1)effected the initial fluorescence(Fo) significantly at all three stress periods. Besides, the nonlinear interactions of active Al, the linear interactions of o-hydroxybenzoic acid and nutritional conditions(X2,X3)and the interaction among three influencing factors brought different degree effect on the initial fluorescence (Fo) respectively at different stress periods. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) and the interaction between o-hydroxybenzoic acid and nutritional conditions(X2X3) significantly affected the initial fluorescence (Fo) separately at the middel and later stage of stress, and they both shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration.
     To No.11, the factor that impacted the initial fluorescence (Fo) at different stress periods was relatively less, which included the linear and nonlinear interactions of active Al(X1, X12), the linear interactions of o-hydroxybenzoic acid(X2)and the interaction between active Al and nutritional conditions(X1X3). Among them, the interaction between active Al and nutritional conditions(X1X3) impacted the initial fluorescence (Fo) in the way of mutual promotion in higher concentration and mutual antagonistic in lower concentration at the initial stage of stress.
     5. Effects of combined stress on the photo-chemical efficiency of PSⅡ(Fv/Fm) of different Chinese fir clones leaves
     At different stress periods ,the factors that impact the photo-chemical efficiency of PSⅡ(Fv/Fm) of different Chinese fir clones leaves were not the same, but included the the linear interactions of active Al(X1)in both two clones. To No.01, the nonlinear interactions of active Al (X12), the linear interactions of o-hydroxybenzoic acid(X2)and the interaction among three influencing factors influenced the photo-chemical efficiency of PSⅡ(Fv/Fm) respectively at different stress periods. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) played a significant role at the middle stage of stress, and the influences shown as mutual antagonistic in higher concentration and mutual promotion in lower concentration, the interaction between active Al and nutritional conditions(X1X3) played a significant role at the later stage of stress, but the influences shown as mutual promotion in higher concentration and mutual antagonistic in lower concentration.
     To No.11, the interaction between active Al and o-hydroxybenzoic acid(X1X2) influenced the photo-chemical efficiency of PSⅡ(Fv/Fm) significantly at all three stress periods, and all shown as mutual antagonistic in higher concentration and mutual promotion in lower concentration. An the initial stage of stress, the nonlinear interactions of active Al (X12)also influenced the photo-chemical efficiency of PSⅡ(Fv/Fm). At the middle stage of stress, the nonlinear interactions of three influencing factors all played a important role to the photo-chemical efficiency of PSⅡ(Fv/Fm).
     6. Effects of combined stress on the actual photochemical efficiency of PSⅡ(ФPSⅡ) of different Chinese fir clones leaves
     At different stress periods ,the factors that impacted the actual photochemical efficiency of PSⅡ(ФPSⅡ) of different Chinese fir clones leaves were not the same. To No.01, the linear interactions of active Al and o-hydroxybenzoic acid(X1,X2)had significant negative correlation with the actual photochemical efficiency of PSⅡ(ФPSⅡ) at three stress periods. The nonlinear interactions of active Al and nutritional conditions(X12,X32)and the interaction between active Al and o-hydroxybenzoic acid(X1X2) brought different degree effect on the actual photochemical efficiency of PSⅡ(ФPSⅡ) respectively at different stress periods. Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) impacted the actual photochemical efficiency of PSⅡ(ФPSⅡ) in the way of mutual antagonistic in higher concentration and mutual promotion in lower concentration in the later stage of stress.
     To No.11, the factors that impacted the actual photochemical efficiency of PSⅡ(ФPSⅡ) at all three stress periods included the linear and nonlinear interactions of active Al(X1, X12).Besides, at different stress periods, the linear interactions of o-hydroxybenzoic acid and nutritional conditions(X2,X3), the nonlinear interactions of o-hydroxybenzoic acid(X22)and the interaction between active Al and o-hydroxybenzoic acid(X1X2) played different roles in the actual photochemical efficiency of PSⅡ(ФPSⅡ). Among them, the interaction between active Al and o-hydroxybenzoic acid(X1X2) impacted theФPSⅡboth at the middle and later stage of stress ,and they both shown as mutual antagonistic when the materials concentration were higher and mutual promotion when the materials concentration were lower at the later stage of stress.
引文
[1] Arminger W H, Foy C D, Fleming A L, et al. Differential tolerance of soybean varieties to an acid soil high in exchangeable aluminum[J]. Agronomy Journal, 1968, 60(1): 67.
    [2]田仁生,刘厚田.酸化土壤中铝及其植物毒性[J].环境科学, 1990, 11(006): 41-46.
    [3]李荣峰,蔡妙珍,刘鹏, et al.大豆(Glycine max L.)边缘细胞对铝毒的生理生态响应[J].生态学报, 2007, 27(010): 4182-4190.
    [4]应小芳,刘鹏,徐根娣, et al.大豆耐铝毒基因型筛选及筛选指标的研究[J].中国油料作物学报, 2005, 27(001): 46-51.
    [5]应小芳,刘鹏.铝胁迫对大豆叶片光合特性的影响[J].应用生态学报, 2005, 16(001): 166-170.
    [6]谢国生,范雪莲,师瑞红, et al.铝胁迫对水稻幼苗生理变化的影响[J].农业环境科学学报, 2006, 25(001): 34-38.
    [7]谭贵良,顾明华,杨博, et al.铝胁迫对甘蔗初生根生长及酶活性的效应[J].广西农业生物科学, 2003, 22(004): 271-274.
    [8] Foy C D, Carter Jr T E, Duke J A, et al. Correlation of shoot and root growth and its role in selecting for aluminum tolerance in soybean[J]. Journal of plant nutrition (USA), 1993.
    [9] Stass A, Horst W J. Effect of aluminium on membrane properties of soybean (Glycine max) cells in suspension culture[J]. Plant and Soil, 1995, 171(1): 113-118.
    [10]刘东华,蒋悟生.铝对植物的毒害[J].植物学通报, 1995, 12(001): 24-32.
    [11] Tan K, Keltjens W G, Findenegg G R. Effect of nitrogen form on aluminum toxicity in sorghum genotypes[J]. Journal of plant nutrition (USA), 1992.
    [12]许玉凤,曹敏建,王文元, et al.玉米耐铝毒的基因型筛选[J].玉米科学, 2004, 12(001): 33-35.
    [13]陈梅,陈亚华,沈振国, et al.外源有机酸对小麦幼苗铝毒的缓解作用[J].植物生理与分子生物学学报, 2003, 29(004): 281-288.
    [14]张丽,玉永雄,滕永青.南方耐铝毒紫花苜蓿遗传育种研究进展[J].牧草与饲料, 2007, 1(003): 6-8.
    [15]罗亮,谢忠雷,刘鹏, et al.茶树对铝毒生理响应的研究[J].农业环境科学学报, 2006, 25(002): 305-308.
    [16]周蓉.花生耐铝性及遗传改良研究进展[J].花生学报, 2003, 32(B11): 144-148.
    [17]俞慧娜,刘鹏,徐根娣.大豆生长及叶绿素荧光特性对铝胁迫的反应[J].中国油料作物学报, 2007, 29(003): 257-265.
    [18]蔡文春,刘鹏,徐根娣, et al.关键词:绿豆根边缘细胞铝毒[J].湖北农业科学, 2006, 2(2).
    [19]郑人卫,刘鹏,陆霞梅, et al.大豆植物体中铝形态的^ 27AlNMR分析[J].华南理工大学学报:自然科学版, 2007, 35(004): 112-116.
    [20]肖祥希,陈立松,蔡艳惠, et al.铝胁迫对龙眼幼苗营养元素吸收的影响[J].江西农业大学学报, 2005, 27(002): 230-233.
    [21]王凌霄,林思祖,刘学芝, et al.不同硝态氮处理条件下杉木桩提取物对杉木种子的化感效应[J].福建林学院学报, 2007, 27(003): 203-207.
    [22]林立更,林思祖,郑燕萍, et al.铝胁迫下DL-异柠檬酸-γ-内酯难杉木根系分泌氨基酸的影响[J].江西农业大学学报, 2006, 28(001): 63-68.
    [23]曹光球,苏小青,林思祖, et al.不同植物种水浸液对杉木幼苗各器官铝积累的化感效应[J].西南林学院学报, 2007, 27(003): 41-44.
    [24] Godbold D L, Fritz E, Huttermann A. Aluminum toxicity and forest decline[J]. Proceedings of the National Academy of Sciences, 1988, 85(11): 3888-3892.
    [25]杜晓明,田仁生.重庆南山马尾松衰亡与铝中毒[J][J].环境科学研究, 1996, 9(6): 21-25.
    [26]朱晓帆,卢红.峨眉山冷杉衰亡与土壤铝活化的关系研究[J].环境科学, 1997, 18(004): 25-28.
    [27] Ulrich B. Effects of accumulation of air pollutants in forest ecosystems[A]. In, 1983.
    [28] Gigliotti.C, Toccoli.M. Effects of simulated acid rain on aluminium dynamics in an acid forest soil[J]. mobility of aluminium forms most available to plants, 1993, Agrochimica(37): 263~270.
    [29] Makarov.MI, Nedbayev.NP. Influence of acid rains on the transformation of aluminum and iron compounds in forest soils[J]. Eurasian Soil Science, 1994: 26:87~96.
    [30]孙羲.植物营养原理. In:北京:中国农业出版社; 1997.
    [31]王维君,陈家坊.土壤铝形态及其溶液化学的研究[J].土壤学进展, 1992, 20(003): 10-18.
    [32]任立民,刘鹏,谢忠雷, et al.植物对铝毒害的抗逆性研究进展[J].土壤通报, 2008, (001): 177-181.
    [33] Prosser I P, Hailes K J, Melville M D, et al. A comparison of soil acidification and aluminium under Eucalyptus forest and unimproved pasture[J]. Australian Journal of Soil Research, 1993, 31: 245-245.
    [34] Guibaud G, Ayele J. pH and ionic strength effect on release of aluminium by limousin acidic brown earth soils- impact on natural water pollution[J]. Environmental Technology, 2000, 21(3): 257-269.
    [35]郭景恒,张晓山,汤鸿霄.酸沉降对地表生态系统的影响——Ⅰ.土壤中铝的活化与迁移[J].土壤, 2003, 35(002): 89-93.
    [36]谢忠雷,李岩.茶叶铝含量与茶园土壤pH值的关系[J].吉林大学自然科学学报, 1998, (002): 89-92.
    [37]徐仁扣. pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报, 1998, 35(002): 162-171.
    [38]李学垣,黄巧云.酸性土壤中活性铝的形态与铝毒[J].华中农业大学学报, 1995, 14(004): 356-362.
    [39]秦瑞君,陈福兴.低分子有机酸离子对降低土壤铝毒的作用[J].土壤肥料, 1996, (005): 12-14.
    [40]王维君.模拟酸雨对主要酸性土壤中铝的溶出及形态的影响[J].应用生态学报, 1992, 3(002): 184-189.
    [41]邵宗臣,何群.模拟酸雨对红壤铝形态的影响[J].热带亚热带土壤科学, 1997, 6(003): 187-193.
    [42]廖柏寒,蒋青.模拟酸沉降条件下南方森林土壤铝的释放与活化研究[J].湖南农业大学学报:自然科学版, 2000, 26(005): 347-351.
    [43] Minocha, C R W. Effects of aluminum on growth,polyamine metabolism,and inorganic ions in suspension culture of red spruce(Picea rubens)[J]. Canadian Journal of Forest Research, 1996, 26(4): 550—559.
    [44] Suwalsky M, Norris B, Villena F, et al. Aluminum fluoride affects the structure and functions of cell membranes[J]. Food and Chemical Toxicology, 2004, 42(6): 925-933.
    [45] Baoguo L, Sukalovic V H-T. Effect of Aluminum on Growth and Nitrate Reductase Activitiesof Maize Seedlings[J]. Acta Phytophysiologica Sinica, 1998, 24(4): 347—353.
    [46]李宝福.土壤中铝对火炬松根系影响的试验研究[J].福建林业科技, 1997, 24(001): 66-68.
    [47]黄巧云,李学垣.铝对小麦幼苗生长和根的某些生理特性的影响(简报)[J].植物生理学通讯, 1994, 30(002): 97-100.
    [48]丁爱芳,俞元春.酸性土壤铝的形态,迁移特征及林木根系的影响[J].江苏林业科技, 2001, 28(003): 14-17.
    [49]高吉喜,曹洪法.离子强度PH值的Ca^ 2+/Al^ 3+对马尾松幼苗的铝毒影响[J].环境科学学报, 1991, 11(002): 194-198.
    [50]刘菊秀.酸沉酸下铝毒对森林的影响(综述)[J].热带亚热带植物学报, 2000, 8(003): 269-274.
    [51] Kieliszewska-Rokicka B, Rudawska M, Leski T, et al. Effect of low pH and aluminium on growth of Pinus sylvestris L. seedlings mycorrhizal with Suillus luteus (L. ex Fr.) SF Gray[J]. Chemosphere, 1998, 36(4-5): 751-756.
    [52] Kim.GT, Choo.GC. Effects of aluminum solution treatment on seed germination and seedling growth of three tree species[J]. Journal of Korean Applied Ecology, 1993, (7): 1~5.
    [53] R S, Field.JB. Nutrient deficiency and its improvement for growing Eucalyptus camaldulensis seedling in an aluminium rich acid forest soil[J]. Indian Journal of Forestry, 1994, (17): 218~224.
    [54]刘厚田,田仁生.重庆南山马尾松衰亡与土壤铝活化的关系[J].环境科学学报, 1992, 12(003): 297-305.
    [55]汪思龙,陈楚莹.森林凋落物对土壤酸化缓冲作用的初步研究[J].环境科学, 1992, 13(005): 25-30.
    [56]范俊岗,范国儒.植物根系分泌及其在林业中的意义[J].辽宁林业科技, 1995, (001): 50-52.
    [57]高吉喜,曹洪法.土壤中铝对马尾松影响的试验研究[J].林业科学, 1991, 27(006): 649-651.
    [58]曹洪法,高吉喜.铝对马尾松幼苗影响的研究[J].生态学报, 1992, 12(003): 239-246.
    [59]柳若安,刘厚田.酸度和铝对马尾松生长的影响[J].植物学报:英文版, 1995, 37(002): 154-158.
    [60]肖祥希,张学武.铝胁迫对龙眼幼苗生长的影响[J].福建农业学报, 2002, 17(003): 182-185.
    [61] R. H. Effect of aluminum ions on14CO2一fixation and membrane system of isolated spinach choroplasts[J]. Ptlanzen—physid, 1975, (76): 300—306.
    [62]应小芳,刘鹏,徐根娣.土壤中的铝及其植物效应的研究进展[J].生态环境, 2003, 12(002): 237-239.
    [63]杨振德,方小荣.铝对桉树幼苗生长及某些生理特性的影响[J].广西科学, 1996, 3(004): 30-33.
    [64] Sasaki M, Yamamoto Y, Matsumoto H. Lignin deposition induced by aluminum in wheat (Triticum aestivum) roots[J]. Physiologia Plantarum, 1996, 96(2): 193-198.
    [65]何龙飞,王爱勤.铝胁迫对小麦根呼吸作用和一些线粒体结合酶活性影响[J].作物学报, 2001, 27(006): 857-861.
    [66]高吉喜,孙德玲.铝对马尾松生长状况影响的研究[J].中国环境科学, 1992, 12(002): 118-121.
    [67]胡红青,黄巧云.不同铝浓度对小麦根系分泌氨基酸和糖类的影响[J].土壤通报, 1995,26(001): 15-17.
    [68]周美学.铝胁迫对不同耐铝大麦基因型干物质积累与铝和养分含量的影响[J].植物营养与肥料学报, 2003, (03).
    [69]李巧云,尹钧,牛洪斌, et al. Trxs基因对铝胁迫下转基因大麦幼苗叶片抗氧化酶的影响[J].山西大学学报:自然科学版, 2008, 31(001): 114-118.
    [70]王建林.土壤中铝的胁迫与水稻生长[J].土壤, 1991, 23(006): 302-306.
    [71]尹大强,金洪钧.低pH,铝和钙离子对菌根菌赭丝膜伞的毒性和超氧化物歧化酶的影响[J].应用生态学报, 1997, 8(006): 659-662.
    [72]刘强,闫小红,刘雪梅, et al.不同油菜品种对铝毒抗逆性的研究[J].安徽农业科学, 2008, 36(004): 1353-1354.
    [73]韦冬萍,刘鹏,徐根娣, et al. Al胁迫下油菜生物量Al积累及保护酶系统的响应[J].农业环境科学学报, 2008, 27(006): 2351-2356.
    [74] Subrahmanyam. Desiraju Effect of aluminium on growth,lipid peroxidation,superoxide dismutase and peroxidase actiyities in rice bean and French bean seedlings[J]. Indian journal of Plant Physiology, 1998, 3(3): 240—242.
    [75]李朝苏,刘鹏,徐根娣, et al.外源有机酸对荞麦幼苗铝毒害的缓解效应[J].作物学报, 2006, 32(004): 532-539.
    [76]李朝苏,刘鹏,徐根娣, et al.铝浸种对荞麦种子萌发和幼苗生理的影响[J].生态学报, 2006, 26(006): 2041-2047.
    [77]李朝苏,刘鹏,徐根娣, et al.铝对芥菜(Brassica juncea Coss)幼苗根系形态和叶内抗氧化系统的影响[J].园艺学报, 2006, 33(003): 645-648.
    [78] Peng L, Yang Y S, GenDi X, et al. Physiological response of four southern herbaceous plants to aluminium stress[J]. Acta Phytoecologica Sinica, 2005, 29(4): 644-651.
    [79] R D, NovaisRF D, F D B. Absorption on nitrate and ammonium by intact roots of pretreated with alum inum [J]. Rev.Bras.Cienc.So1o, 1984, 8(2): 215-218.
    [80] Degenhardt J, Larsen P B, Howell S H, et al. Aluminum resistance in the Arabidopsis mutant alr-104 is caused by an aluminum-induced increase in rhizosphere pH[J]. Plant Physiology, 1998, 117(1): 19-27.
    [81]谢正苗,黄铭洪.铝超积累植物和铝排斥植物吸收和累积铝的机理[J].生态学报, 2002, 22(010): 1653-1659.
    [82] E D h, R R P, J R P. Aluminum tolerance in wheat (Triticum aextium L.).Ⅱ.Aluminum -stimulated excretion of malic acid from root apices[J]. PI.Physio1, 1993, 103: 695-702.
    [83] Shen H, Yan X, Wang X, et al. Exudation of citrate in common bean in response to aluminum stress[J]. Journal of plant nutrition, 2002, 25(9): 1921-1932.
    [84] Wenzl P, Chaves A L, Patino G M, et al. Aluminum stress stimulates the accumulation of organic acids in root apices of Brachiaria species[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(5).
    [85]李德华,黄升谋,贺立源, et al.植物根系有机酸的分泌和解铝毒作用[J].植物生理学通讯, 2004, 40(004): 505-510.
    [86] Ma J F, Zheng S J, Matsumoto H, et al. Detoxifying aluminium with buckwheat[J]. Nature, 1997, 390(6660): 569-570.
    [87] Ma Z, Miyasaka S C. Oxalate exudation by taro in response to Al[J]. Plant Physiology, 1998, 118(3): 861-865.
    [88]冯英明,喻敏,王昌全, et al.铝毒诱导植物细胞反应研究进展[J].华中农业大学学报,2005, 24(003): 320-324.
    [89]周楠,陈文荣,刘鹏, et al.黄瓜根边缘细胞生物学特性及其对铝的响应[J].园艺学报, 2006, 33(005): 1117-1120.
    [90] Pan J W, Ye D, Wang L L, et al. Root border cell development is a temperature-insensitive and Al-sensitive process in barley[J]. Plant and cell physiology, 2004, 45(6): 751-760.
    [91] Yu M, Ming Feng Y, Goldbach H E. Mist culture for mass harvesting of root border cells: aluminum effects[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(5).
    [92] Bengough A G, Barlowa P W, Cooke D E L, et al. Root border cells in plant-soil interactions[J]. Environment, 2005: 160-161.
    [93]张福锁.土壤与植物营养研究新动态[J]. 1992.
    [94]汪建飞,沈其荣.有机酸代谢在植物适应养分和铝毒胁迫中的作用[J].应用生态学报, 2006, 17(011): 2210-2216.
    [95] Nagata T, Hayatsu M, Kosuge N. Identification of aluminium forms in tea leaves by 27 Al NMR[J]. Phytochemistry, 1992, 31(4): 1215-1218.
    [96] Kinraide T B, Parker D R. Cation amelioration of aluminum toxicity in wheat[J]. Plant Physiology, 1987, 83(3): 546-551.
    [97] Delhaize E, Ryan P R, Randall P J. Aluminum tolerance in wheat (Triticum aestivum L.)(II. Aluminum-stimulated excretion of malic acid from root apices). In: Am Soc Plant Biol; 1993:695-702.
    [98]金婷婷,刘鹏,孙婷, et al.外源柠檬酸作用下大豆根尖铝积累规律的研究[J].大豆科学, 2008, 27(004): 581-587.
    [99] Cuenca G, Herrera R, Merida T. Distribution of aluminium in accumulator plants by X-ray microanalysis in Richeria grandis Vahl leaves from a cloud forest in Venezuela[J]. Plant, Cell and Environment, 1991, 14(4): 437-441.
    [100] Shen R, Ma J, Kyo M, et al. Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench[J]. Planta, 2002, 215(3): 394-398.
    [101]杨玉盛,黄宝龙.杉木多世代连栽的土壤水分和养分变化[J].南京林业大学学报:自然科学版, 2000, 24(002): 25-28.
    [102]刘可慧,彭少麟,莫江明, et al.酸沉降对森林植物影响过程和机理[J].生态环境, 2005, 14(006): 953-960.
    [103]潘根兴.土壤酸化过程的土壤化学分析[J].生态学杂志, 1990, 9(006): 48-52.
    [104]张月俄.酸性沉降与森林土壤--美国东南部的沉降环境及研究实例. In:北京; 1993.
    [105]罗承德.森林土壤酸化及其化学研究方法. In; 1993.
    [106] Liao L P, Ma Y Q, Wang S L. Decomposition of leaf litter of Chinese fir in mixture with major associated broad-leaved plantation species[J]. Acta Phytoecologica Sinica, 2000, 24(1): 27-33.
    [107]吴志东,吴幼媚.我国南亚热带几种人工林的生物物质循环特点及其对土壤的影响[J].土壤学报, 1990, 27(003): 250-261.
    [108]俞新妥.中国杉木90年代研究进展:Ⅰ.杉木研究的特点及有关基础研究的综述[J].福建林学院学报, 2000, 20(001): 86-95.
    [109]杨婉身,陈惠.酸铝对杉木磷吸收和代谢的影响[J].林业科学, 2000, 36(003): 73-76.
    [110]张帆,罗承德,张健.外源钙,磷,氮对铝胁迫下杉木幼苗生长影响的调控研究[J].应用生态学报, 2005, 16(002): 213-217.
    [111]苏小青,曹光球,林思祖, et al.铝胁迫条件下DL-异柠檬酸-γ-内酯对杉木幼苗硝酸还原酶活性的影响[J].中国农学通报, 2008, 24(010): 192-196.
    [112]黄志群,廖利平,汪思龙.几种伴生树种对杉木的化感效应[J].应用生态学报, 2000, 11: 216-218.
    [113]黄志群,廖利平.植物水浸液对杉木光合及呼吸作用的效应[J]. 2000.
    [114]陈龙池,汪思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报, 2004, 15(010): 1953-1957.
    [115]姜培坤.杉木林地和根际土壤酚类物质分析[J].浙江林业科技, 2000, 20(005): 1-4.
    [116]丁国昌,曹光球,林思祖, et al. 2种杉木化感物质对杉木种子萌发的化感效应[J].福建农林大学学报:自然科学版, 2007, 36(002): 134-137.
    [117]杨梅,林思祖,黄燕华, et al.邻羟基苯甲酸胁迫对不同杉木无性系叶片膜质过氧化及渗透调节物质的化感效应[J].西北植物学报, 2006, 26(010): 2088-2093.
    [118]陈龙池,肖复明.香草醛对羟基苯甲酸对杉木幼苗生理特性的影响[J].应用生态学报, 2002, 13(010): 1291-1294.
    [119] Hall A B, Blum U, Fites R C. Stress modification of allelopathy of Helianthus annuus L. debris on seed germination[J]. American Journal of Botany, 1982: 776-783.
    [120] Bruce Williamson G, Richardson D. Bioassays for allelopathy: Measuring treatment responses with independent controls[J]. Journal of Chemical Ecology, 1988, 14(1): 181-187.
    [121]曹光球,林思祖.阿魏酸与肉桂酸对杉木化感作用的生物评价[J].中国生态农业学报, 2003, 11(002): 8-10.
    [122]罗承德,张健.四川盆周山地杉木人工林衰退与铝毒害阈值的探讨[J].林业科学, 2000, 36(001): 9-14.
    [123] Jones D L. Organic acids in the rhizosphere–a critical review[J]. Plant and Soil, 1998, 205(1): 25-44.
    [124]林思祖,曹光球,黄世国, et al.杉木经几种源植物水浸液处理后叶绿素,质膜透性及气孔的变化研究[J].中国生态农业学报, 2003, 11(003): 29-31.
    [125]曹光球,林思祖.阿魏酸和肉桂酸对杉木种子发芽的效应[J].植物资源与环境学报, 2001, 10(002): 63-64.
    [126]曹光球,刘学芝,林思祖, et al.腐解9个月后杉木枯枝落叶化感物质对杉木的化感作用[J].亚热带资源与环境学报, 2007, 2(002): 15-20.
    [127]侯建华,云锦凤,张东晖.羊草与灰色赖草及其杂交种的耐盐生理特性比较[J].草业学报, 2005, 14(001): 73-77.
    [128]李合生,孙群.植物生理生化实验原理和技术[J].北京:高等教育出版社: 105-107.
    [129]杨梅.邻羟基苯甲酸胁迫对不同杉木无性系化感效应及差异蛋白质组分析[博士学位论文].福州:福建农林大学, 2007.
    [130]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报, 2006, 18(001): 51-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700