CSAMT中的静位移现象研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控源音频大地电磁法(CSAMT)是在大地电磁法(MT)和音频大地电磁法(AMT)基础上发展起来的一种人工发射源电磁测深方法。MT利用电离层场源激发的电磁波作为入射信号,AMT利用雷电激发的电磁波作为入射信号,二者不需要庞大的发射源设备,施工设备比较轻便。由于激发源的问题,MT和AMT观测信号弱且采集数据时叠加时间较长,同时不能很好压制工业和来自空中的电性干扰,从而促使有较强抗干扰能力的、采用人工场源通过改变频率来进行测深的地球物理方法的出现。1971年在加拿大多伦多大学,这种抗干扰较好且叠加速度较快的勘探方法(即CSAMT)应运而生。
     CSAMT的应用范围很广,在对矿山、地热、水资源、油气等的勘探工作中都可以发挥作用,并取得了良好的效果。然而MT法中原本就有的静态位移问题(也称静态效应)在CSAMT中同样存在,是困扰CSAMT处理和解释的几大难题之一严重影响着勘探结果的可信度。因此,对CSAMT资料进行静态校正就成了处理解释的不可缺少的步骤。
     要进行静位移校正需要先弄清楚静位移现象产生的物理和数学本质。由于在近地表存在小规模的电性不均匀体使得地下介质中的电流分布产生畸变,从而使得地面电场观测值出现一个向上或者向下曲线形态保持不变的移动,而相位曲线和磁场曲线不变,进而导致视电阻率曲线沿着电阻率轴线也产生了形态不变的向上或者向下位移。本文根据麦克斯韦方程组结合边界条件,分析了静位移的产生机制,并编制程序进行静位移的正演、静位移的识别以及静位移校正的研究。要进行静位移校正,首先要能正确识别数据中是否含有静位移效应(需区分异常数据和静位移效应),然后根据实际情况选择合理的校正方法对数据进行静校正。国内外文献资料表明,目前静校正方法主要有空间滤波法、中值滤波法、曲线平移法、相位法、磁场数据推算法、小波分析法等。本论文通过模型实验证明中值滤波法和曲线平移法得到的静位移校正结果较为理想。
     大部分时候静位移对我们的勘探工作是有害的,需要对静位移进行校正,以消除静位移效应的干扰。同时,静位移现象亦是一种对浅层导致电性不均匀地质体的一种勘探方法,在此仅作理论探讨。静位移现象的实际资料处理,选择某铜矿附近的CSAMT实测数据,其中有某地段静位移现象比较严重。通过静位移校正处理,有效地消除了静位移效应(该区为地表低阻引起的静态位移),避免了将某些静位移效应解释为深大断裂产生的异常。
Controlled source audio frequency magnetotelluric method (CSAMT) developed on the basis of the magnetotelluric method (MT) and audio frequency magnetotelluric method (AMT) is an artificial emission source electromagnetic sounding method.MT field source using the ionosphere as the incident electromagnetic wave excitation signal, AMT make use of lightning as the incoming electromagnetic wave excitation signal, the two do not need a large emission source equipment, the equipment more portable. As the excitation source is weak, MT and AMT observations are small too. Collecting data need long superimposed time, while not suppress the industrial electricity and electrical interference from the air, thus contributing to find a geophysical methods that has strong anti-jamming capability, which using controlled source and by changing the frequency for sounding. University of Toronto in Canada in 1971, this interference better and faster exploration stacking methods (namely CSAMT) came into being.
     CSAMT has a wide range of applications, in the mining, geothermal, water, oil and gas exploration work in a role to play, and have achieved good results. However, MT originally had a static displacement problem (also called static effects) also exists in CSAMT, it became one of several major problems in CSAMT processing and interpretation, seriously affecting the credibility of the exploration results. Therefore, the static correction in CSAMT data processing and interpretation has become an indispensable step.
     Static shift correction needs to be clear the physical nature of the phenomenon that produced static displacement. As there is the small-scale electrical heterogeneity near-surface, the current distribution underground media distorted, making the ground field observations curve displaced up or down with the same shape, while the phase curve of the same, leading to apparent resistivity curves change in same form of upward or downward displacement along the resistivity axis. This combination of Maxwell's equations under the boundary conditions, analysis of the static displacement mechanism for the generation and use program demonstrates static shift forward, static shift identification and the correction of static displacement. The static displacement correction should firstly to correctly identify whether it contains static displacement data (abnormal data and the static effect should be distinguished), then choose the reasonable correction method to correct the data. Domestic and foreign literature data indicate that static shift correction methods are curves translation, spatial filtering, median filtering, the phase method, the magnetic field measured data calculate the resistivity, wavelet analysis method. The paper show by model median filtering and curves translation correction is the ideal result.
     Most of the time, static displacement in our exploration work is harmful. The static correction to eliminate the interference of the static displacement is needed. In some cases, such as theory researching, Static displacement may also be an better exploration method in exploring the non-uniform electric properties of shallow geological, in which only a theoretical study.
     In practical CSAMT data processing, select the CSAMT data near a copper mine, including the phenomenon of static shift of a lot more serious. Static correction eliminate the static effect effectively (low resistivity caused the static displacement in the area), avoids some of the static shift effect interpreted as resulting from abnormal deep faults.
引文
[1]Andieux P, Wightman W. The so-called static corrections in magnetotelluric measurements, Technical program and biographies.54~th Annual International SEG Meeting and Exposition.1984,43.
    [2]Basokur A T, Rasmussen T M, Kaya C, et al. Comparison of induced-polarization and controlled-source audio-magnetotellurics methods for massive chalcopyrite exploration in a volcanic area. Geophysics, 1997, 62(6):1087-1096.
    [3]Bostick, F. X., Electromagnetic Array Profiling (EMAP), (56th) SEG Annual Meeting Expanded Technical Program Abstracts with Biographies,1986, 60~61.
    [4]C. Torres-Verdin, F. X. Bostick, Principles of spatial surface electric field filtering in magnetotelluric:Electromagnetic array profiling(EMAP). Geophysics.1992,57(4):603-622.
    [5]Cagniard, L.,1953, Basic Theory of the Magnetotelluric Method of Geophysical Prospecting, Geophysics, V.18:605~635.
    [6]Daubechies I. Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics,1988. XLI:909~996.
    [7]Goldstein M. A. and Strangway D. W.,1975, Audio-frequency magnetotellurics with a grounded electric dipole source, Geophysics,40:669~683.
    [8]Hedlin C. Removal of static shift in two dimensions by regularization inversion [J]. Geophysics,1991,56,2102~2106.
    [9]Mallat S, Hwang W L. Singularity detection and processing with wavelet s[J]. IEEE Trans. On Information theory,1992,38,617~643.
    [10]Sandberg S K, Hohmann G W. Controlled-source audio-magnetotellurics in geothermal exploration. Geophysics,1982,47(1):100~116.
    [11]Sternberg, B. K., Washburne, J. C. Correction for the static shift in magnetotellutic using transient electromagnetic soundings. Geophysics.1988 53(11):1459-1468.
    [12]Strangway D. W. shift C. M., and Holmer R. C., The application of audio-frequency magnetotellurics(AMT) to mineral exploratin. Geophysics.1973, vol38, 1159~1175.
    [13]Tikhonov, A. N.,1950, Determination of the electrical characteristics of the deep state the earth's crust, Dok. Akad. Nauk, USSR, 73(2):295-297.
    [14]Wannamaker P E, Hofmann G W, Ward S H. Magneto telluric responses of t hree2dimensional bodies in layered earths [J]. Geophysics,1984,49,1517~ 1533.
    [15]Wannamaker P E. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico, U.S.A., Part I: Implications for structure of the western caldcra. Geophysics, 1997a, 62(4):451~465.
    [16]Wannamaker P E. Tensor CSAMT survey over the Sulphur Springs thermal area, Valles Caldera, New Mexico. U.S.A., Part Ⅱ:Implications for CSAMT methodology. Geophysics, 1997b, 62(4):466-476.
    [17]Ward S H, Hofmann G W. Electromagnetic theory for geophysical applications in Nabighian,M. N., Ed., E. M. methods-theory and practice [J]. Society of Exploration Geophysicist s,1987,1,131-311.
    [18]Zonge K L. Comparison of time, frequency and phase measurement in IP[J] Geophysical Prospecting,1972,20,626-648.
    [19]Zonge KL. Internal company report on removal of static shifteffect.1985.
    [20]陈乐寿,刘任,王天生等,大地电磁资料处理与解释.北京:石油工业出版社,1989.
    [21]陈乐寿,王光锷.大地电磁测深法.北京:地质出版社,1990.
    [22]陈清礼,张翔,胡文宝.南方碳酸盐岩区大地电磁测深曲线静态偏移校正[J].江汉石油学院学报,1999,21(3),30~32
    [23]陈清礼等.利用地表电阻率校正大地电磁静态偏移.物探与化探,1999.23(4):289-295.
    [24]底青云,Martyn U,王妙月.复杂介质有限元2.5维可控源音频大地电磁法数值模拟[J].地球物理学报,2004,47(4),723~730
    [25]底青云,Martyn U,王妙月.有限元2.5维CSAMT数值模拟[J].地球物理学进展,2004,19(2),317~324.
    [26]方文藻,李予国,等.用瞬变电磁测深校正MT静态效应[C].电磁方法研究与进展,1993,111-116.
    [27]何继善,温佩琳等.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [28]何展翔.相权静校正[C].电磁方法研究与进展,1993,117-124.
    [29]何展翔.电磁测深静态位移的相权滤波法.国际地球物理讨论会,北京,1993.
    [30]何展翔.相权静校正.电磁方法研究与进展,1993,117-124.
    [31]侯遵泽,杨文采.小波分析应用研究.物探化探计算技术,1995.
    [32]黄潜生,王友胜,汪卫毛.大地电磁曲线校正技术在六盘山盆地研究中的应用[J]江汉石油学院学报,2004,26(3),76-78.
    [33]黄兆辉,底青云,侯胜利.CSAMT的静态效应校正及应用.地球物理学进展.2006,21(4),1290~1295.
    [34]解海军,陈明生,阎述.利用小波分析压制静态效应.煤田地质与勘探,1998,26(4):61~65.
    [35]晋光文.大地电磁阻抗相位资料的特点和应用[J].地震地质,1988,10(4):159-168.
    [36]李爱勇,唐冬春,杨生.直接消除电场分量静态效应的静改方法.2004,39(增刊):96-98.
    [37]李金铭,罗延钟.电法勘探新进展[M].北京:地质出版社,1996,37-41.
    [38]李金铭.地电场与电法勘探.北京:地质出版社,2005.
    [39]李汝传,王书民,雷达.复电阻率法和CSAMT法在土屋铜矿区的勘查效果.地质与勘探,2002,38:32~36.
    [40]李韦文.浅层电性不均匀体对大地电磁测深的影响及其校正.电磁方法研究与进展,1993,125~133.
    [41]刘国栋,邓前辉.电磁方法研究与勘探.北京:地震出版社,1993.
    [42]鲁新便,田春来,李貅.瞬变电磁测深在大地电磁深曲线静校正中的应用[J].石油物探,1995,34(1),86~95.
    [43]罗延钟,何展翔,马瑞伍等.CSAMT'中静态效应校正.物探与化探,1991,15(3):196~199.
    [44]罗延钟,万乐.电法勘探新进展.北京:地质出版社,1996,28~48.
    [45]罗志琼.用电磁阵列法压制MT静态效应的研究.地球科学,1990,15(增刊):13-22.
    [46]朴化荣.电磁测深法原理.北京:地质出版社,1990.
    [47]强建科,阮百尧,熊彬.浅部不均匀体对目标体电阻率异常影响的研究.地球物理学报,2004,47(3):542-548.
    [48]秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1995.
    [49]宋守根,汤井田,何继善.小波分析与电磁测深中静态效应的识别、分离及压制.地球物理学报,1995,38(1):120-128.
    [50]宋守根、汤井田、何继善.小波分析与电磁测深中静态效应的识别、分离及压制[J].地球物理学报,1995,38(1),120-128.
    [51]苏发,汤井田,何继善,温佩琳.电磁测深中视电阻率假异常现象分析.1995,5(4):14-16.
    [52]苏鸿尧,何展翔.表层电性不均匀对大地电磁测深曲线的畸变研究.地质科技情报,2000,19(3):103-106.
    [53]苏鸿尧,何展翔.表层电性不均匀对大地电磁测深曲线的畸变研究.地质科技情报,2000,19(3):103-106.
    [54]王家映.关于大地电磁静校正问题.地质科学情报,1992,11(1):69-76.
    [55]王家映.我国大地电磁测深研究新进展[J],地球物理学报,1997,40(增刊):206~216.
    [56]王永涛,白改先.大地电磁测深曲线的畸变及校正.石油物探,1997,36(1):95-106.
    [57]吴炳良,邵敏.大地电磁三维静态位移校正方法及其应用效果.勘探地球物理进展,2005,28(3):219-222.
    [58]吴璐萍,石昆法.可控源音频大地电磁法在地下水勘查中的应用研究.地球物理学报,1996,39(5):712-717.
    [59]严家斌.大地电磁信号处理理论及方法研究:[博士学位论文].中南大学,2003.
    [60]阎述,陈明生.频率域电磁测深的静态偏移及校正方法[J].石油地球物理勘探,1996,31(2),238-247.
    [61]杨生,鲍光淑,张少云.MT法中利用阻抗相位资料对畸变视电阻率曲线的校正.地质与勘探,2001,37(6):42-45.
    [62]杨生.EMAP处理方法在CSAMT勘查中的应用[J].有色金属矿产与勘查,1994,3(6),345-348.
    [63]姚治龙,王庆乙,胡玉平,刘俊昌.用TEM测深校正MT静态偏移的技术问题[J].地震地质,2001,23(2),257-263.
    [64]于昌明.CSAMT方法在寻找隐伏金矿中的应用.地球物理学报,1998,41(1):133-138.
    [65]张翔,胡文宝,严良俊,陈清礼.大地电磁测深中的地形影响与校正.江汉石油学院学报,1999,21(1):37-41.
    [66]张全胜,王家映.大地电磁测深资料的去噪方法.北京:石油地球物理勘探,2004,39(增刊):17~23.
    [67]张少云.电磁排列剖面(EMAP)原理及应用.江苏地质,1999,23(3):167-171.
    [68]张翔、胡文宝、严良俊.小波变换在大地电磁测深静校正中的应用[J].江汉石油学院学报,2002,24(2),40~41.
    [69]周晋国,寇强武,宋振炎.校正电磁频率测深“静态偏移”的有效方法.物探与化探,1991,5(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700