化学驱驱替特征及驱油效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前普通水驱的驱替动态理论研究比较成熟,很多研究者也在低渗透油藏、多层油藏、聚合物驱油、包含毛管力的三元复合驱理论方面做出了比较有特色的研究,但是其在研究上述问题时在饱和度分布以及驱油效率方面的研究甚少,本文将以以上几个方面为重点研究对象,对各种驱替类型的驱替动态分析方法做比较深入的理论研究。
     首先在引入启动压力梯度后完成了低渗透油藏的含水率方程、含水饱和度分布以及驱油效率的分析方法。算例表明水油两相启动压力梯度差越大,含水率上升速度变快,前缘饱和度越小,最终驱替效果越差。
     其次完成了一种计算水驱多层油藏驱替动态的方法,算例分析表明油层渗透率和厚度是影响多层油藏驱替过程的因素。油层渗透率越大,水驱前缘运动速度越快,各油层的驱油效率在水驱前缘突破之前呈线性增长,水驱前缘突破后驱油效率增长很缓;油层厚度对多层油藏各层驱油效率的影响远远不及渗透率对各层驱油效率的影响。
     第三从Blake-Kozeny方程出发得到幂律型聚合物溶液的表观粘度后,利用一维非牛顿幂律流体驱替牛顿流体得到了变粘度聚合物溶液驱油的含水率特征方程,分析得出聚合物的稠度系数、幂律指数、注入速度、储层物性是影响驱替过程的主要因素。稠度系数增大,驱替液的表观粘度变大,聚合物溶液的含水率增长变慢,原油的无水采收率增大;随着幂律指数增加,聚合物溶液受剪切的作用变弱,聚合物溶液含水率上升变慢,见水时的驱替效率有所增加;驱替速度越大,聚合物越容易剪切变稀,越难形成活塞式驱替,含水率上升的越快,原油的无水采收率越低;物性较差的储层中聚合物驱油的含水率和水驱时的含水率形态很接近,利用聚合物驱并不能显著提高此类油藏的驱油效果。
     最后利用Foaks模型,分析得到了包含毛管数驱替方程中饱和度、含水率、驱油效率的表达式。分析的除了粘度比、无量纲毛管力是影响整个驱替过程的主要因素。算例分析表明:在粘度比接近于1时,饱和度的变化最剧烈,含水率上升较慢,在相同时间内原油的采出程度最高;毛管力可以弱化前缘饱和度的突变性;注入速度越大,毛管力对驱替过程的影响越小;随着注入时间的增加毛管力的影响越来越小,在驱替后期毛管力的作用。
     以上的研究成果为各类驱替的动态分析奠定了一定的基础。
The theory of 1-D waterflooding performance prediction is mature, however the saturation distribution and displacement efficiency of waterflooding in low permeability reservoir, waterflooding in multilayered reservoirs, polymerflooding and ASPflooding which includes the effect of capillary force are still untouched. Here, we focused on these four types of flooding, analysis their saturation distribution, water cut and displacement efficiency.
     Firstly, the method to calculate water cut, saturation distribution and displacement efficiency of waterflooding in low permeability reservoir is presented by taking start pressure gradient in to consideration. The case study shows the larger start pressure gradient assumes lower displacement efficiency.
     Secondly, the model to calculate the displacement efficiency of waterflooding in multilayered reservoirs has been derivate and the case study shows that the factors affect the performance are permeability and height of different layers. The layer with higher permeability assumes better displacement effect. The displacement efficiency of other layers increase lineally before the water breakthrough, which however increase gently after the water breakthrough. The impression of height is not as significant as that of permeability.
     Thirdly, a novel method was deployed to calculate the displacement efficiency for polymerflooding. This method was based on the improved Blake-Kozeny equation and Buckley-Leverett equation which consider the Non-Newtonian fluid displacement Newtonian fluid. The rheological property of the polymer solution, displacement velocity and the characters of reservoir will dictate the performance of polymerflooding. The case study shows that compared to waterflooding, the water cut slow down and breakthrough recovery improve significantly. Firstly, as consistency coefficient and power law index increases, water cut increasing will be prolonged and breakthrough displacement efficiency improved, however the limited displacement efficiency improved not significant as breakthrough displacement efficiency. Further more, a small velocity always supposes high breakthrough displacement efficiency and slow water cut increasing. And finally polymer flooding is not suitable to improve oil recovery in low permeability reservoirs.
     Finally, Foaks model is used to establish the displacement equation of waterflooding which includes the effect of capillary force. We conclude that the ration of water viscosity to oil viscosity and no dimensionless capillary force are the key factors that affect the process of ASP flooding. The case study shows the best displacement effect appears when the viscosity equal one. The saturation distribution appears continuity after taking capillary force into consideration. The affect of capillary force appears lower and lower in the process of water injection.
     The achievement described above can be used to predict the performance of different types of flooding.
引文
01. Buckley S E, Leverett M C, 1942. Mechanism of fluid displacement in sands. Petroleum Transactions,AIME,(146): 107-116
    
    02. Hearn C L, 1971. Simulation of Stratified Waterflooding by Pseudo Relative Permeability Curves.JPT,805-813
    
    03. Chang H L, Zhang Z Q, & Wang Q M and et al, 2006. Advances in polymer flooding and alkaline/surfactant/polymer processes as developed and applied in the People's Republic of China. JPT, 58(5):84-89
    
    04. Chang J C and Yortsos Y C, 1992. Effect of capillary heterogeneity on Buckley-Leverett displacement. SPE Reservoir Engineering, 7(2): 285-293
    
    05. Chen Z X, 1998. Some invariant solutions to two phase fluid displacement problems including capillary effect. SPE Reservoir Engineering, May, 691-700
    
    06. Chen Z X, Bodvarsson G S. and Witherspoon P. A, 1990. An integral equation formulation for two-phase flow and other nonlinear flow problems through porous media. SPE 20517,Presented at the 1990 SPE Annual Fall Meeting, New Orleans, LA, Sept. 23-26
    
    07. Dauben D L and Menzie D E, 1967. Flow of Polymer Solution through Porous Media. JPT,August: 1065-1073
    
    08. Fokas A S and Yortsos Y C, 1982. On the exactly solvable equation St = [(βS +λ)~(-2)S_x]_x+a(βS+λ)~(-2)S_X occurring in two-phase flow in porous media. SIAMJ. AppL Math, 42(2): 318
    
    09. Fulcher R A, 1982. The Effect of Capillary Number and Its Constituents on Two-Phase Relative Permeability Curves. Ph.D Thesis, The Pennsyivanis State University
    
    10. Fulcher R A, Turgay Ertekin and Stala C D, 1985. Effect of Capillary Number and Its Constituents on Two-Phase Relative Permeability Curves. Journal of Petroleum Technology,37(2): 249-260
    
    11. Gogarty W B, 1967. Rheological Properties of Pseudoplastic Fluids in Porous Media. SPEJ,June, 149-160
    
    12. Harvey, A.H & Menzie D.E, 1970. Polymer Solution Flow in Porous Media. SPE Journal, June:111-118
    
    13. Hirasaki G J & Pope G A, 1974. Analysis of Factors Influencing Mobility and Adsorption in the Flow of Polymer Solution through Porous Media. SPEJ, August, 337-346
    
    14. Jalal F O and Djebbar Tiab, 2008. Transient pressure behavior of Bingham non-Newtonian fluids for horizontal wells. Journal of petroleum science and technology, 61(1): 21-32
    
    15. Johnson E F, Bossier E F. and Navmann V O, 1959. Calculation of Relative Permeability from Displacement Experiment, Trans, AIME, 216-370
    
    16. Hou J, 2007. Network modeling of residual oil displacement after polymer flooding. Journal of Petroleum Science and Engineering, 59:321-332
    
    17. McWhorter D B, 1971. Infiltration affected by flow of air. Hydrol. PaP.49, Colo.State Univ,Fort Collins
    
    18. McWhorter D B, D K Sunada, 1990. Exact integral solutions for two phase flow. Water Resour.Res, 26:399-413
    
    19. Patton J T, Coats K H and Colegrove G T, 1971. Prediction of Polymer Flood Performance.SPEJ, 11(1): 72-84
    20.Pascal H,1981.Nonsteady Flow through a Porous Medium in Presence of a Threshold Gradient.Acta Mechanica,39(3-4):207-224
    21.Pope G A,1980.The Application of Fractional Flow Theory to Enhanced Oil Recovery.SPEJ,10:191-205
    22.Radek Fucik,Jiri Mikyska & Michal Benes,and et al,2007.An improved Semi-analytical solution for verification of numerical models of two phase flow in porous meidia.Vadose Zone Journal,6:93-104
    23.Radek Fucik,Jiri Mikyska & Michal Benes,and et al,2008.Semianalytical solution for two phase flow in porous meidia with a discontinuity.Vadose Zone Journal,7(3):1001-1007
    24.Salman M,Baghdikian S Y & Handy L L and et al,1989.Modification of Buckley-Leverett and JBN Method for Power-Law Fluids.SPE 20279
    25.Savins J,1969.Non-Newtonian flow through porous media.Ind.Eng.Chem,61(10):18-47
    26.Sorbie K S,Clifford P J and Jones E R W,1989.The rheology of pseudoplastic fluids in porous media using network modeling.Journal of Colloid Interface Science,130(2):508-534
    27.Toth J,Bodi T,Szucs P & Civan Faruk,2001.Direct Determination of Relative Permeability from Nonsteady-State Constant Pressure and Rate Displacements.SPE 67318
    28.Toth J,Bodi T,Szucs P & Civan Faruk,2006.Near-wellbore field Water/Oil relative permeability inferred from production with increasing water cut.SPE 102312
    29.Wang Z W,Zhang J C,Jiang Y L,1988.EVALUATION OF POLYMER FLOODING IN DAQING OIL FIELD AND ANALYSIS ITS FAVOURABLE CONDITIONS.SPE17848,November
    30.Welge H,1952.A Simplified Method for Computing Oil Recovery by Gas or Water Drive,Trans,AIME,195-191
    31.Welge H J,1975.Predicting Displacement Efficiency from Water-Cut or Gas-Cut Field Data.JPT,944-94
    32.Wu Y S,1990.Flow and Displacement of Bingham Non-Newtonian Fluids in Porous Media.SPE 20051
    33.Wu Y S,Pruess K and Witherspoon P A,1992.Flow and displacement of Bingham non-Newtonian fluids in porous media.SPE Reserve Eng,7(3):369-376
    34.Yortsos Y C and Chang J C,1990.Capillary effects in steady-state flow in heterogeneous cores.Transport in Porous Media,5,399-420
    35.Zhang S Z,Hu J G & Li Z X and et al,1990.A Calculation of pseudo relative permeability curve using reservoir performance data.SPE 20791
    36.曹维政,肖鲁川,曹维福等,2007.特低渗透储层油水两相非达西渗流特征.大庆石油地质与开发,26(5):61-63
    37.邓英尔,王允诚,刘慈群等,2000.低渗非达西渗流相对渗透率计算方法及特征.西南石油学院学报,22(3):34-36
    38.姜言里,1987.毛管数与残余油饱和度关系的预测.大庆石油地质与开发,6(1):63-66
    39.吕平,1987.毛管数对天然岩心渗流特征的影响.水动力学研究与进展,2(1)
    40.马贤圣,呼舜兴,耿师江等,2003.多层水驱实验在桥口油田开发中的应用.西安石油学院学报(自然科学版),18(6):48-50
    41.兰玉波,杨清彦,李斌会,2006.聚合物驱波及系数和驱油效率实验研究.石油学报,27(1):64-68
    42.李华斌,赵长久,2000.大庆油田三元复合驱合理井网井距研究.西南石油学院学报,22 (3):46-49
    43.李克文,罗蔓莉,王建新,1994.JBN方法的改进及相应的计算与绘图软件.石油勘探与开发,21(3):99-104
    44.石玉梅,刘雯丽,姚逢昌等,2003.用地震法监测水驱薄互层油藏剩余油的可行性研究.石油学报,24(5):52-56
    45.宋付权,刘慈群,2000.低渗油藏的两相相对渗透率计算方法.西安石油学院学报(自然科学版),15(1):11-20
    46.邢义良,洪云利,郎兆新,1998.包含幂律流体的驱替过程的理论研究.石油勘探与开发,25(3):38-40
    47.张继成,宋考平,张寿根等,2003.聚合物驱含水率最低值及其出现时间的模型.大庆石油学院学报,27(3):103-104
    48.杨清彦,李斌会,李宜强等,2007.聚合物驱波及系数和驱油效率的计算方法研究.大庆石油勘探与开发,26(1):109-112
    49.杨清彦,李斌会,周英芳,2010.非稳态法聚合物驱相对渗透率曲线计算方法研究.石油学报,31(2):83-89
    50.周英芳,方艳君,王晓冬,2009.多层油藏非活塞式水驱驱替效率研究.油气地质与采收率.16(01):86-90
    51.周英芳,刘志军,茆春锦等,2008.多层油藏水驱驱替效率计算新方法.特种油气藏,15(3):72-75
    52.周英芳,王晓冬,李斌会等,2010.低渗透岩心非稳态水驱油相对渗透率求解方法.大庆石油开发与地质,29(03):93-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700