基于油水相对渗透率曲线的油井生产动态分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油水相对渗透率是控制流体流动的基本参数,而油田生产动态分析是进行油藏工程研究工作的重要组成部分,本文以油水相对渗透率曲线为切入点探讨油田生产动态分析方法。
     首先给出油水相对渗透率的计算方法,计算得到31块岩心相对渗透率曲线,根据相对渗透率曲线的形态特征,将实验岩心相渗曲线分成水相下凹型、水相过渡型和水相上凸型三种类型;推导了驱替岩心的注采关系,建立了驱替岩心饱和度分布方程、注入倍数与含水率以及注入倍数与驱油效率的关系表达式,对其进行了相关计算。并从共渗点、共渗范围和端点值等方面分析不同类型油水相对渗透率曲线的表现特征,评价不同类型相渗曲线的开发效果,从相渗曲线的形态角度直观的认识油井生产动态。
     然后从油水相对渗透率曲线出发,并结合油水两相渗流理论,探求产量递减和出水规律评价方法,经推导提出相渗曲线形态法和单点预测法。在使用相渗曲线形态法时,若油井的控制储量已知,只要测定油水相对渗透率曲线,就可通过油相渗透率曲线的形态判断油井生产的递减规律类型,并可进行相关参数的计算,从而对于未投产井也可实现产量递减规律的评价,若油井的控制储量未知,则可将相渗曲线形态法推广到图版法中,同时实现递减参数和油井动态储量的计算;而在水发生突破以后,则可使用单点预测法,若已知一点的生产数据,则可预测下一时间点的数据,从而实现油井产量递减规律和出水特征的评价与预测。
     对所计算岩心的相渗曲线形态和生产数据分析表明,在开发前期油井可采用相渗曲线形态法,而在开发后期可采用单点预测法,从而形成针对不同开发时期的油井生产动态分段分析和评价方法,本文对升132井的产量递减规律和水驱特征做了详细的分析,实例计算表明,对油井生产动态分析的分段评价方法应用效果较好。
Oil and water relative permeability is the fundamental parameter in controlling fluid flow, and analyses of production performance in an oil field make an important part of the researches on reservoir engineering. Here, we took oil-water relative permeability curve as the breakthrough point to discuss the methods of production performance analyses in an oil field.
     Firstly, the calculative method of oil and water relative permeability is presented. Oil-water relative permeability curves of 31 cores are obtained by this method. According to the morphological characteristics of relative permeability curve, relative permeability curves of experimental cores are divided into three groups, specifically, water phase upconcavity type, water phase intermediate type and water phase concave down type. Then the injection-production relations of displaced core are deduced in this paper. The saturation distribution equation, the expressions of relations between PV number and water cut and the expressions of relations between PV number and displacement efficiency are also proposed here. The expressed features and development effects of different type of the relative permeability curves are analyzed on isoosmotic point, isoperm region and terminal point, etc. Production performance of oil wells can be studied directly by the morphological characteristics of relative permeability curves.
     Secondly, from oil-water relative permeability curve, association with oil-water fluid flow theory, in order to pursue assessment methods of regulations on the rate decline and effusion flux, relative permeability curve form method and single point predicted method are presented. During the application of relative permeability curve form method, based on measurement of oil-water relative permeability curves, decline types of production performance can be predicated from the form of curves if the controlled reservoir is estimated, and other related parameters can be calculated. So the rate decline analyses can also be used in new oil wells. On the other hand, if the controlled reservoir in unknown, the parameter of rate decline and the dynamic reservoir can be determined by extending the relative permeability curve form method to type curve matching method. While after water breakthrough, single point predicted method can be used. If production data at one time are given, data of next time can be predicted. So this method makes the rate decline and water performance prediction come true.
     At last, analyses on the calculated relative permeability curves and production data show that the relative permeability form method is available during the early stage of oil field development. While during the later stage of development only the single point predicted method is available. By integrating the two methods, the performance of oil wells in different stages can be predicted. In the paper, the detailed analyses on the rate decline type and water flooding characteristics of Sheng-132 well show that when analyzing oil wells production performance, segmental evaluation method is fairly effective.
引文
[1] Arps J J. 1945. Aanalysis of declines curve, AIME, 160, 228-247
    
    [2] Buckley S E and Leverett M C. 1942. Mechanism of Fluid Displacement in Sands, AIME, 146, 107-116
    [3] Helset H M and Nordtvedt J E. 1998. Three-Phase Relative Permeabilities from Displacement Experiments with Full Account for Capillary Pressure, SPE36684:92-98
    [4] Johnson E F, Bossier E F and Navmann V O. 1959. Calculation of Relative Permeability from Displacement Experiment, AIME, 216, 370-372
    [5] Jones S C and Roszelle W Q. 1978. Graphical Techniques for Determining Relative Permeability from Displacement Experiments, JPT, 5, 807-817
    [6] Kewen Li, Roland N and Home, 2003. A Decline Curve Analysis Model Based on Fluid Flow Mechanisms.SPE83470,presentation at the SPE Western Regional/AAPG Pacific Section Joint Meeting held in Long Beach, California, U.S.A., 19-24
    [7] Li K and Home R N. 2002. A General Scaling Method for Spontaneous Imbibition, SPE 77544,presented at the 2002 SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, September 29 to October02
    [8] Li K and Home R N. 2002. A General Scaling Method Spontaneous Imbibition, SPE 77544, presented at the 2002 S Annual Technical Conference and Exhibition, San Antonio, T USA, September 29 to October 02
    [9] Li K and Home R N. 2006. Characterization of Spontaneous Wa Imbibition into Gas-Saturated Rocks, SPEJ December 4, 375-384
    [10] Li K and Home R N. 2003. Extracting Capillary Pressure fro Spontaneous Imbibition Data in Oil-Water-Rock Systems, SPE 80553, presented at the SPE Asia Pacific Oil & Gas Conferen and Exhibition, Jakarta, Indonesia, 15-17
    [11] Li K and Home R N. 2002. Scaling of Spontaneous Imbibition Gas-Liquid Systems, SPE 75167, presented at the SPE/DOThirteenth Symposium on Improved Oil Recovery held in Tul Oklahoma, 13-17
    [12] Li K, Chow K and Home R N. 2002. Effects of Initial WaSaturation on Spontaneous Water Imbibition,SPE 767 presented at the 2002 SPE Western Region Meeting/AAP Pacific Section Joint Meeting held in Anchorage,Alaska,20-22
    [13]Lo K K,Warner H R and Johnson J B.1990.A Study of the Post-Breakthrough Characteristics of Waterfloods.SPE International,SPE20064:119-128
    [14]Masoner L O.1999.Decline Analysis Relationship to Relative Permeability in Secondary and Tertiary Recovery.SPE International,SPE39928:245-252
    [15]Tao T M and Watson A T.1984.Accuracy of JBN Estimates of Relative Permeability,SPE 276,215-223
    [16]Welge H.1952.A Simplified Method for Computing Oil Recovery by Gas or Water Drive,AIME,195,91
    [17]Yortsos Y C,Youngmin Choi and Zhengming Yang.1997.Analysis and Interpretation of Water/Oil Ratio in Waterfloods.SPE59477:413-424.
    [18]Zhengming Yang.2008.A New Diagnostic Analysis Method for Waterflood Performance.SPE International,SPE113856:1-13
    [19]曹峰,胡淑娟.1999.混湿油藏的润湿性和相对渗透率研究.国外油田工程,4-9
    [20]陈忠,殷宜平,陈浩.2005.非稳态法计算油水相对渗透率的方法探讨.断块油气田,12(1):41-43
    [21]崔浩哲,姚光庆,周锋德.2003.低渗透砂砾岩油层相对渗透率曲线的形态及其变化特征.地质科技情报,22(1):88-91
    [22]邓英尔,刘慈群,庞宏伟.2003.考虑多因素的低渗透岩石相对渗透率.新疆石油地质,24(2):152-154
    [23]邓英尔,王允诚,刘慈群,等.2000.低渗非达西渗流相对渗透率计算方法及特征.西南石油学院学报,22(3):34-36
    [24]丁艳清,郭安福.2006.榆树林油田开发指标预测方法的研究.工程论坛,4:90-91.
    [25]董大鹏,冯文光,赵俊峰.2007.考虑启动压力梯度的相对渗透率计算.天然气工业,27(10):94-95
    [26]杜梓香,郑希科,耿义兰,等.2003.油藏相对渗透率求取方法.石油仪器,17(5):5-7
    [27]杜利,陈清华,戴胜群.2003.应用油水相对渗透率曲线和动态数据确定水驱波及状况.油气地质与采收率,10(4):45-46
    [28]高文君,刘瑛.2002.产量递减规律与水驱特征曲线的关系.断块油气田,9(3):45-48
    [29]高文君,王作进.1999.产量递减方程判别理论基础及应用.新疆石油地质,20(6):518-520
    [30]谷建伟,唐建信,秦学诚.2002.一种计算相对渗透率曲线的方法.小型油气藏,7(4):25-26
    [31]郭沫贞,肖林鹏,张生兵,等.2008.低渗透砂岩油层相对渗透率曲线特征影响因素及其对开发的影响.沉积学报,26(3):445-450
    [32]郭伟峰,马鸿来,王作进,等.2006.单井动态相渗曲线的建立及应用.吐哈油气,11(2):151-154
    [33]何琰,伍友佳,吴念胜.2000.相对渗透率定量预测新方法.石油勘探与开发,27(5):66-68
    [34]侯晓春,王雅茹,杨清彦.2008.一种新的非稳态油水相对渗透率曲线计算方法.大庆石油地质与开发,27(4):54-56
    [35]胡学军,杨胜来,李萍,等.2003.拟合恒压驱替实验数据计算相对渗透率方法研究.西安石油学院学报(自然科学版),18(3):42-45
    [36]姜汉桥,姚军,姜瑞忠.2006.油藏工程原理和方法.东营:中国石油大学出版社,239-255
    [37]蒋明,宋富霞,郭发军.1999.利用水驱特征曲线计算相对渗透率曲线.新疆石油地质,20(5):418-421
    [38]李永涛,王文科,王丽,等.2008.沙性介质油-水两相系统相对渗透率曲线研究.人民黄河,30(8):70-71
    [39]刘义坤,毕永斌,隋新光,等.2007.油气田进入递减阶段开发指标预测.天然气工业,3:100-102.
    [40]刘中云,曾庆辉,唐周怀,等.2000.润湿性对采收率及相对渗透率的影响.石油与天然气地质,21(2):148-149
    [41]吕成远.2003.油藏条件下油水相对渗透率实验研究.石油勘探与开发,30(4):102-104.
    [42]秦积舜,李爱芬.2006.油层物理学.东营:中国石油大学出版社,229-235
    [43]冉立,张烈辉,周明.2006.低渗透油藏相对渗透率曲线计算方法研究.特种油气藏,13(5):65-70
    [44]宋付权,刘慈群.2000.低渗油藏的两相相对渗透率计算方法.西安石油学院学报(自然科学版),15(1):16-20
    [45]田晓东,王凤兰,石成方等.2006.大庆喇萨杏油田产量递减率变化规律.石油学报,27:137-141
    [46]王国先,谢建勇,李建良,等.2004.储集层相对渗透率曲线形态及开采特征.新疆石油地质,25(3):301-304
    [47]王曙光,赵国忠,余碧君.2005.大庆油田油水相对渗透率统计规律及其应用.石油学报,26(3):78-81
    [48]王晓冬.渗流力学基础.2006.北京:石油工业出版社,238-259
    [49]俞启泰,陈素珍,李文兴.1998.水驱油田的Arps递减规律.新疆石油地质,19(2):150-153
    [50]俞启泰.水驱油田的驱替特征与递减特征.石油勘探与开发,1995,22(1):39-42
    [51]张大为,闫宝珍,曾照英.2000.注水开发油藏油水相对渗透率变化规律.重庆大学学报(自然科学版),23:77-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700