水平井底水脊进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平井是开发油气田的一种有效手段。大庆油田长垣老区依靠水平井泄油面积大、能够有效地抑制底水上升、提高采收率、节约钻井投资等技术优势,利用水平井挖潜中高渗油藏厚油层顶部剩余油,开拓了水平井应用的一个新领域。但是,它所引起的油藏工程问题比较复杂。本次论文以此为研究背景,旨在开展对水平井底水脊进问题进行研究。
     首先,根据静水力学理论,分析得到了水脊的形成机理并确定了水脊稳定的条件。其次,结合平面径向稳态渗流理论确定底水地层中水平井流线分布、水脊突破时间、水平井临界产量、水平井临界长度、底水驱替效率以及水脊形状等并进行了分析:
     (1)通过流函数计算得到了水平井底水脊进的流线分布。分析得知对于底水油藏,油层越薄底水流线分布越尖锐,油层越厚流线分布越平缓,当油层厚度无限大时底水流线分布趋近于边水情形。
     (2)通过势函数计算得到了水脊形成过程中水脊顶点运动规律。分析得知水脊形成过程中,水脊顶点运动速度是递增的,越接近水平井筒速度越快,因此控制水脊的形成在开采早期就应当重视。另外,还分析了对于特定的无量纲水脊突破时间,垂向渗透率与水脊突破时间成反比,垂向渗透率越大突破时间越短;油层厚度与水脊突破时间成正比,油层越厚突破所需要的时间约长。
     (3)在层流范围内,产量高的水平井底水水脊是较平缓的(这时水平井笼统见水),而产量较低的水平井底水水脊是较尖的(这时水平井中部见水)。当水平井产量极高时,受水平井筒管流影响,见水部位将向水平井根端偏移。
     (4)不考虑井筒管流影响下,底水驱替效率伴随着水平井长度的增加而增加。而考虑井筒管流影响下,驱替效率在水平井长度增加到一定值时表现为一个常数。
     在理论分析基础上,选取研究区典型井进行实例分析,为老区外围特高含水期在厚油层顶部部署水平井提供了合理化建议。
Horizontal well is effective in exploiting field, which can bring all advantages into full play, such as larger drainable area, control bottom water rising, improve flat connectivity remarkably, enhanced oil recovery, save invest for well drilling. In high permeability reservoir, remaining oil at the top of thick oil layer has been exploited by horizontal well in the old liberated area of Changyuan Daqing city, which developed a horizontal well applied frontier. But it brought complicated reservoir engineering problems. We chose the area as research background and researching for bottom water coning in horizontal well.
     First of all, based on hydrostatics theory, analyzed formation mechanism and defined stable conditions of corning. By combining it with flat radial direction time invariant seepage theory can define streamlines distribute, breakthrough time, critical produce, critical length, bottom water's displacement efficiency and shape of coning in bottom water layers. Reveals the following regularities:
     (1) After calculating the streamlines distribution of horizontal well bottom water coning by stream function. For bottom water reservoirs, We can find that the smaller reservoir thickness is, the keener bottom water streamlines distribution are, vice versa. If the reservoir thickness is infinity, bottom water streamlines distribution approach edge water case.
     (2) We can got the peak moving regular of water coning by potential function. The movement velocity of peak is incremental in coning water formation process, the closer to horizontal well borehole, the faster it is. It is important to control coning at the early phase. At particular time, vertical permeability is inversely proportional to water coning time, the smaller it is, the longer breakthrough time is. Reservoir thickness and water coning time in direct proportion, the bigger reservoir thickness is, the longer breakthrough time is.
     (3) For laminar flow, water ridge of horizontal well which is large duty and longer is flat (at this time, the whole horizontal well breakthrough), water ridge of horizontal well which is low duty and shorter is aciculate (at this time, the middle part of horizontal well breakthrough). If the horizontal well has very high output, the affect of borehole tube current are larger, the place of breakthrough will deviate to heel.
     (4) With horizontal well length increasing, displacement efficiency function will add (not think about borehole tube current). With well length reach a specified value and thinking about borehole tube current, displacement efficiency function will to be a constant.
     Based on theoretical analysis, we chose the canonic well as an example to be analyzed, which can offer innovation to high water cut stage horizontal well disposition at the top of thick oil layer in old liberated area outer-ring.
引文
01. Agarwal R G, Gardner D C, Kleinsteiber, S.W, and Fussell, D.D, 1998. Analyzing Well Production Data Using Combined Type Curve and Decline Curve Concepts.paper SPE 57916
    
    02. Anderson D M & Mattar L, 2003. Material-Balance-Time during Linear and Radial Flow.Canadian International Petroleum Conference, Calgary, Alberta, Canada, June 10-12
    
    03. Arnold R & Anderson R, 1908. Preliminary Report on Coalinga Oil District," US Geol. Survey Bull., 357(1908), 79
    
    04. Arps J J, 1945. Analysis of Decline Curves. Trans., AIME 160, 228-247
    
    05. Babu DK, Odeh AS, 1989. Productivity of a horizontal well: appendices A and B[A]. SPE 18334
    
    06. Blasingame T A, 1993. Semi-Analytical Solutions for a Bounded Circular Reservoir——No-Flow and Constant Pressure Outer Boundary Conditions: Un-fractured Well Case. Paper SPE 25479
    
    07. Blasingame T A, McGray T J & Lee W J, 1991. Decline Curve Analysis for Variable Pressure Drop/Variable Flow rate Systems. Paper SPE 21513
    
    08. Bourdet D, Whittle T M, Douglas A A and Pirard Y M, 1983. A New Set of Type Curves Simplifies Well Test Analysis. World Oil, May, 95-106
    
    09. Chaperon, 1986. Theoretical study of coning toward horizontal and vertical wells in anisotropic formation: subtropical and critical rates [J]. SPE 15337
    
    10. E.Ozkan and R. Raghavan, 1990. A Breakthrough Time Correlation for Coning Toward Horizontal Wells. SPE 209642
    
    11. Edwardson M J, Girner H M, Parkison H R, Williams C D & Matthews C S, 1962. Calculation of Formation Temperature Disturbances Caused by Mud Circulation," Paper SPE 124
    
    12. Fetkovich M J, Fetkovich E J, Fetkovich M D, 1996. Useful Concepts for Decline-Curve Forecasting Reserve Estimation and Analysis. SPE 28628
    
    13. Fetkovich M J, Vienot M E, Bradley M D, Kiesow U G, 1987. Decline Curve Analysis Using Type Curves-Case Histories. SPED169
    
    14. Fetkovich M J, 1980. Decline Curve Analysis using Type Curves. JPT (June), 1065
    15. Fetkovich M J, 1973. Decline Curve Analysis Using Type Curves. SPE 4629
    
    16. Fetkovich M J, 1987. Decline Curve Analysis Using Type Curves-Case Studies." SPEFE 637-656
    
    17. Fetkovich M J: "The Isochronal Testing of Oil Wells," Paper SPE 4529,1973
    
    18. Giger F M, Resis L H, Jourdan A P, 1984. The reservoir engineering aspects of horizontal drilling[A]. SPE 13024
    
    19. Giger, F, 1986. Analytic 2D models of Water Cresting Before Breakthrough time for Horizontal Well. paper SPE 15378
    
    20. Her-Yuan Chen and Lawrence W. Teufel, 2000. A New Rate-Time Type Curve for Analysis of Tight-Gas Linear and Radial Flows. SPE 63094
    
    21. Joshi S D, 1988. A review of horizontal well and drain hole technology[A] . SPE 16868
    
    22. McGray T L, 1990. Reservoir Analysis using Production Decline Data and Adjusted Time," MS Thesis, Texas A & M University, College Station
    
    23. Mepky??B, B.?, 1958. He?T?HOe Xo??(?)ctbo[A]. (6),.51-61
    
    24. Muskat M, 1934. The Flow of Compressibility Fluids through Porous Media and Some Problems in Heat Conduction," Physics 5, 71-94.
    
    25. Palacio J C & Blasingame T A, 1993. Declline-Curve Analysis using Type Curves-Analysis of Gas Well Production Data. Paper SPE25909
    
    26. Papatzacos, Herring, Martinson and Skjaebelard, 1989. Cone Breakthrough Time for Horizontal Wells. Paper presented at the 1989 Annual Technical Conference ,San Antonio,TX,Oct.8-11
    
    27. Ramsay H J Jr, 1968. The Ability of Rate-Time Decline Curves to Predict Future Production Rats. MS thesis, U. of Tulsa, Tulsa, OK
    
    28. S. Umnuayponwiwat and E Ozkan, 2000. Water and Gas a Coning toward Finite-Conductivity Horizontal Wells: Cone Buildup and Breakthrough, paper SPE 60308
    
    29. Scott D.Hall, SPE, Texaco North American Producing West, 1998. Multilaterals Convert 5 Spot to Line Drive Waterflood in SE Utah[J]. SPE 48869
    
    30. Stehfest H, 1970. Numerical Inversion of Laplace Transforms. Com. of ACM. 13(1), 47-49
    
    31. Suprunowicz, R. and Bulter,R.M, 1992. The Choice of Pattern Size and Shape for Regular Arrays of Horizontal Wells[J]. JCPT,39-44
    32.van Everdingen A F and Hurst W,1949.The Application of the Laplace Transformation to Flow Problems in Reservoirs.Trans.AIME 186:305-324
    33.van Orstrand C E,1925.On the Mathematical Representation of Certain Production Curves.Jnl.Washington Acad.Sciences 15,19
    34.才博,段瑶瑶,赵峰,2007.部分射开水平井产能公式的改进[J].西部探矿工程,(3):52-56
    35.高春光,侯晓春,唐春梅,2005.Fetkovich时间-产量标准曲线研究.石油天然气学报,27(4)
    36.郭宝玺,王晓冬,丁一萍,2007.边水油藏水平井三维产能计算新方法.现代地质,Vol.21 No.1:144
    37.郭大为,1995.底水油藏中水平井的水锥问题.西南石油学院学报,Vol.17No.4
    38.郭肖,陈路原,杜志敏,2003.关于Joshi水平井产能公式的探讨[J].西南石油学院学报,25(2):41-44
    39.侯晓春,张盛宗,1994.水驱曲线的一种自动拟合方法.大庆石油地质与开发,13(3)
    40.黄世军,程林松,赵凤兰等,2007.薄互层油藏中阶梯水平井产能评价模型研究[J].西南石油大学学报,29(3):60-67
    41.刘慈群 王晓冬,1999.水平井水驱开发极限产量问题,石油学报,14(2)
    42.刘慈群,1993.水平井两相渗流.力学与实践,15(2):23-24
    43.刘慧卿,张红玲,2006.李存贵等.水平井分段注采产能模型研究[J]..水动力学研究与进展.21(3):395-401
    44.王晓冬,于国栋,李治平,2006.复杂分支水平井产能研究[J].石油勘探与开发,33(6):729-733
    45.熊友明,潘迎德,1996.各种射孔系列完井方式下水平井产能预测研究[J].西南石油学院学报,18(2):56-62
    46.杨龙,王晓冬,李雪梅等,2003.复合油藏Fetkovich产量-时间标准曲线计算的新方法.特种油气藏,10(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700