全液压凿岩台车液压系统的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以瑞典Atlas Copco的全液压凿岩台车BOOMER282为研究对象,分析了液压凿岩台车的构造及其液压系统。就H型支腿伸缩回路、双三角钻臂变幅系统和液压凿岩机冲击工作系统三部分进行重点分析。
     首先,分析了H型液压支腿伸缩回路的工作原理,并利用仿真软件AMESim建立其仿真模型,从中发现发动机转速、系统压力和液压锁通径对支腿伸缩效率的影响。
     其次,分析了双三角钻臂变幅系统,使钻臂准确定位。将双三角钻臂变幅机构虚拟样机和其液压系统模型结合,进行联合仿真,模拟钻臂变幅的实际运动。分析泵的出口压力和流量变化,支臂缸与俯仰缸的速度和位移变化及其受力情况,仿真结果表明建立的模型是正确的,同时也说明联合仿真方法可以将双三角钻臂机构和其变幅液压系统结合起来进行仿真分析。
     最后,以三位四通芯阀双面回油型液压凿岩机为研究对象,分析了其冲击工作系统,利用仿真软件AMESim中的HCD库分别建立控制阀和液压缸的模型。对主要参数进行批处理,从中找到影响冲击性能的参数。
     通过以上仿真分析可知:在液压凿岩台车设计中,选择通径较大的液压锁和增大溢流阀压力可提高支腿伸缩速度;保证俯仰缸和支臂缸初始位置平行且其行程比与其初始长度比相同,及回油路上选择合适的阻尼可提高钻臂的定位精度;减小液压凿岩机冲击系统中控制阀芯质量、容腔容积和阀芯行程,都可增大其冲击频率。在支腿伸出和液压凿岩机冲击工作时,加大油门可提高支腿伸出速度及凿岩机冲击频率和冲击速度。
The research object of the paper is the product BOOMER 282 of Atlas Copco, analyses the structure of the hydraulic rock drill rig and the main hydraulic systems, focuses on the analysis of the hydraulic outrigger, the amplitude system of the double triangle boom and the impact system of the hydraulic rock drill.
     The operational principle of the hydraulic outrigger was illustrated, and set up the model of the extending and retracting system of the outrigger with the simulation software AMESim, then find the influence of rotate speed of the engine, the system pressure and the displacement of the hydraulic lock to the extending and retracting efficiency of the outrigger.
     To make the boom orientation accurately, the amplitude system of the double triangle boom was analyzed, then combine the virtual prototype with the model of the hydraulic system. The output pressure and rate of flow of pump respond the variety of load quickly, the velocity and displacement of the supporting cylinders and pitching cylinders are coincide with the movement of the virtual prototype, and its force is coincide with the fact, The simulation has showed: the models are true and the method of co-simulation that could combine the amplitude mechanism of the double triangle boom with its hydraulic system is a method of modeling and simulation.
     The impact system of the hydraulic rock drill was analyzed: the three-position and four-way core valve was the research object, set up the model of the control valve and the cylinder with HCD in AMESim. In the condition of the rate of flow invariableness of the pump, batched the masses of the valve, fraction area of valve, strokes of valve, volume of chamber, aperture of the cylinder and the rate of flow separately, and then discovered the influence of them to the impact performance.
     The simulations above show: in the design of the hydraulic rock drill rig , enther chooses larger displacement of the hydraulic lock or increases the system pressure could improve the extending and retracting efficiency of the outrigger;Keep the pitching cylinders and the supporting cylinders parallel in the initial position and make the ratio of their initial length equal with the ratio of their stroke and match the diameters of their cylinders and positions can improve the accuracy of position of the boom; Choose the fit damp in the oil return system can improve the stability and the rapidity of the position of the boom; Decreasing the mass of control valve or the volume of the chamber or the stroke of valve could increase the impact frequency of the hydraulic rock drill. During the period of the extending of the outrigger and the impacting of the hydraulic rock drill, increases the rotate speed of the engine could improve the extending speed of the outrigger jack and the impact frequency and impact velocity.
引文
1杨光照,邹学新,李云涛.凿岩台车的研发情况与发展趋势[J].中国重型装备, 2009, 3(1): 47-49
    2 Stig Olofsson. Blasting Technology, FACE DRILLING(3rd Edition)[M]. Atlas Copco Rock Drills AB, 2004:6-10
    3 Ulf Sellgren. Simulation-Driven Design-Motives, Means and Opportunities. [Doctoral Thesis of the Royal Institute of Technology]. 1999: 43-48
    4 Lees DJ, History of the Rock Drill[J]. AUCT, 2001:10-13
    5 Karl Kure, Tunnelling Capacities and Tunnelling Equipment Factors[M]. Norwegian Tunnelling Society, 1988:107-120
    6何清华.隧道凿岩机器人[M].长沙:中南大学出版社, 2005:55-62
    7王恒升,何清华,邓春萍.凿岩台车自动化控制系统的发展、现状及展望[J].测控技术, 2007, 26(3):1-4
    8 Ramstrfim M. Atlas Copco drill rigs for mine automation and communication-A totally new technology platform for advanced mining systems[J]. CIM Bulletin, 2005, 98(1088):23-25
    9林宏武,吴志虎.浅谈矿山钻机的配置及选型[J].矿山机械, 2008, 36(5):25-26
    10谢梦飞.国外液压凿岩设备的发展与应用[J].工程设计与研究, 1993, 12(82):22-27
    11李军.液压凿岩机的发展与应用[J].有色金属,2008, 60(3):36-38
    12朱建新,何清华,郭勇,等.液压凿岩设备的研制现状思路[J].凿岩机械气动工具, 1999 (2):21-24
    13赵宏强,林宏武,陈欠根,等.国内外液压潜孔钻机发展概况[J].工程机械与维修. 2006, (4):72-73
    14高澜庆.国外凿岩(穿孔)设备的发展动态[J].矿山机械. 2000, (3):9-10
    15赵昱东.地下矿山凿岩设备的发展历程[J].江西有色冶金. 2001, (7): 6-10
    16姜正军.液压凿岩设备在我国地下矿山的应用[J].矿冶研究与开发, 1995, (3): 81-84
    17 E. V. Kimber, A. L. Lundstrom. Drill Boom Arrangement[P]. US.Patent:4232849, Nov. 1980:53-59
    18 Atlas. Hydraulic drill rigs and booms[J]. Tunnels&Tunnelling/Machinery, Plant&Equipment issue. 1982, (8):15-17
    19 G. Zhong, P. N. Nikiforuk, P. R. Ukrainetz. Kinematics of a Robot Manipulator-A Hydraulic Drilling Boom[A]. Proceedings of the First International Symposium on Fluid Power Transmission and Control, Beijing, P.R.China:1991, (10):556-559
    20王恒升.凿岩机器人双三角臂定位及CAN总线控制系统研究. [中南大学博士学位论文]. 2006:9-11
    21 George. Guozhen. Zhong. Development of a Hydraulic Robot for Tunnel Drilling·Manipulator Kinematics and Tracking Control[Ph . D . Thesis]. Saskatchewan:University of Saskatchewan, 1995:18-24
    22陈世涛.钻臂类型分析[J].凿岩机械气动工具, 1998, (4):24-29
    23 Sellgren U. Simulation-Driven Design.Motives.means and Opportunities[Doctoral Thesis].Dep.of Machine Design, Royal Institute of Technology, (KTH).Stockholm Sweden, 1999:56-58
    24 Sellgren U. FINITE ELEMENT MODELING AND SIMULATION OF THE TRANSPORT BEHAVIOR OF A TUNNELING RIG[Technical Report]. Dep.of Machine Design, RoyalInstitute of Technology, Stockholm, Sweden, 2000: 8-16
    25 Sellgren U. Finite element modeling and optimization of a robot boomer[Technical Report]. Dep.of Machine Design, Royal Institute of Technology, Stockholm, Sweden: 1999:21-29
    26 Andersson K.Simulation of a tunnel drilling sequence to determine loads on a rock drilling equipment[A]. ADAMS User Conference,Rome, November, 2000:24-36
    27陈世涛.关于用符号表示钻车钻臂类型的设想[J].凿岩机械与风动工具, 1984, (1):27-29
    28王恒升,何清华.用OpenGL实现关节变量参数化的双三角臂的三维实体模型[J].凿岩机械气动工具, 2003, (01):46-50
    29刘东生,包次生. TYBS25型钻臂运动分析及可钻范围的计算[J].凿岩机械气动工具, 1993, (4) :10-18
    30陈世涛.直接定位双三角支承钻臂运动轨迹的计算机仿真[J].凿岩机械气动工具, 1995, (3):1-9
    31陈世涛.钻车钻臂与推进器干涉条件的数学模型[J].矿山机械, 1997, (5):33-35
    32杨孝球,王绍友,黄柏龄,等. LYZ-XDl2型单臂液压凿岩钻车的研制[J].探矿工程(岩土钻掘工程), 1996, (2):46-49
    33李川,阎天俊.双三角式液压钻臂平动机构分析[J].凿岩机械气动工具, 1999,(1):3-6
    34周宏兵,龚艳玲.隧道凿岩机器人钻臂各液压缸驱动力计算[J].凿岩机械气动工具, 2004, 7-12
    35何清华,周宏兵,吴凡.凿岩机器人钻臂的运动学研究[J].中南工业大学学报(自然科学版), 1998, 29(5):483~586
    36周宏兵.凿岩机器人机械手(钻臂)运动学、动力学模型研究[D].长沙:中南大学, 1998:52-61
    37 Leontaritis I J , Billings S A. Input-output Parametric Models for Non-linear Systems, PartⅡ: Stochastic Non linear Systems. Int . J . Control , 1985 , 41(2) :329-344
    38何清华,方向.隧道凿岩机器人双三角钻臂运动分析与控制策略[J].矿山机械, 2000, (2):12-16
    39李力争,何清华.双三角钻臂支臂缸运动速度的策划[J].凿岩机械气动工具, 2002, (4):18-21
    40曾桂英.凿岩机器人定位控制系统研究. [中南大学硕士论文]. 1998:37-44
    41方向.凿岩机器人钻臂模糊控制策略与计算机仿真研究. [中南工业大学硕士论文]. 2000:43-48
    42周友行,何清华.多关节凿岩机械手快速定位方法[J].中南工业大学学报(自然科学版), 2001, 32(6):622-625
    43盛伯浩,产品虚拟开发技术[J],中国机械工程, 1998, 9(11), 67-68
    44严国英.多功能全液压钻机液压系统设计.液压与气动, 2005, (8):38-39
    45 Atlas Copco. Instruction Manual Boomer 282[M]. Stockholm: Swedish English Olin Press, 2000:10-63
    46杜海若.工程机械概论.成都:西南交通出版社[M]. 2004:190-192
    47贺平亮,廖盛彦. BOOMER H170系列凿岩台车改造[J],大众科技, 2008, (6):89-90
    48高澜庆.液压凿岩机理论、设计与应用.北京:机械工业出版社, 1998:2-6, 16-26, 32-42, 74-77
    49吴涛,徐延海.基于AMESim的随车起重运输车支腿[J].西华大学学报(自然科学版), 2009, 28(4):30-32
    50 David GAGNE, Franck SELLIER. Cedric ROMAN Simulation and design process of mechatronics system[J]. Recent Advances in Aerospace Actuation Systems and Components. Toulouse, France, 2001: 13-15
    51秦家升,游善兰.基于AMESim软件的特征及应用[J].工程机械, 2004, (12):15-18
    52何清华,张大庆,郝鹏,等.液压挖掘机工作装置仿真研究[J].系统工程学报, 2006, 18(3):1-5
    53何存兴.液压传动与气压传动[M].武汉:华中科技大学出版社, 2001:74-76
    54李力争,彭卫韶.凿岩钻臂的一种静态速比控制方式[J].凿岩机械气动工具, 2007,(2):30-32
    55李力争,何清华.凿岩机器人钻臂平行联动机构的机理建模[J].机电工程, 2001, 18(2):47-49
    56胡均平,杨襄壁,王琴罗,等.钻臂空间液压自动平行机构的平行机理[J].中南工业大学学报, 1995, 26(3):30-32
    57刘龙,唐红彩.基于机液耦合的双钢轮振动压路机行走液压系统仿真.工程机械.2009, 9(40):49-51
    58陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社, 2005:57-65
    59 Tomi Makkonen, Kelervo Nevala, Rauno Heikkilae. A 3D model based control of aexcavator[J]. Automation in construction, 2006, 5(5):571-577
    60 Joshua D.Zimmerman, Matteo Pelosi, Christopher A. Williamson.Energy Consumption of An LS Excavator Hydraulic System, 2007 ASME Intemational Mechanical Enginerring Congress and Exposition. Seattle Washington USA, 2007:1l-15
    61 LMS Master Class. LMS Imagine.Lab AMESim & Virtual.Lab Motion Coupling. Master Class for Institute [M]. Stockholm: Swedish English Olin Press, 2009:7-19
    62 S. Frimpong, Y. Hu. Dynamic hydraulic shovel simulator for improved machine performanee[J]. CIM Magazine, 2006:155-159
    63李力争,何清华.双三角钻臂非齐次模型自适应预测控制[J].中国机械工程, 2005, 16(1):4-7
    64 Dai J S, Zhang Q X. Metamorphic Mechanisms and Their Configuration Models. Chinese Journal of Mechanical Engineering, 2000,13(3):21-28
    65武宏伟.挖掘机负载敏感系统的联合仿真及能耗分析. [太原理工大学硕士学位论文]. 2008:65-69
    66 J.M.Reynolds. Modem Drilling Equipment for Underground Applications[J]. Atlas Copco Construction and Mining, 2005, (2):33-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700