09MnNiD钢马氏体温轧—退火制备超细晶及其热稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对板条马氏体组织的09MnNiD钢板进行了多道次大压下量(累积相对压下量70 %)、温度为400℃的轧制和低温退火处理,制备出超细晶粒和纳米晶粒钢板。并用光学显微镜(OM),透射电子显微镜(TEM),X-ray衍射仪(XRD),扫描电子显微镜(SEM),研究了退火温度和时间对板条马氏体大压下量温轧组织的影响,利用显微硬度和拉伸实验测定了其力学性能。
     XRD谢乐法和TEM暗场法两种方法测定纳米晶粒尺寸的结果表明,谢乐法与TEM暗场象的弦线法所测结果吻合较好。调整退火温度和时间,可获得平均晶粒尺寸为20 nm到1.8μm的一系列超细晶粒钢板和纳米晶粒钢板。
     显微硬度实验和室温单轴拉伸实验结果表明,09MnNiD钢板条马氏体温轧组织在300-400℃退火,温度和时间对其强度和硬度的影响较小;在400-600℃退火,温度和时间对组织和性能都有很显著的影响。SEM断口观察表明,在300-550℃退火,拉伸断口存在不同程度的层片状形貌特征,这种层片特征随退火温度的提高而减弱,600℃退火,拉伸断口的层片形貌特征消失。300-600℃退火,随温度升高,断口包含的韧窝数量增加、尺寸增大;试样延伸率相应地增加。最后,通过残留加工硬化法研究了板条马氏体温轧组织的再结晶动力学,并对制备的09MnNiD钢超细晶的细化机制和超细晶的热稳定性所作的初步分析表明,抑制再结晶晶粒长大的因素主要是析出碳化物对晶界迁移的拖曳作用。
In this paper, the ultra fine grained and the nano-grained steel sheets were prepared by a new process of severe multi-pass warm rolling(accumulated reduction of 70 %) and low temperature annealing of 09MnNiD steel with starting structure of lath martensite. And the effects of the annealing temperature and duracing time on the microstructure of the severe warm-rolled samples of lath martensite were studied by using optical microscopy(OM), transmission electron microscopy(TEM), X-ray diffraction (XRD), Scanning electron microscopy(SEM), and the mechanical property were studied by microhardness test and tensile tests.
     The microstructure observation indicates that, the results of XRD scheer method are in good agreement with that of TEM dark field technique. And, by adjusting annealing temperature and duracing time, the ultra fine grained and the nano-grained steel sheets with average grain size from 20 nm to 1.8μm were obtained.
     The tests of microhardness and stretch at the room temperature show that the annealing temperature and the duracing time have limited effect on the specimen annealing at 300-400℃, and notable effect while annealing at 400-600℃. SEM observation of the tensile fracture indicated that, when annealed below 550℃, tensile fracture showed delamination, when annealed at 600℃, the delamination character disappeared. Then recrystalization dynamics of warm-rolled lath martensite was studied by the method of remained work hardening. In addition, the mechanisms of the refining and the thermal stablity of the ultra fine grains and the nano-grains was also discussed. And it shows that the major factor of the recrystal grains growth inhibition is the drag-like effect of the growth of the precipitated carbide .
引文
1. Y. Tian, T. Zhu, C. Terry, Observations and Issues on Mechanisms of Grain Refinement during ECAP Process, Materials Science and Engineering A, 2006, 291:46-47
    2. Z. Horita, Takayoshi, Fujinami, G. Terence, L dong, The Potential for Scaling ECAP—Effect of Sample Size on Grain Refinement and Mechanical Properties, Materials Science and Engineering A, 2001, 318:34-36
    3. V. Stolyarov, Y.Tian, T. Zhu, C. Lowe, R.. Kellen, Two step SPD Processing of Ultra-fine Grained titanium, Nano-structured Materials,1999, 11:947-949
    4. D. Dong, H. Shin, P. Kyung-Tae, Ultra-fine Grained Steels Processed by Equal Channel Angular Pressing, Materials Science and Engineering, 2005, 299:410-411
    5. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, G. Hong, Ultra-fine grained Bulk Aluminum Produced by Accumulative Roll-bonding(ARB) Process, Scripta Materialia, 1998 39:1221-1222
    6. N. Tsuji, Y. Saito, H. Utsunomiya, S. Tanigawa, Ultra-fine Grained Bulk Steel Produced by Accumulative Roll-bonding(ARB) Process, Scripta Materialia, 1999, 40:795-799
    7. N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, A New and Simple Process to Obtain Nano-structured Bulk Low-carbon Steel with Superior Mechanical Property, Scripta Materialia, 2006 46:305-306
    8. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Ultra-grain Refinement Of Plain Low Carbon Steel by Cold-rolling and Annealing of Martensite, Acta Mater, 2002 50: 4177-4178
    9. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Effect of Rolling Reduction on Ultra-fine Grained structure and Mechanical Properties of Low-carbon Steel Thermo Mechanically Processed from Martensite Starting Structure, Science and Technologyof Advanced Materials, 2006 ,5:153-155
    10. Z. Xin, J. Tianfu, G. Yuwei, Z. Jifeng, W Wang, Annealing Behavior of Nano-layered Steel Produced by Heavy Cold—rolling of Lath Martensite, Materials Science and Engineering, 2005, 397:117-121
    11.蓝慧芳, W J Liu,刘相华,马氏体冷轧-回火制备超细晶钢及其热稳定性,材料研究学报:2008, No.3
    12.闫肃,刘景辉,刘云旭.低碳钢铁素体晶粒超细化技术[J]金属热处理, 2005, 30 (10):13-14
    13.翁宇庆.超细晶钢理论及技术进展,.钢铁, 2005, 40(3):1-2
    14.陈蕴博,张福成,褚作明等.钢铁材料组织超细化处理工艺研究进展.北京:中国工程科学, 2003, 5(1):74
    15.翁宇庆.超细晶钢的组织细化理论和控制技术.北京:冶金工业出版社, 2003
    16.科恩. M著.钢的微合金化及控制轧制.李述创,向德渊译.北京:冶金工业出版社, 1984
    17.雷毅,余圣甫,徐晓峰.微米级超细晶粒钢细化技术的研究进展.北京,兵器材料科学与工程, 2005, 28(2): 62-63
    18.王祖滨.低合金钢和微合金钢的发展.北京中国冶金, 1999, (3):19-20
    19.李新城,陈光,张开华.钢铁材料组织超细化技术研究.北京热加工工艺, 2002, 1(6): 54-55
    20.刘建,王华昆,宋立秋等.钒氮微合金化高强度钢的研究及应用.四川四川冶金工业出版社, 2006, 28(1):24
    21.李维娟.生产超细晶粒低碳钢的实验研究.中国钢铁年会论文集.北京:冶金工业出版社, 2003. 573
    22.翁宇庆.钢铁结构材料的组织细化.北京钢铁学报, 2003, 38(5):1-2
    23.董瀚,孙新军,刘清友,翁宇庆.变形诱导铁素体相变现象与理论.北京钢铁研究学报, 2005, 38(10):56-57
    24. N. Tsuij, Y. Saito, H. Utsunomiya, etal. Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll Bonding(ARB) Process. Scripta Materialia, 1999, 40(7):795-796
    25. C. Alm, A. Reis, KestensL,etal. Ultra Grain Refinement and Hardening of IF-Steelduring Accumulative Roll-Bonding. Materials Science and Engineering, 2005,A 406:279-280
    26. R. Ueji, N. Tsuji, Y. Minamino. etal. Ultra grain Refinement of Plain Low Carbon Steel by Cold-rolling and Annealing of Martensite . Acta Materialia, 2002, 50:4177-4178
    27.陈勇军,王渠东,李德江等.往复挤压工艺制备超细晶材料的研究与发展.北京材料科学与工程学报, 2006, 24(1):152-153
    28.戴文笠,累积叠轧焊对Q235钢组织细化影响的研究.北京:北京科技大学, 2006.
    29.雷延权,傅家骐.金属热处理工艺方法500种.北京:机械工业出版社, 1998
    30.尹志新,于维成,姚戈等.循环淬火细化对42CrMo钢组织疲劳性能的影响.北京:钢铁研究学报, 2007, 37(10): 52-53
    31.隋忠祥.循环加热淬火对高应力弹簧疲劳寿命的影响.北京:材料工程学报, 1997.33:12-13
    32.王泾文.高温形变热处理及其应用.安徽:安徽机电学院学报, 2007, 15(1):1
    33.王泾文,周红生. W9Mo3Cr4V钢的超细化处理.北京:钢铁研究学报, 2006, 11(1):20-21
    34.尚成嘉,王学敏,杨善武等.高强度低碳贝氏体钢的工艺与组织细化.北京:金属学报, 2003, 39(10):1019-1020
    35.邸洪双,赫冀成,鲍培玮等.电磁场作用下塑性变形组织细化实验研究.沈阳:东北大学学报(自然科学版), 2000, 21(6):465-466
    36. C. Koch, Experimental Evidence for Magneticor Electric Field Effect Phase Transformations. Materials Science and Engineering, 2000, A 287:213-214
    37.杨钢,冯光宏.稳恒磁场对低碳锰铌钢γ→α相变的影响.北京:钢铁研究学报, 2008, 12(5):31-32
    38.冯光宏,周少雄,杨钢等.稳恒磁场对低碳锰铌钢晶粒细化的影响.北京:钢铁研究学报, 2000, 12(4):27-28
    39.石勤,朱兴元,邹洋,低碳钢晶粒超细化方法初探.北京:钢铁研究, 2005, 17(5):55-56
    40. H. Smorito,. Tanaka, R. konishi. The Morphology and Crystallography of LathMartensite in Fe-C Alloys. Acta Materialia, 2003, 51:1789-1799
    41.《钢铁热处理》编写组.钢铁热处理原理及应用.上海:上海科学技术出版社, 1979:54-70
    42. D. Muljono, M. Ferry, P. Dunne. Influence of Heating Rate on Anisothermal Recrystallizationin Low and Ultra-Low Carbon Steels. Materials Science& Engineering, 2003, 303A:90-99
    43.《金属机械性能》编写组.金属机械性能.北京:机械工业出版社, 1982:63-78
    44.杨钢,胡超,王昌,超大塑性变形的研究进展一块体纳米材料性能,北京:钢铁研究总院, 2008, CN 51-1444/TF:125-126
    45.薛克敏,张君,李萍,黄科帅,高压扭转法的研究现状及展望,安徽合肥:合肥工业大学材料科学与工程学院, 2008, CN 34-1083/N:1613-1616,1621
    46.刘嘎,王伯健,白鹤,宋清华,大塑性变形珠光体钢丝低温球化退火工艺研究,陕西西安:西安建筑科技大学冶金工程学院, 2007, CN 61-1133:73-75,78
    47. L. Juntao, Z. Yanjun, C. Lishan, Mechanism of Localized Severe Plastic Deformation and Damage Fracture in Fine-blanking Using Mixed Displacement and Pressure FEM Material and Science Engineering, 2006, ISSN 1003-6326:1021-1028
    48.杨钢,张凌义,王立民,超大塑性变形的研究进展-纳米材料的晶粒细化机制,北京:钢铁研究总院, 2008 CN 51-1444/TF:1-9
    49.张娟,刘长瑞,王快社,任红霞,制备块体细晶材料的大塑性变形方法,陕西西安:西安建筑科技大学冶金工程学院2008, CN 11-1765/T:93-96
    50. L. Juntao, Z. Yanjun, C. Lishan, Effects of Severe Plastic Deformation and Heat Treatment on Transformation Behavior of Explosively Welded Duplex TiNi-TiNi,. Oil Science, 2007, ISSN 1672-5107:147-149
    51.魏颖娟,袁守谦,张兵,张西锋,大塑性变形制备超细晶粒铝及铝合金材料,陕西西安:西安建筑科技大学冶金工程学院, 2008, CN 23-1226/TG:49-55
    52.路君,靳丽,曾小勤,丁文江,大塑性变形材料及变形机制研究进展,上海:上海交通大学轻合金精密成型国家工程研究中心, 2008, CN 31-1950/TG:32-36
    53. K. Feng, W. Jingtao, D. zhongze, Inhomogeneity and Anisotropy of Microstructure and Mechanical Properties in Severe Plastic Deformation Processed Pure Copper, OilScience, 2006, ISSN 1003-6326:160-165
    54. S. Morito, H. Tanaka, R. Konishi, etal. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys. Acta Mater, 2003, 51(6):178921799
    55. Hiromoto, Kitahara, R. Ueji, N. Tsuji, Yoritoshi, Minamino, Crystallographic Features of Lath Martensite in Low-carbon Steel, Acta Materialia, 2006, 54:1282—1283
    56.板条马氏体大变形轧制工艺的晶粒细化机制北京:钢铁研究学报2004, 1216:6-7
    57. V. Schastlivtsev, M. Rodionov, D. Khlebnikova, Y. Viersji, etal. Peculiarilty of Structure and Crystallography of Plastic Deformation of Lath Martensite in Structure Steels. Material Science and Engineering, 1999, 2732275A:4372442
    58. R. Doherty, D. Current, Issues in Recrystallization, Review .Material Science and Engineering, 1997, 238A:2192274
    59. Engler, J. Hirsch, K Kuche., Texture and Development in Al2.18wt % Cu Depending on the Precipitation StateⅡRecrystallization Textures. Acta Mater, 1995, 43(1):1212138
    60. H. Gleiter, B. Chalmers, High Angle Grain Boundaries. Oxford, NewYork: Pergamon Press, 1992.4372442
    61. O. Engler The Influence of Orientation Pinning on Growth Selection of Recrystallization. Acta Metallurgica, 1998, 46(5):1555-1568
    62.卢光熙,候增寿.金属学教程.上海:上海科学技术出版社, 1985:291-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700