新型节能塑封设备的系统设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着半导体封装技术的发展,半导体元件塑封技术水平也得到了进一步的提高,作为推动塑封产业发展的另一个重要组成部分,塑封机的性能的改进越来越受到人们的重视。在塑封行业人们渴望有一种价格低廉、耗能少、工作性能可靠、使用管理方便的塑封机,这种新型节能半导体塑封机的创新设计不仅有理论意义更具有实用价值。
     本文通过对现有塑封机的性能和工况分析,得出现有塑封机在实际工作过程中,合模保压过程耗能最大,整个系统的工作压力较高,液压回路复杂,这些问题主要是由于目前塑封机采用纯液压缸作为执行机构造成的,且特制的执行液压缸增加了整机的制造成本。因此本文提出了一种以连杆机构与液压相结合的执行机构,在此基础上设计出了一种新型的节能塑封设备。具体工作如下:
     1.概括了半导体元件塑封机的工作原理,以及目前现有塑封设备几种节能方法,总结了这些方法的优点和不足。并以载重200吨的塑封机为例,分析该设备的耗能情况,以及该设备经过传统变频节能改造后的节能效率。
     2.提出了一种新型的液压与连杆相结合的合模机构。运用SolidWorks软件对其主要受力部件(连杆和平台)进行了有关应力、位移、形变的数学建模和仿真,使设计的结构更加的合理。针对新的执行机构笔者为其设计了与之相适应的液压系统,并对系统中涉及的液压组件(液压泵、液压阀件、蓄能器等)进行了选型。
     3.对新设计塑封设备的性能进行了的分析得到以下结论:(1)新设备的工作压力减少了一半,这使得在保压过程中因压力降低而减少了液压油的泄漏量;(2)通过计算得到了新系统在一个工作循环过程中的能量消耗量减少了45%以上,达到了节能目的;(3)通过对新设备液压系统发热功率和散热功率的计算,得出系统本身的散热量高于系统的发热量,系统不需外加冷却设备即可达到散热要求;(4)由于新型塑封设备本身具有结构和性能上的优越性,使其制造成本大大降低,这对于整个塑封产业来说意义重大。
Along with the development of semiconductor packaging technology, the semiconductors'encapsulation technology level has been further improvement, the plastic package equipment as another important component promotes the development of encapsulation industries, the performance improvement of the encapsulation machine has been attention by people.In the plastic industry people eager to have a kind of plastic machine that is cheap, low energy consumption, reliable performance, convenient using and management, this the new energy-saving plastic equipment not only has the theoretical significance but also has the using value.
     Based on the existing plastic machine performance and working condition analysis, that existing plastic machine in actual working process, the most energy lost in the closing mould and keeping pressure process. The existing plastic machine system has high pressure, complex hydraulic loop, the current plastic machine adopts pure hydraulic cylinder as actuators to due to these problems, and the special hydraulic cylinder increased cost. This paper put forward a new kind of compound die mechanism which is a combination of the link mechanism and hydraulic, and design of a new energy-saving plastic equipment. The specific work is as follows:
     Firstly, the paper generalized the working principle of the semiconductors encapsulation machine and several existing saving-energy method, summarized the advantages and disadvantages of these methods. Taken compound die pressure 200t semiconductor plastic package equipment for example, and analysed its energy consumption and the saving energy efficiency of the traditional equipment with the inverter.
     Secondly, put forward a new kind of compound die mechanism which is a combination of the connecting rod mechanism and hydraulic.Used SolidWorks to establish the mathematical modeling and simulation and to analyse the stress, displacement and deformation for its main force parts (platform, connecting rods). The author designed the hydraulic system for the new actuators, and choose the hydraulic components (hydraulic pump, hydraulic valves and accumulator, etc) for the hydraulic system.
     Finally, Thanks to the new design of the system performance analysis of the following conclusions are obtained:(1) The new equipment system working pressure decreased in half. This makes the leakage of hydraulic oil greatly reduce; (2) Through the calculation the author got the energy consumption less than 45%, achieve the purpose of saving energy; (3) Through the calculation for the calorific capacity and the heat dissipating capacity of the hydraulic system, draw the system's calorific value below the heat emission value; (4) Because of the new plastic equipment itself has the superiority of the institutions and the performance, it make the manufacturing cost is reduced greatly, it has the great significance for the plastic industry.
引文
[1]陈力俊.微电子材料与制程.上海:复旦大学出版社,2005.
    [2]金玉丰.微系统封装技术概论.北京:科学技术出版社.2006.
    [3]Lih—Wu Houng, Chih—Yian chang, Number simulation of resin injection molding in Molds with replaced fiber mats, Journal of reinforced Plastics and composites, 1993.12
    [4]李薇薇.微电子工艺基础.北京:化学工业出版社.2007,1
    [5]http://springer, lib. tsinghua. edu. cn
    [6]王晓芬.微电子塑封传递模塑成型技术的分析与研究:(硕士论文).安徽:合肥工业大学,2006.
    [7]冯玉萍,于凌宇.电子器件封装工艺技术新进展.技术展望.2002,元器件与集成电路卷12期:93-95.
    [8]耿立波.精密注塑成型机自适应合模机构及注塑件在节能领域的应用研究:(硕士论文).北京:北京化工大学,2007.
    [9]许航.国内外小型精密注射成型机综述.机电元件,2002,第6期:56-58.
    [10]张平格.液压传动与控制.北京:冶金工业出版社,2009.
    [11]张友根.注塑机节能技术的现状和展望(二).包装工程,2008第4期:172-174
    [12]Leistrit A G. Reversed acting hydraulic drive[J].Elevator World,1992,1:53 —55
    [13]XU Bing. Research on inverter controlled hydraulic elevator energy—saving system applying pressure accumulators. Hangzhou:Zhejiang University,2001
    [14]Edwards J T. Conserving energy in oil hydraulic elevator systems. Elevator World, 1992,7:51—52
    [15]赵应樾.Advanced Practical Hydraulic Subsidiary Parts.上海:上海交通大学出版社,2002
    [16]杨公源.常用变频器应用实例.北京:电子工业出版社,2006
    [17]Yongkui Man, Wenyan Li. A Novel Method of Energy Saving for Nodding Donkey Oil Pump. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues.2007
    [18]Runqing Zhu, Lixin Lu, Limin Li. The Application of Inverter-Driven Technology on the Crimping Machine. IFIP International Federation for Information Processing.2006,8
    [19]张策.机械原理与机械设计上册.北京:机械工业出版社,2004,9.
    [20]廖汉元,孔建益.机械原理第二版.北京:机械工业出版社,2007,2.
    [21]Hong-Sen Yan.A Methodology for Creative Mechanism Design. MMT,1992,27:3.
    [22]Yoon Young Kim, Gang Won Jang, Jung Hun Park. Configuration Design of Rigid Link Mechanisms by an Optimization Method:A First Step. Solid Mechanics and Its Applications.2006.10
    [23]Reza N. Jazar. Applied Mechanisms. USA. Springer US.2008.1
    [24]Liu Yu-lan, Wang Biao, Wang Dian-fu. Analytical solutions of thermal stress distribution in plastic encapsulated integrated circuit packages. Applied Mathematics and Mechanics,2003.
    [25]K. Luck. K-H. Modle. Burmester Theory for Four-Bar-Band Mechanisms. ASME J. of Mechanical Design.1995,117:129—133.
    [26]曹岩,赵汝嘉.SolidWorks 2005.北京:机械工业出版社,2005,5.
    [27]曹岩,赵汝嘉.SolidWorks 2007精通篇.北京:化学工业出版社,2007,10.
    [28]王强,高健,陈新.IC封装热压模机合模机构设计与有限元分析.机床与液压.2007,第35卷第6期:41-43
    [29]唐锡宽,金德闻.机械动力学.北京:高等教育出版社,1983.
    [30]成大先.机械设计手册第三篇常用工程材料.北京化学工业出版社,2004,1.
    [31]杨随先,殷国富.SolidWorks 2006工业设计实例精解.北京:机械工业出版社,2006
    [32]成大先.机械设计手册第20篇液压传动.北京化学工业出版社,2004,1.
    [33]周世昌.液压系统设计图集.北京:机械工业出版社,2003,7.
    [34]王维新.流体力学.北京:煤炭工业出版社,1999
    [35]http://www. ytkaiwei. com/yg. htm
    [36]关肇勋,黄奕振.实用液压回路.上海:上海科学技术文献出版社,1982
    [37]Friedrich Pfeiffer. Mechanical System Dynamics. Springer Berlin/Heidelberg, 2008
    [38]Guo wen LIU, Zhe qing YU. Talking about the principle and application of hydraulicsaving energy technologies. Hydraulics Pneumatics & Seals/No 1.2005
    [39]徐鹏,米柏林,李杞超.液压节能技术的应用与发展.农机化研究.2006,9.第九期:206-207
    [40]Xian hong Zhou. Discussion on Energy Saving Technology by Hydraulic Pressure. JOURNAL OF HUNAN INDUSTRY POLYTECHNIC.2001,12:9—11
    [41]苏欣平,刘士通.工程机械液压与液力传动.北京:中国电力出版社,2010
    [42]李松晶,阮健,弓永军.Introduction of advanced hydraulic transmission techniques.哈尔滨:哈尔滨工业大学出版社,2008
    [43]http://mikejing2000. omyy. com/index/html/51693_1. html
    [44]http://www. ytkaiwei. com/cpxx3. htm
    [45]陆望龙.典型液压元件结构600例.北京:化学工业出版社,2009
    [46]张利平.液压阀原理使用与维护.北京:化学工业出版社,2005
    [47]雷天觉主编.液压工程手册.北京:机械工业出版社,1990.
    [48]邓起孝,戚昌兹.流体液压系统现代设计方法.北京:中国建筑工业出版社,1985
    [49]陆敏恂,李万莉.流体力学与液压传动.上海:同济大学出版社,2006
    [50]黄卫星,陈文梅.工程流体力学.北京:化学工业出版社,2001
    [51]陆敏恂,李万莉.流体力学与液压传动.上海:同济大学出版社.2006
    [52]金朝铭.液压流体力学.北京:国防工业出版社,1994.
    [53]颜荣庆,朱福民,李自光.现代工程机械液压系统分析.北京:人民交通出版社,1998
    [54]卢长耿,李金良.液压控制系统的分析与设计.北京:煤炭工业出版社,1991.
    [55]贾铭新.液压传动与控制解难和练习.北京:国防工业出版社,2003.
    [56]Wei-tang Zhong. The research of power saving frequency conversion speed regulation experiment system. Journal of Coal Science and Engineering (China), Volume 14, Number 1.2008,3
    [57]廖常初.PLC编程及应用.北京:机械工业出版社,2007
    [58]鲁远栋.PLC机电控制系统应用设计技术.北京:电子工业出版社.2010
    [59]阮友德.PLC、变频器、触摸屏综合应用实训.北京:中国电力出版社,2009
    [60]周美兰,周封,王岳宇.PLC电气控制与组态设计.北京:科学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700