新型氧氮化物荧光粉的性能研究和理论计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机以及环境污染的日益严重,作为能源消耗大户的照明显示领域引起了人们的关注和新一轮的研究热潮。发展新型绿色节能照明显示技术是解决这一难题的重要手段,近几十年来,以发光二极管(Light emitting diodes, LED)和等离子平板显示器(Plasmon Display Panels, PDP)为代表的照明显示技术取得了突破性的发展。相比于传统技术,LED具有体积小、发热少、耗能低、工作时间长、显色性能优异等特点;而PDP则具备体积小、重量轻、亮度高、色彩还原性好、灰度丰富等优点,将成为未来大屏幕和3D技术的主流技术。因此,综合能源、环境和成本等因素的考虑,新型照明显示技术将成为这一领域内的主流技术。
     光转换材料作为照明和显示技术领域中的重要组成部分,对照明显示技术的显色性和色彩丰富度起到了重要的贡献。新技术的发展对于材料提出了更高的要求,如LED和PDP均要求荧光材料具有快速响应时间,从真空紫外到近紫外波段的宽带激发,长波发射,在长期的大电流、高电压的轰击下保持化学和热稳定性,以及高量子效率等特点。传统的荧光粉存在激发光谱窄,热稳定性差等缺点,无法作为LED或者PDP荧光粉直接使用。因此,需进一步开发出与之相匹配的新型荧光转换材料。
     硅基氧氮化物材料具有强度高、耐腐蚀、耐高温、耐氧化等优良性能,自发现之日起就被普遍认为是最佳的荧光粉基质材料。目前的主要研究方向是硅基氧氮化物的制备技术和发光特性。本文的工作重点即围绕这个中心,具体包括:研究和探索稀土激活的硅基氧氮化物的理论计算,希望能够发现出氧氮化物发光与结构的内在因素,为氧氮化物荧光粉的设计和发展提供一定的理论和实验参考;通过合成工艺改进和形貌控制,寻找到新型荧光粉的设计方向,优化氧氮化物荧光粉粉体形貌和粒径分布,
     本论文分为五章:
     第一章简述了照明和显示技术的发展简史,并对发光和色度学的一些基本概念进行了概述。对目前常用荧光粉体系的晶体结构、光学特征、优缺点和改进的方向进行简单的介绍,结合现行照明显示的器件需求,提出荧光粉的改进和发展方向,指出本论文的主要工作思路。
     第二章为本论文的实验合成和理论计算部分。介绍本论文中用到的起始原料、合成工艺流程、合成设备、性能测试方法及装置和理论计算工具等。
     第三章主要论述了Ba3Si6O12N2基质荧光粉的性能研究和理论计算工作。包括两个方面:第一,详细阐述了Eu2+激活的Ba3Si6O12N2绿色荧光粉的制备工艺以及结构和光谱特性。结果表明:Ba3Si6O12N2:Eu2+荧光粉表现出优异的量子效率和色度特征:助熔剂的加入可以降低粉体的煅烧温度;通过共掺其它稀土元素或者过渡金属,或者通过利用Al-O键部分取代Si-N可使光谱可以在508-580nm的范围内自由调控。第二,利用第一性原理优化了Ba3Si6O12N2:Eu2+荧光粉的晶格结构,并对其能带结构、能态密度和吸收光谱进行了系统的模拟。研究结果表明,Ba和Eu的5d能级的耦合效应是该荧光粉具有优异发光效率的重要因素。
     第四章介绍了一种新型的可用于LED照明和PDP显示器件的一种新型硅基氧氮化物BaSi3Al304N5:Eu2+蓝色荧光粉。这种荧光粉基质为单斜晶系,空间群为P21/m。发射谱为470nm的宽带峰,可在真空紫外、紫外可见波段有效激发;由于晶体结构的稳定性,其具有优异的耐酸、耐高温的特征,能在600度的空气中退火后发光强度几乎不发生衰减。在不同离子的掺杂后变现出多种光学特征可以满足不同的需求,其粒径和形貌也可以通过助熔剂等合成条件进行一定的调整,符合工业上的技术要求。
     第五章根据荧光粉在使用中涂覆和堆积密度的要求,设计出了一种球形氧氮化物荧光粉的制备工艺。利用Si02微球为模板,在其表面包覆了SrCO3:Eu3+壳层,然后在前驱体的表面刻意地设计了一层H3B03保护层,最后在还原性气氛下成功制备出了球形的荧光粉。通过改变不同的模板和不同的还原条件,分别制备出了空心球形Sr2SiO4:Eu2+,球形SrSi2O2N2:Eu2+绿色荧光粉和球形Sr2Si5N8:Eu2+红色荧光粉等特定形貌的荧光粉。同时由于这种方法中两种反应原料间在反应时具有较大的接触面积和较小的扩散距离,使在较低温度下利用氧化物合成纯氮化物成为可能。
     第六章是本论文的总结,对于今后荧光粉和设计合成的思路和应用前景进行了展望。
With the development of energy crisis and environmental pollution, the lighting and display area has attracted more and more attention for they constitute a large partial in the total energy consumption. The new green and ecconomic techniques have been considered to be the only way to solve this problem. In recent decades, the LED (Light emitting diodes) and PDP (Plasmon display panels) have been getting more advances due to their advantages compring with traditional lighting and display techniques. For examples, LED is famous for its small volume, low energy consumption, high color purity and excellent color index and the PDP generally considered to main technique for the large-screen and3D display techniques. What's more, the LED and PDP could easily be realized in mass production for their simple configuration. Therefore, considering the environmental, energetic and economic elements, the new luminescence and display techniques will attract much more attentions and take an important part in future.
     The luminescence converting materials play important roles for they are irreplaceable in realizing different color and the high quality in the LED and PDP techniques. The phosphors used in the LED and PDP systems should have short response time, long wavelength excitation and emission spectra, high quantum efficiency and excellent stabilities under high current and temperature. While the traditional phosphors could not fulfill these demands for their low stabilies, so it is very necessary to exploit novel phosphors.
     The (oxo)nitridosilicate phosphors are considered to be the host materials due to their high structural and chemical stabilities and have been used as engine and fire resisting materias, such as a-SiAlON ceramics. In recent years, they have been used as the host materials for rare earch doped phosphors due to their superior mechanical stabilities and chemical interness. Therefore, it is meaningful to study the properties and synthesis of these phosphors.
     This paper is divided into6chapters:
     Chapter1of this manuscript briefly introduced the development history of luminescence and display techniques, and explained some basic concepts about the colorimetry.
     Chapter2is the experimental and characteristic sections. We have listed the raw materials, experimental and theoretical simulations methods, characteristic techniques used in this manuscript.
     In Chapter3, the optical properties and luminescence mechanism of the Ba3Si6O12N2:Eu2+green phosphors were systematically studied, including. First we had synthesized the Ba3Si6O12N2:Eu2+green phosphors and investigated the effects of temperature, codoping concentration and flux on the excitation and emission spectra. Then we theoreticatically calculated the band structure, density of states and absorption spectra by the first principle method.
     In Chaper4we fabricated a BaSi3Al3O4N5:Eu2+new blue emitting phosphors for the PDP and LED application and resolved its structure information by Rietveld method. This phosphor had a monoclinic system with space group of P21/m. The phosphor could be efficiently excitied from VUV to near UV region, and showed excellent chemical stability, thermal interness and acid resisting properties. The particle size could be easily adjusted by the amount of BaF2flux in the raw materials.
     In Chapter5, a convient method used to fabricate the spherical oxonitridosilicate phosphors with high packing density in the LED and PDP techniques were introduced.
     The spherical templates were derived from the spherical templates. The most important of this method was coat a H3BO3coating layer on the precursor particles, which could be reduced to h-BN protective film. This h-BN protective method could be successfully used to synthesize the spherical Sr2SisN8:Eu2+red phosphors, SrSi2O2N2:Eu2+green phosphor and hollow spherical Sr2SiO4:Eu2+green phosphor.
     In Chapter6we gave a brief summary of this paper. We pointed out the defects of this paper and predicted the direction in the investigation of phosphors in the future.
引文
[1]余宪恩,《实用发光材料与光致发光机理》,中国轻工业出版社,1998.
    [2]张中太,张俊英,《无机光致发光材料及应用》,化学工业出版社,2011.
    [3]G. Blasse, B. C. Grabmaier, Luminescence Materials, Springer-Verlag,1994.
    [4]R. J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs-A review, Science and Technology of Advanced Materials,2007,8, 588-600.
    [5]K. Sakuma, N. Hirosaki, N. Kimura, M. Ohashi, R. J. Xie, Y. Yamamoto, T. Suehiro, K. Asano, D. Tanaka, White light-emitting diode lamps using oxynitride and nitride phosphor materials, IEICE Transactions on Electronics,2005, E88C, 2057-2064.
    [6]肖志国,《半导体照明发光材料及应用》,化学工业出版社,2008.
    [7]C. H. Kim, I. E. Kwon, C. K. Park, Y. J. Hwang, H. S. Bae, B. Y. Yu, C. H. Pyun, G. Y. Hong, Phosphors for plasma display panels, Journal of Alloys and Compounds,2000,311,33-39.
    [8]D. L. Dexter, A Theory of Sensitized Luminescence in Solids, The Journal of Chemical Physics,1953,21,836-851.
    [9]许少鸿,《固体发光》,清华大学出版社,2011.
    [10]李建宇,《稀土发光材料以及应用》,化学工业出版社,2003.
    [11]孙家跃,杜海燕,《固体发光材料》,化学工业出版社,2003.
    [12]Y. F. Wang, X. Xu, H. Qin, L. J. Yin, L. Y. Hao, Optimization of BaMgAl10O17:Eu2+ phosphors by the substitution of Si-N bonds for Al-O bonds, Journal of Rare Earths,2010,28,281-284.
    [13]H. S. Jang, I. W. Bin, D. C. Lee, D. Y. Jeon, S. S. Kim, Enhancement of red sphectral emission intensity of Y3Al5O12Ce3+ phosphor via Pr co-doping and Tb substitution for the application to the white LEDs, Journal of Luminescence,2007, 126,371-377.
    [14]X. H. He, N. Lan, J. H. Sun, M. Y. Guan, Dependence of luminescence properties on composition of rare-earth activated (oxy)nitride phosphors for white LEDs application, Journal of Materials Science,2009,44,4763-4775.
    [15]M. Zhang, X. He, W. J. Ding, J. Wang, Oxynitride and nitride phosphors for white LEDs, Progress in Chemistry,2010,22,376-383.
    [16]Q. T. Zhang, L. Zhang, P. D. Han, Y. Chen, Y. Chen, H. Yang, L. X. Wang, Light coverting inorganic phosphors for white light-emitting diodes, Progress in Chemistry,2011,23,1108-1122.
    [17]H. A. Hoppe, Recent developments in the field of inorganic phosphors, Angewandte Chemie International Edition,2009,48,3572-3582.
    [18]M. Zeuner, S. Pagano, W. Schnick, Nitridosilicates and oxonitridosilicates:From ceramic materials to structural and functional diversity, Angewandte Chemie International Edition,2011,50,7754-7775.
    [19]R. J. Xie, N. Hirosaki, Eu2+-doped Ca-α-SiAlON:A yellow phosphor for white light-emitting diodes, Applied Physics Letters,2004,84,5404-5406.
    [20]X. Xu, J. Y. Tang, T. Nishimura, L. Y. Hao, Synthesis of Ca-a-SiAlON phosphors by a mechanochemical activation route, Acta Materialia,2011,59,1570-1576.
    [21]Z. J. Shen, Z. Zhao, H. Peng, M Nygren, Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening, Nature,2002, 417,266-269.
    [22]T. C. Liu, B. M. Cheng, S. F. Hu, R. S. Liu, Highly stable red oxynitride β-SiAlON:Pr3+ phosphor for light-emitting diodes, Chemistry of Materials,2011, 23,3698-3705.
    [23]K. Shioi, Y. Michiue, N. Hirosaki, R. J. Xie, T. Takeda, Y. Matsushita, M. Tanaka, Y. Q. Li, Synthesis and photoluminescence of a novel Sr-SiAlON:Eu2+ blue-green phosphor (Sr14Si68-sAl6+sOsN6-s:Eu2+(s approximate to 7)), Journal of Alloys and Compounds,2011,509,332-337.
    [24]Y. Q. Li, N. Hirosaki, R. J. Xie, J. Li, T. Takeda, Y. Yamamoto, M. Mitomo, Structural and phtotoluminescence properties of Ce3+- and Tb3+-activated Lu-alpha-Sialon, Journal of the American Ceramic Society,2009,92,2738-2744.
    [25]T.Suehiro, H. Onuma, N. Hirosaki, R. J. Xie, T. Sato, A. Miyamoto, Powder synthesis of Y-alpha-SiAlON and its potential as a phosphor host, Journal of Physical Chemistry C,2010,114,1337-1342.
    [26]K. Shioi, N. Hirosaki, R. J. Xie, T. Takeda, Y. Q. Li, Y. Matsushita, Synthesis, crystal structure, and photoluminescence of Sr-alpha-SiAlON:Eu2+, Journal of the American Ceramic Society,2010,93,465-469.
    [27]T. S. Chan, C. C. Lin, R. S. Liu, R. J. Xie, N. Hirosaki, B. M. Cheng, Photoluminescent and thermal stable properties of Tb3+-doped Ca-alpha-SiAlON under VUV excitation, Journal of the Electrochemical Society,2009,156, J189-J191.
    [28]K. Sakuma, N. Hirosaki, R. J. Xie, Y. Yamamoto, T. Suehiro, Luminescence properties of (Ca,Y)-alpha-SiAlON:Eu phosphors, Materials Letters,2007,61, 547-550.
    [29]X. Xu, T. Nishimura, N. Hirosaki, R. J. Xie, Y. Yamamoto, H. Tanaka, Fabrication of beta-sialon nonoceramics by high-energy mechanical milling and spark plama sintering, Nanotechnology,2005,16,1569-1573.
    [30]K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R. J. Xie, T. Suehiro, Warm-white light-emitting diodes with yellowish orange SiAlON ceramic phosphor, Optics Letters,2004,29, 2001-2003.
    [31]X. F. Yang, H. L. Song, L. X. Yang, X. Xu, Reaction mechanism of SrSi2O2N2:Eu2+ phosphor prepared by a direct silicon nitridation method, Journal of the American Ceramic Society,2011,94,28-35.
    [32]R. Li, R. L. Fu, X. F. Song, H. He, X. D. Yu, B. B. He, Z. X. Shi, Green emission from Tb-doped SrSi2O2N2 phosphors under ultraviolet light irradiation, Journal of Physics and Chemistry of Solids,2011,72,233-235.
    [33]S. D. Jee, K. S. Choi, J. S. Kim, Luminescence properties of Sro.95-x-yMgxYySi2O2-yN2+yEu0.052+ for novel LED conversion phosphors, Matels and Materials International,2011,17,655-660.
    [34]C. H. Hsu, C. H. Lu, Mircrowave-hydrothermally synthesized Sr1-x-yCexTbySi2O2-δN2+μ phosphors efficient energy transfer, structural refinement and photo luminescence properties, Journal of Materials Chemistry,2011,21, 2932-2939.
    [35]Y. H. Song, W. J. Park, D. H. Yoon, Photo luminescence properties of Sr1-xSi2O2N2:Eux2+ as green to yellow-emitting phosphor for blue pumped white LEDs, Journal of Physics and Chemsitry of Solids,2010,71,473-475.
    [36]X. F. Song, R. L. Fu, S. Agathopoulos, H. He, X. R. Zhao, R. Li, Luminescence and energy-transfer mechanism in SrSi2O2N2:Ce3+, Eu2+ phosphor for white LEDs, Journal of the Electrochemical Society,2010,157, J34-J38.
    [37]B. Y. Han, K. S. Kohn, Ternary combinatorial library of (Sr,Ba,Ca)Si2O2N2 phosphors in terms of photoluminescence and color chromaticity, Electrochemical and Solid State Letters,2010,13, J62-J64.
    [38]X. F. Song, H. He, R. L. Fu, D. L. Wang, X. R. Zhao, Z. W. Pan, Photoluminescent properties of SrSi2O2N2:Eu2+ phosphor:concentration related quenching and red shift behavior, Journal of Physics D-Applied Physics,2009,42, 065409(6pp).
    [39]V. Bachmann, C. Ronda,O. Oeckler, W. Schnick, A. Meijerink, Color point tuning for (Sr,Ca,Ba) Si2O2N2:Eu2+ for white light LEDs, Chemistry of Materials, 2009,21,316-325.
    [40]B. G. Yun, Y. Miyamoto, H. Yamamoto, Luminescence properties of (Sr1-uBau)Si2O2N2:Eu2+, yellow or orange phosphors for white LEDs, synthesized with (Sr1-uBau)2SiO4:Eu2+ as a precursor, Journal of the Electrochemical Society, 2007,154, J320-J325.
    [41]R. S. Liu, Y. H. Liu, N. C. Bagkar, S. F. Hu, Enhaced luminescence of SrSi2O2N2:Eu2+ phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions, Applied Physics Letters,2007,91,061119.
    [42]V. Bachmann, T. Juste1, A. Meijerink, C. Ronda, P. J. Schmidt, Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions, Journal of Luminescence,2006,121,441-449.
    [43]Y. Q. Li, A. C. A. Delsing, G. de With, H. T. Hintzen, Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ(M=Ca,Sr,Ba): A promising class of novel LED conversion phosphors, Chemistry of Materials, 2005,17,3242-3248.
    [44]Y. Q. Li, G. de With, H. T. Hintzen, Luminescence of a new class of UV-blue-emitting phosphors MSi2O2-δ2+2/3δ:Ce3+(M=Ca,Sr,Ba), Journal of Materials Chemistry,2005,15,4492-4496.
    [45]Y. X. Gu, Q. H. Zhang, Y. G. Li, H. Z. Wang, Nitridation from core-shell oxides for tunable luminescence of BaSi2O2N2:Eu2+ LED phosphors, Journal of Materials Chemistry,2010,20,6050-6056.
    [46]J. Y. Tang, X. F. Yang, C. Zhan, L. Y Hao, X. Xu, W. H. Zhang, Synthesis and luminescence properties of highly uniform spherical SiO2@SrSi2O2N2.Eu2+ core-shell structured phosphors, Journal of Materials Chemistry,2012,22, 488-494.
    [47]X. M. Teng, Y. H. Liu, Y. Z. Liu, Y. S. Hu, H. Q. He, W. D. Zhuang, Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphors, Journal of Luminescence,2010,130,851-854.
    [48]J. Y. Tang, C. Zhan, L. X. Yang, L. Y. Hao, X. Xu, S. Agathopoulos, Synthesis of h-BN encapsulated spherical core-shell structured SiO2@Sr2Si5N8:Eu2+ red phosphors, Materials Chemistry and Physics,2012,132,1089-1094.
    [49]X. Q. Piao, K. I. Machida, T. Horikawa, B. Yun, Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties, Journal of Luminescence,2010,130,8-12.
    [50]B. Lei, K. Machida, T. Horikawa, H. Hanzawa, N. Kijima, Y. Shimomura, H. Yamamoto, Reddish-orange long-lasting phosphorescence of Ca2Si5N8:Eu2+,Tm3+ phosphor, Journal of the Electrochemical Society,2010,157, J196-J201.
    [51]M. Zeuner, P. J. Schmidt, W. Schnick, One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+(M=Sr, Ba), Chemistry of Materials,2009,21,2467-2473.
    [52]M. Zeuner, F. Hintze, W, Schnick, Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8:Eu2+ (M=Eu, Sr, Ba), Chemistry of Materials,2009,21,336-342.
    [53]K. S. Sohn, S. Lee, R. J. Xie, N. Hirosaki, Time-resolved photoluminescence analysis of two-peak emission behavior in Sr2Si5N8:Eu2+, Applied Physics Letters, 2009,95,121903.
    [54]K. S. Sohn, B. Lee, R. J. Xie, N. Hirosaki, Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+, Optics Letters,2009,34,3427-3429.
    [55]Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. Disalvo, G. de With, H. T. Hintzen, Luminescence properties of red-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors, Journal of Alloys and Compounds,2006,417,273-279.
    [56]R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, M. Mitomo, A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes, Chemistry of Materials,2006,18,5578-5583.
    [57]X. Q. Piao, T. Horikawa, H. Hanzawa, K. Machida, Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-emitting-diodes illumination, Applied Physics Letters,2006,88,161908.
    [58]B. F. Lei, K. Machida, T. Horikawa, H. Hanzawa, Synthesis and photoluminescence properties of CaSiAlN3:Eu2+ nanocrystals, Chemsitry Letters, 2010,39,104-105.
    [59]S. Lee, K. S. Sohn, Effect of inhomogeneous broadening on time-resolved photoluminescence in CaSiAlN3:Eu2+, Optics Letters,2010,35,1004-1006.
    [60]J. W. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Synthesis of Eu-Doped CaSiAlN3 from ammonometallates:Effects of sodium content and pressure, Journal of the American Ceramic Society,2009,92,344-349.
    [61]Y. Q. Li, N. Hirosaki, R. J. Xie, T. Takeda, M. Mitomo, Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor:Structure, photoluminescence, and application in white LEDs, Chemistry of Materials,2008,20,6704-6714.
    [62]J. W. Li, T. Watanabe, N. Sakamoto, H. S. Wada, T. Setoyama, M. Yoshinura, Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures, Chemistry of Materials,2008,20,2095-2105.
    [63]X. Piao, K. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Preparation of CaSiAlN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties, Chemistry of Materials,2007,19,4592-4599.
    [64]K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence properties of a red phosphor, CaSiAlN3:Eu2+, for white light-emitting diodes, Electrochemical and Solid State Letters,2006,9, H22-H25.
    [65]M. Mikami, K. Uheda, N. Kijima, First-principles study of nitridoaluminosilicate CaAlSiN3, Physica Status Solidi a-Applications and Materials Science,2006,203, 2705-2711.
    [1]M. Mikami, S. Shimooka, K. Uheda, H. Imura, N. Kijima, New green phosphor Ba3Si6O12N2:Eu for white LED:Crystal structure and optical properties, Key Engineering Materials,2009,403,11-14.
    [2]C. Braun, M. Seibald, S. L. Borger,0. Oeckler, T. D. Boyko, A. Moewes, G. Miehe, A. Tucks, W. Schinick, Chem. Eur. J.2010,16,9646-9657.
    [3]J. Y. Tang, J. H. Chen, L. Y. Hao, X. Xu, W. J. Xie, Q. X. Li, Green Eu2+-doped Ba3Si6O12N2 phosphor for white light-emitting diodes:Synthesis, characterization and theoretical calculation, Journal of Lumininescence,2011,131,1101-1106.
    [4]Y. H. Song, B. S. Kim, M. K. Jung, K. Senthil, T. Masaki, K. Toda, D. H. Yoon, Synthesis and photoluminescence properties of green-emitting oxynitride phosphor using boron-coated Eu2O3 for white LED applicatioin, Journal of the Electrochemical Society,2012,159, J148-J152.
    [5]Y. H. Song, T. Y. Choi, K. Senthil, T. Masaki, D. H. Yoon, Photoluminescence properties of green emitting Eu2+-activated Ba3Si6O12N2 oxynitride phosphor for white LED applications, Materials Letters,2011,65,3399-3401.
    [6]Y. H. Song, M. O. Kim, M. K. Jung, K. Senthil, T. Masaki, K. Toda, D. H. Yoon, Photoluminescence properties of Ba3Si6O12N2:Eu2+ oxynitride phosphor synthesized by liquid phase precursor method, Materials Letters,2012,77, 121-124.
    [7]D. L. Dexter, A theory of sensitized luminescence in solids, Journal of Chemical Physics,1953,21,836 (15pages).
    [8]G. Blasse, J. Y. Srivatava, Luminescent Materials, Springer-Verlag, Berlin,1994.
    [9]F. Lucas, S. Jaulmes, M. Quarton, T. Le Mercier, F. Guiller, C. Fouassier, Crystal structure of SrAl2B2O7 and Eu2+ luminescence, Journal of Solid State Chemistry, 2000,150,404-409.
    [10]S. Li, R. Ahuja, Electronic, elastic, and optical properties of Y2O2S, Journal of Applied Physics,2005,97,103711 (6pp).
    [11]H. Bentmann, A. A. Demkov, R. Gregory, S. Zollner, Electronic, optical, and surface properties of PtSi thin films, Physical Review B,2008,78,205302 (9pages).
    [12]T. C. Schulthess, W. H. Butler, Electronc structure and magnetic interactions in Mn doped semiconductors, Journal of Applied Physics,2001,11,7021-7023.
    [13]L. Giacomazzi, P. Umari, First-principles investigation of electronic, structural, and vibrational properties of a-Si3N4, Physical Review B,2009,80,144201 (12pages).
    [14]X. Xu, C. Cai, L. Y. Hao, Y. C. Wang, Q. X. Li, The photoluminescence of Ce-doped Lu4Si2O7N2 green phosphors, Materials Chemistry and Physics,2009, 118,270-272.
    [15]Y. C. Cheng, X. L. Wu, J. Zhu, S. H. Li, P. K. Chu, Optical properties of rocksalt and zinc blende AlN phases:First-principles calculations, Journal of Applied Physics,2008,103,073707 (5 pages).
    [16]M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, First-principles simulation:ideas, illustrations and the CASTEP code, Journal of Physics:Condensed Matter,2002,14,2717-2744.
    [17]C. J. Duan, X. J. Wang, J. T. Zhao, Luminescence properties and electronic structures of rare earth and alkaline earth borates of REBa3B9O18 (RE=Lu, Y), Journal of Applied Physics,2007,101,023501 (5 pages).
    [18]J. P. Perdew, K. Burke, M. Emzerhof, Generalized gradient approximation made simple, Physical Review Letters,1996,77,3865-3868.
    [19]D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method,1980,45,566-569.
    [20]J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems,1981,23,5048-5079.
    [21]P. S. Kireev, Semiconductor Physics, Mir, Moscow,1978.
    [22]J. G. Sole, L. E. Bausa, D. Jaque, An introduction to the optical spectroscopy of inorganic solid, John Wiley & Sons Ltd., New York,2005.
    [23]M. Fox, Optical Properties of Solids, Oxford University Press, Oxford,2001.
    [1]R. J. Hill, C. J. Howard, Quantitative phase-analysis from neutron powder differenction data using the rietveld method, Journal of Applied Crystallography, 1987,20,467-474.
    [2]A. Albinati, B. T. M. Wills, The rietveld method in neutron and X-ray-poweder diffraction, Journal of Applied Crystallography,1982,15,361-374.
    [3]H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography,1969,2,65-71.
    [4]Y. F. Wang, X. Xu, High photoluminescence of Si-N-codoped BaAl12O19:Mn2+ green phosphors, Electrochemical and Solid-State Letters,2010,13, J119-J121.
    [5]L. J. Yin, X. Xu, W. Yu, J. G Yang, L. X. Yang, X. F. Yang, L. Y. Hao, X. J. Liu, Synthesis of Eu2+-doped AlN phosphors by carbothermal reduction, Journal of American Ceramic Society,2010,93,1702-1707.
    [6]G. Bizarri, B. Moine, On BaMgAl10O17:Eu2+ phosphor degradation mechanism: thermal treatment effects, Journal of Luminescence,2005,113,199-213.
    [7]C. Y. Shen, Y. Yang, S. Z. Jin, J. Z. Ming, Luminescence characteristics and thermal stability of BaMgAl10O17:Eu2+ phosphor for white light-emitting diodes, Physica B:Condensed Matter,2010,405,1045-1049.
    [8]B. Howe, A. L. Diaz, Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+, Journal of Luminescence,2004,109,51-59.
    [9]Q. H. Zeng, H. Tanno, K. Egoshi, N. Tanamachi, S. X. Zhang, Ba5SiO4Cl6:Eu2+: An intense blue emission phosphor under vacuum ultraviolet and near-ultraviolet excitation, Applied Physics Letters,2006,88,051906 (3 pages).
    [10]B. Dawson, M. Ferguson, G. Marking, A. L. Diaz, Mechanism of VUV in BaMgAl10O17:Eu2+, Chemistry of Materials,2004,16,5311-5317.
    [11]W. B. Im, H. S. Yoo, S. Vaidyanathan, K. H. Kwon, H. J. Park, Y. Kim, D. Y. Jeon, A novel blue-emitting silica-coated KBaPO4:Eu2+ phosphor under vacuum ultraviolet and ultraviolet excitation, Materials Chemistry and Physics,2009,115, 161-164.
    [12]M. Mitomo, A. Ishida, Stability of a-sialons in low temperature annealing, Journal of the European Ceramic Society,1999,19,7-15.
    [13]V. Bachmann, C. Ronda, A. Meijerink, Temperature quenching of yellow Ce3+ luminescence in YAG:Ce, Chemistry of Materials,2009,21,2077-2084.
    [14]E. Zych, C. Brecher, J. Giodo, Kinetics of cerium emission in YAG:Ce single crystal:the role of traps, Journal of Physics-Condensed matter,2000,12, 1947-1958.
    [15]S. W. Choi, Y. J. Kim, S. H. Hong, Green-emitting Yb2+-doped a-SiAlON phosphors prepared by spark plasma sintering, Optical Materials,2011,33, 1700-1703.
    [16]L. H. Liu, R. J. Xie, N. Hirosaki, T. Takeda, C. N. Zhang, J. G Li, X. D. Sun, Phtoluminescence properties of β-SiAlON:Yb2+, a novel green-emitting phosphor for white light-emitting diodes, Science and Technology of Advanced Materials, 2011,12,034404(6pp).
    [17]S. Erdei, F. W. Ainger, D. Ravichandran, W. B. White, L. E. Cross, Preparation of Eu3+:YVO4 red and Ce3+, Tb3+:LaPO4 green phosphors by hydrolyzed colloid reaction (HCR) technique, Materials Letters,1997,30,389-393.
    [18]K. Y. Jung, H. W. Lee, Enhanced luminescent properties of Y3Al5O12:Tb3+, Ce3+ phosphor prepared by spray pyrolysis, Journal of Luminescence,2007,126, 469-474.
    [19]H. Y. Jiao, Y. H. Wang, Ca2Al2SiO7:Ce3+, Tb3+:A white-light phosphor suitable for white-light-emitting dioes, Journal of the Electrochemical Society,2009,156, J117-J120.
    [1]M. Yu, J. Lin, J. Fang, Silica spheres coated with YVO4:Eu3+ layers via sol-gel process:A simple method to obtain spherical core-shell phosphors, Chemistry of Materials,2005,17,1783-1791.
    [2]M. Yu, H. Wang, C. K. Lin, G Z. Li, J. Lin, Sol-gel synthesis and photoluminescence properties of spherical SiO2@LaPO4:Ce3+/Tb3+ particles with a core-shell structure, Nanotechnology,2006,17,3245-3252.
    [3]H. Wang, M. Yu, C. K. Lin, X. M. Liu, J. Lin, Synthesis and Luminescence properties of monodisperse spherical Y2O3:Eu3+@SiO2 particles with core-shell structure, The Journal of Physical Chemistry C,2007,111,11223-11230.
    [4]Y. Y. Zhang, J. L. Liu, Y. X. Zhu, Y. Shang, M. Yu, X. Huang, Hydrothermal synthesis and luminescence properties of core-shell-strucutured PS@SrCO3:Tb3+ spherical particles, Journal of Materials Science,2009,44,3364-3369.
    [5]W. Stober, A. Fink, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science,1968,26,62-69.
    [6]A. K. Van Helden, J. W. Jansen, A. Vrij, Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents, Journal of Colloid and Interface Science,1981,81,354-368.
    [7]F. J. Arriagada, K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion:Effects of the water/surfactant molar ratio and ammonia concentration, Journal of Colloid and Interface Science,1999,211, 210-220.
    [8]L. S. Birks, H. J. Friedman, Particle size determination from X-ray line broadening, Journal of Applied Physics,1946,17,687-692.
    [9]O. Lehmann, K. Kompe, M. Haase, Synthesis of Eu3+-doped and core/shell nanoparticles and direct spectroscopic indentification of dopant sites at the surface and in the interior of the particles, Journal of the American Chemical Society,2004,126,14935-14942.
    [10]A. L. Patterson, The sherrer formula for X-ray particle size determination, Physical Review,1939,56,978-982.
    [11]J. Mendez-Vivar, A. Mendoza-Bandala, Spectroscopic study on the early stages of the polymerization of hybrid TEOS-RSi(OR')3 sols, Journal of Non-Crystalline Solids,2000,261,127-136.
    [12]D. Y. Kong, M. Yu, C. K. Lin, X. M. Liu, J. Lin, J. Fang, Sol-gel synthesis and characterization of ZnSiO4:Mn@SiO2 spherical core-shell particles, Journal of the Electrochemical Society,2005,152, H146-H151.
    [13]J. P. Blitz, Reactions of titanium tetrachloride with modified silica gel surfaces studied by diffuse reflectance FT-IR spectroscopy, Colloids and Surfaces,1992, 63,11-19.
    [14]L. X. Lin, Y. Zheng, Z. H. Li, X. N. Shen, K. M. Wei, A simple method to synthesize polyhedral hexagonal boron nitride nanofibers, Solid State Sciences, 2007,9,1099-1104.
    [15]H. E. Camurlu, N. Sevinc, Y. Topkaya, Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride, Journal of the European Ceramic Society,2008,28,679-689.
    [16]W. B. Bu, Z. L. Hua, H. R. Chen, J. L. Shi, Epitaxial synthesis of uniform cerium phosphate one-dimensional nanocable heterostructures with improved luminescence, the Journal of Physical Chemistry B,2005,109,14461-14464.
    [17]X. Jiang, B. Mayers, T. Herricks, Y. Xia, Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires, Advanced Materials,2003,15,1740-1743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700