河南食管癌高发区单发食管癌、贲门癌及同一个体食管/贲门双源癌人乳头瘤病毒检测和p53、p16、p21~(WAF1)及MDM2蛋白变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景与目的
     食管癌(Esophageal carcinoma, EC)是最常见的六大恶性肿瘤之一,河南省林州地区(以前林县)是世界上发病率最高的地区,组织类型以食管鳞癌(Esophageal squamous cell carcinoma, SCC)为主(95%)。男、女发病率分别高达161/10万、103/10万,局部地区可高达500/10万,且预后极差,中晚期患者5年存活率仅为10%,早期患者5年存活率可达90%。目前为止,高发的原因尚未清楚。以往的研究认为:高发区主要分布在发展中国家,常常因为饮食结构单一,缺乏足够的绿色蔬菜和新鲜水果的摄入,导致维生素、抗氧化剂和微量元素缺乏,再合并摄入致癌剂如亚硝胺或含真菌的霉变食物时,就容易导致食管癌的发生。食管粘膜是外界环境因素频繁接触的部位,是一个外来物进入体内的重要通道。这些外来物中,包括一些病原微生物,化学致癌物,食品添加剂和环境污染物等。多年的流行病学调查及实验研究表明某些微生物与消化道肿瘤的发生关系密切。
     人乳头瘤病毒(Human papillomavirus, HPV)作为一个重要的肿瘤相关病毒,其在宫颈癌中的作用已得到公认。至于它在食管癌中的作用,自1982年Syrjanen首次报道以来,HPV感染与食管癌发病之间的关系逐渐引起人们的重视,相关的报道越来越多。来自不同国家及地区报告食管癌中人乳头瘤病毒的检出率相差很大,甚至相悖,最低及最高HPV检测率均来自河南林州食管癌高发区,除此之外,国外的南非和印度HPV感染率报告也较高。而在欧洲与北美的一些发达国家,HPV在食管癌中的检出率较低。以往研究所用的检测方法主要有针对HPV表达蛋白改变的免疫组化(IHC),针对HPV mRNA的原位杂交(ISH)及多聚酶链式反应(PCR),或者针对抗体的血清学检测。
     对这些不同的检测结果,多数人倾向认为可能与地域不同、检测方法不同以及取材部位不同有关,但对采用相同的检测技术,若标本的来源形式不同,检测结果是否有差别却很少有报道。
     通常所说的贲门是指胃食管交界线以下2cm的范围,解剖结构与生理功能上与食管有很多相似之处。在食管癌高发区一个显著的流行病学特征是贲门腺癌(Gastric cardia adenocarcinoma,GCA)发病率也高,而远端胃癌的发病率较低,这种现象也见于其它食管癌高发区。
     本研究旨在通过应用聚合酶链式反应(polymerase chain reaction, PCR),对不同组织来源形式(新鲜组织与石蜡固定组织)的单发食管癌、贲门癌标本进行检测,同时以高发区胃镜食管粘膜活检组织作对照,分析HPV检测差异产生的可能原因。在此基础上,借助本地独特的食管/贲门双源癌这一病例优势,进一步探讨HPV感染与p53、p16、p21WAF1及MDM2蛋白变化之间的关系。加深对食管贲门癌变机理,食管责门癌高易感性分子机制,肿瘤多中心起源理论的了解,特别是为进一步回答该地区食管鳞癌和贲门腺癌并存高发是否具有相似的致癌危险因素和癌变分子基础等方面提供一些理论依据。
     2.材料与方法
     2.1研究对象
     食管癌患者:共44例,来自河南省林州市食管癌医院及林州市中心医院(男26例,平均年龄59±7;女18例,平均年龄56±9)。术后病理检查均为食管鳞癌。
     贲门癌患者:共18例,来自河南省林州市食管癌医院及林州市中心医院(男13例,平均年龄60±8;女5例,平均年龄61±10)。术后病理检查均为贲门腺癌。
     石蜡固定组织:与新鲜食管癌组织对应的石蜡固定组织30例(男18例,平均年龄57±8;女12例,平均年龄57±10)。病理检查均为食管鳞癌,高分化鳞癌3例,中分化鳞癌23例,低分化鳞癌4例;合并有淋巴结转移20例,无淋巴结转移10例。
     食管/贲门双源癌组织:共17例,来自河南省林州市中心医院,姚村食管癌医院(男12例,平均年龄59±7;女5例,平均年龄58±9),所有患者术前均未接受放疗和化疗。
     健康对照组:共18例,来自食管癌高发区无症状普查居民(男9例,平均年龄50±11;女9例,平均年龄48±10)。均经胃镜检查和活检病理证实为无食管炎及食管各级癌前疾病。
     2.2标本的收集和处理
     各种手术切除标本均一分为二,一半固定;一半冰冻(-80℃),常规组织学处理,光镜观察,备用。
     2.3方法
     2.3.1新鲜组织DNA的提取:
     新鲜组织DNA采用QIAamp DNA mini kit试剂盒抽提,取25mg组织研钵碾碎。加180ul ATL和20μl蛋白酶K,于1.5ml离心管56℃温浴1h,取离心管,加200μl AL,振荡,混匀。70℃水浴10min,加200μl乙醇,离心,8000rpm/min, 10min;上清液移入柱子,8000rpm/min, 1min;弃去洗脱液,分别加500μl AW1及AW2,8000rpm/min, 1min;弃去洗脱液,加AE 80μl8000rpm/min。收集DNA液,-20℃保存。
     2.3.2石蜡固定组织DNA的提取:
     切取10μm白片10-15张,56℃烘烤1h,脱蜡及梯度酒精至水,刮下组织收入EP管中,加入细胞裂解液600μl,蛋白酶K 80μl,55℃水浴24h。加600μlTris饱和酚,14000 rpm x 5 min;上清液转入新EP管中,加600μl饱和酚,14000rpm x 5 min;上清液转入EP管中加入500μl氯仿,14000 rpm×5 min;上清液转入EP管中,加入1000μl异丙醇,14000 rpm×5min,去上清,吸干试管;加入70%乙醇600μl,12000 rpm x 3 min,去上清,留沉淀;加去离子水80μl,分装后放入-20℃保存。
     2.3.3免疫组织化学:
     采用卵白素-生物素-辣根过氧化氢酶复合物(ABC)方法检测p53、p16、p21WAF1、MDM2蛋白的表达。用本实验室以往阳性切片做阳性对照,用磷酸盐缓冲液代替一抗做阴性对照。
     免疫组化蛋白阳性细胞主要表现为细胞核呈黄色至棕黄色,其阳性标准,高倍镜下(×40)选取五个视野,出现3个或3个以上的细胞核、细胞浆和/或胞膜呈黄色、棕黄色或棕褐色颗粒样着色,即为免疫阳性反应。MDM2免疫组化蛋白阳性细胞主要表现为胞核棕黄色颗粒状、均质染色,个别细胞胞浆浅黄色着色。其阳性标准,根据阳性细胞分布和染色强度判定。高倍镜下(×40),无阳性细胞为0分,阳性细胞≤1/3为1分,1/3~2/3为2分,≥2/3为3分。染色强度按切片中细胞着色有无及深浅记分:细胞无着色0分;中度染色1分;染色强2分(高倍镜下能清楚的分辨)。将2分值相加,0=(-);2=(±);3=(+);4=(++);5=(+++)。
     2.3.4模板DNA质量鉴定
     (1)在核酸/蛋白分析仪上测OD(260/280)值,进行实验样品DNA的OD值在1.6~2.0之间。
     (2) 1%琼脂糖凝胶电泳,进一步确定所提DNA的质量。
     (3)运用beta-actin进行内参扩增,内参扩增阴性的样品将会被排除,并排除PCR反应体系中抑制因子的影响。
     2.3.5 HPV16E6序列PCR扩增
     设计E6特异性引物,进行PCR扩增,反应总体积为50ul,其中含10×xbuffer 5.0μ, Mgcl2(25mmol/L) 5.0μl, dNTP(2.5mmol/L) 4.0μl上下游引物各1.0μl,Ex-Taq 0.12U, DNA template 1.0μl,加ddH20至50μl;循环包括95℃预变性5min,5个循环:95℃变性1min,55℃退火1min,72℃延伸1min,接着再40个循环:95℃变性20s,55℃退火30s,72℃延伸30s,最后72℃终延伸5min。经电泳PCR阳性产物为120bp条带。
     2.3.6统计分析
     采用SPSS13.0统计软件处理,采用x2检验,Fisher's Exact Test检验,Pearson correction相关分析等统计学方法进行分析,取α=0.05。
     3结果
     3.1 44例新鲜SCC组织HPV16 E6扩增结果
     beta-actin内参扩增阳性的44例标本,针对HPV 16 E6特异性引物进行PCR检测结果表明,HPV在SCC患者新鲜组织中的检出率为84.1%(37/44)。高危型HPV16感染与患者年龄、性别、分化程度、浸润程度、淋巴结转移、肿瘤分级无相关性(P>0.05)。
     3.2 18例新鲜GCA组织HPV16 E6扩增结果
     beta-actin内参扩增阳性的18例标本,针对HPV16 E6特异性引物进行PCR检测结果表明,HPV在GCA患者新鲜组织中的检出率为44.4%(8/18)。高危型HPV16感染与患者年龄、性别、分化程度、浸润程度、淋巴结转移、肿瘤分级无相关性(P>0.05)。
     3.3 18例胃镜食管粘膜活检组织HPV16 E6扩增结果
     beta-actin内参扩增阳性的18例标本,针对HPV16 E6特异性引物进行PCR检测结果表明,HPV在食管癌高发区正常人胃镜食管粘膜活检组织中的检出率为33.3%(6/18)。
     3.4与新鲜SCC组织配对的30例石蜡固定组织HPV16 E6扩增结果
     30例配对完整的SCC新鲜组织与石蜡固定组织标本,新鲜组织DNA经PCR扩增后,HPV16 E6有27例出现阳性条带,3例为阴性条带;相对应的石蜡组织中3例阴性均为阴性条带,而27例阳性条带中仅16例出现阳性,其余11例为阴性,HPV在SCC患者固定组织中的检出率为53.3%(16/30)。经配对检验p<0.01,在排除方法本身应有局限性外,石蜡固定组织明显低于新鲜组织。
     3.5 17例食管/贲门双源癌组织标本HPV16 E6扩增结果
     beta-actin内参扩增,食管及贲门两者均阳性的标本17对,针对HPV16 E6特异性引物进行PCR检测结果表明,HPV在SCC组织中的检出率为47.1%(8/17),在GCA组织中的检出率为29.4%(5/17)。两者相比无显著性差异(p>0.05)。
     3.6 17例食管/贲门双源癌免疫组化结果
     3.6.1 p53免疫组化结果
     SCC和GCA组织均出现不同程度的p53免疫阳性反应。17例双源癌,p53在SCC和GCA组织中阳性表达率均为64.7%(11/17),p53在SCC和GCA中阳性表达无显著性差异(p>0.05)。13例(76.5%)患者同时出现SCC和GCA组织一致性改变,其中9例(52.9%)患者SCC和GCA组织呈p53免疫一致阳性反应,4例(23.5%)同时出现p53的免疫阴性反应。统计学分析认为p53在SCC和GCA中一致性阳性表达有相关性(p<0.05),结合Pearson列联系数P=0.470,可认为p53在SCC和GCA中蛋白改变结果一致。
     3.6.2 p16免疫组化结果
     SCC和GCA组织均出现不同程度的p16免疫阳性反应。17例双源癌,SCC中p16阳性率为41.2%(7/17),GCA阳性占58.8%(10/17)。p16蛋白在12例患者同时出现SCC和GCA组织一致性改变(70.6%),其中6例患者SCC和GCA组织呈p16免疫阳性反应(35.3%),6例同时出现p16的免疫阴性反应(35.3%)。p16在SCC和GCA中阳性表达无显著性差异(p>0.05)。
     3.6.3 p21WAF1免疫组化结果
     SCC和GCA组织均出现不同程度的p21WAF1免疫阳性反应。17例双源癌,p21WAF1阳性率在SCC和GCA中均为41.2%(7/17),其中14例患者同时出现SCC和GCA组织一致性改变(82.4%),6例患者呈p21WAF1免疫阳性反应(35.3%),8例同时出现p21WAF1的免疫阴性反应(47.1%)。统计学分析认为p21WAF1在SCC和GCA中阳性表达有相关性,结合Pearson列联系数P=0.591,可认为p21WAF1在SCC和GCA中蛋白改变结果一致,p21WAF1在SCC和GCA中阳性表达差异有显著性(p<0.05)。
     3.6.4 MDM2免疫组化结果
     17例双源癌,MDM2蛋白在SCC和GCA组织中阳性率分别为58.8%(10/17),70.6%(12/17),MDM2在SCC和GCA中阳性表达无显著性差异(p>0.05)。15例(88.2%)患者同时出现MDM2蛋白一致性改变,其中10例(58.9%)患者SCC和GCA组织MDM2呈免疫阳性反应,5例(29.4%)同时出现MDM2的免疫阴性反应。
     3.7 17例双源癌组织中HPV与p21WAF1、MDM2免疫组化结果对比分析
     3.7.1 (?)17例食管/贲门双源癌中HPV与p53免疫组化结果对比分析
     经Fisher's Exact Test检验,HPV感染和p53蛋白改变在SCC及GCA中P值分别为0.335及1.0,均大于0.05,说明HPV感染在食管及贲门癌中与p53蛋白改变结果一致,差别无统计学意义。
     3.7.2 17例食管/贲门双源癌中HPV与p16免疫组化结果对比分析
     经Fisher's Exact Test检验,p16蛋白改变和HPV感染在SCC及GCA中p值分别为0.335及0.338,均大于0.05,说明HPV感染在食管及贲门癌中与p16蛋白改变结果相同。
     3.7.3 17例食管/贲门双源癌中HPV与p21WAF1免疫组化结果对比分析
     经Fisher's Exact Test检验,HPV感染和p21WAF1改变在SCC及GCA中p值均为1.0,大于0.05,说明HPV感染在食管及贲门癌中与p21WAF1蛋白改变结果一致。
     3.7.4 17例食管/贲门双源癌组织中HPV与MDM2免疫组化结果对比分析
     经Fisher's Exact Test检验,MDM2蛋白改变和HPV感染在SCC及GCA中p值分别为0.637及1.0,均大于0.05,说明HPV感染在食管及贲门癌中与MDM2蛋白改变结果相同,差别无统计学意义。
     4.结论
     4.1高发区食管癌患者中HPV感染率明显高于健康对照组,提示HPV感染可能是该区食管癌高发的病因之一。但HPV感染与性别、年龄、肿瘤浸润深度、淋巴结转移、临床分期之间无关,是相互独立的。
     4.2食管癌高发区贲门腺癌HPV的感染率也较高,提示HPV感染可能也参与该区贲门癌的发生过程。
     4.3在高发区胃镜普查的食管粘膜上皮中,也可检出HPV病毒的感染(33.3%),提示HPV的感染先于癌变的进展,在高发区可能是一个促癌因素。
     4.430例配对完整的食管癌新鲜组织与石蜡固定组织标本,采用相同方法扩增,HPV16 E6在两种组织中的检出率为分别为84.1%及53.3%。经配对检验P<0.01,在排除方法本身应有局限性外,石蜡固定组织明显低于新鲜组织。这可能与组织在固定及切取过程中,DNA完整性破坏,形成一些小的片段,以至于超出方法本身所具有的检测灵敏度有关。
     4.5对食管/贲门双源癌患者(同一个体),HPV在SCC中的检出率为47.1%(8/17),在GCA中的检出率为29.4%(5/17)。两者相比无显著性差异(p>0.05),进一步提示在高发区HPV可能共同参与食管及贲门的癌变过程,两者具有相似的致癌危险因素。
     4.6对食管/贲门双源癌患者,HPV感染与p53、p16、p21WAF1、MDM2蛋白改变相关,其中p53、p21WAF1、MDM2蛋白改变与贲门癌更相关,提示在癌变的演进过程中,两者可能具有不同的分子基础。
1. BACKGROUND AND OBJECTIVE
     Esophageal cancer (EC) is one of the six most common malignant diseases worldwide. Linzhou of Henan province, Northern China, has been recognized as the highest incidence area for EC in the world, and the predominant histologic type in this area is squamous cell carcinoma (SCC), the incidence rates are around 161/100,000 for men and 103/100,000 for women. However, in distinct areas the incidence rates are remarkably higher, with up to 500 fold variations between low and high risk areas. EC in late stage has a very poor prognosis with a five year survival rate of less than 10%. However, the 5-year survival rate for EC in the early stage could as high as 90%. Up to now, the reasons for these major regional variations in the incidence of this disease are poorly understood. Epidemiological and experimental data suggest that some chemicals, nutritional deficiencies, physical factors, and infectious agents are associated with the development of this malignancy. An aetiological role of certain microorganisms has been implicated (direct carcinogens or promoters).
     Human papillomavirus (HPV) as one kind of important tumor-related virus has been firmly recognized in cervical cancer. But its oncogenic role in other tumors is still disputed. As to its role in ESCC, it was firstly suggested by Syrjanen 20 years ago, when he reported an involvement of HPV in the development of both benign and malignant SCC of the esophagus, since then, a substantial amount of literatures have accumulated on this subject. But the HPV infection rate in EC varied from 0% to 100 %. There seems to be a common denominator for the low and high detection rates: namely, the geographical distribution of the material.
     For different detection rates, the possible reasons:①the cases came from different areas where HPV prevalence was different.②many different HPV detection methods have been used. Different methods have different sensitivity and accuracy. Of them, PCR is more sensitive than others, but different primers have different sensitivity.③the samples taken from different parts, of esophagus. HPV only reproduce in those highly differentiated epidermis cells. The number of copies varies widely in different degree of differentiation, which may impact on the results. Linzhou area is one of the highest incidence areas of esophageal cancer in China, even in the world. In recent years, some studies have been performed on the prevalence of HPV in the tissues of esophageal cancer in Linzhou area, but the conclusions were not consistent. Therefore, it is still questionable whether HPV is one of the major causes of esophageal cancer in this high-risk area.
     In epidemiology, gastric cardia adenocarcinoma (GCA) in China is characterized by its striking geographic distraction, Linzhou in Henan Province has been well documented as the highest incidence area for GCA. The other phenomenon in Linzhou is that the primary SCC and GCA could occur together on the same patient, which has been named as concurrent carcinoma (CC) of the esophagus and gastric cardia by us.
     In order to explore the prevalence of HPV and alternation of p53, p16, p21WAF1, MDM2 in carcinoma tissues of local residents in Linzhou area and to evaluate their possible roles and interaction in the carcinogenesis, here we present the following experiments. Some useful findings may be provided scientific basis to prevent esophageal cancer.
     2. MATERIALS AND METHODS
     2.1 Subjects
     Esophageal cancer:A total of 44 surgically resected human EC specimens were recruited from Linzhou City Center Hospital and Yaocun Esophageal Cancer Hospital in Linzhou, Henan, the highest incidence area for both EC and GCA, including 26 males with an average age of 59±7 years old and 18 females with an average age of 56±9 years old.
     Gastric cardia:All the 18 surgically resected human GCA specimens were collected from the same hospitals as above. Of the 18 cases,13 were males with an average age of 60±8 years old and 5 females with an average age of 61±10 years old.
     Biospy tissue:All the 18 endoscopic biopsy esophageal epithelium as normal control were collected from high-incidence regions. Of the 18 cases,9 were males with an average age of 48±10 years old and 9 females with an average age of 50±11 years old.
     Paraffin-embedded tissue:All the 30 surgically resected human EC specimens were collected from the same hospitals as above. Of the 30 cases,18 were males with an average age of 57±8 years old and 12 females with an average age of 57±10 years old.
     CC patients:All the 17 cases patients with CC in this study were from the same hospitals as above. Of the patients,12 were males and 5 were females, with a mean age of 59±7 years in male and 58±9 years in female. All the CC patients were conformed to primary SCC and GCA from the same patient by histopathology.
     None of the patients had received chemotherapy and/or radiotherapy before operation. All the cases were confirmed as GCA or SCC respectively by histopathology. TNM staging was undertaken based on the criteria by AJCC (2002, AJCC).
     2.2 Tissue collection and processing
     Within 2 hours after surgical excision, the specimens were cut into two-halves longitudinally. Half of the specimen was fixed with 85% ethanol, paraffin-embedded, and sectioned at 5μm for histopathological evaluation and immunohistochemical analysis. The other part of the specimens was stored in the liquid nitrogen first and then transferred in a-80℃freezer for DNA extraction.
     2.3 Methods
     2.3.1 DNA extraction for frozen tissue
     DNA extraction from the SCC and GCA pathology sample was performed with QIAamp DNA mini kit, QIAGEN company DNA mini kitTM (51306).
     2.3.2 DNA extraction for paraffin-embedded tissue
     Briefly,10-15 slides were deparaffinized in xylene and graded alcohol, then the lysis buffer (300 mmol/1 NaCl; 50 mmol/1 Tris.hCl pH 8.0; 0.2% SDS) was added into the tube with proteinase K (0.5 mg/ml), and the solution was incubated at 55℃overnight until it became clear. Then DNA was extracted using phenol/chloroform, precipitated with cold alcohol, and dissolved in ion-free water and stored at-20℃
     2.3.3 Immunohistochemical analysis
     Avidin-biotin-peroxidase complex (ABC) method was used to analyze the expression of p53, p16, p21WAF1 and MDM2. The classification of immunoreactivity was based on the immunostaining intensity (score as 0,1,2,3) and cell proportion of positive immunostaining (score as 0,1,2,3,4).
     2.3.4 Identification for the purity and integrity of DNA samples
     The DNA concentration was determined from its optical density. Quality of the extracted DNA was tested by PCR with beta-actin primer:5'-TCA CCC ACA CTG TGC CCA TC-3'and 5'-GAA CCG CTC ATT GCC AAT GG-3'.
     2.3.5 HPV16 E6 amplification
     The usable DNA went through PCR amplification using primer:5'-TCA AAA GCC ACT GTG TCC TG-3'and 5'-CGT GTT CTT GAT GAT CTG CA-3'targeting HPV-16 E6 gene under conditions at 95℃denaturing for 5 min; at 95℃denaturing for 1 min,55℃annealing for 1 min, and at 72℃prolonging for 1 min with 5 cycles; then at 95℃denaturing for 20s,55℃annealing for 30s, and at 72℃prolonging for 30s with 40 cycles; at 72℃prolonging for 5 min. The PCR product was about 120 bp. The plasmid containing full of length of HPV-16 genome as template was the positive control, and the water as template was the negative control.
     2.3.6 Statistics
     Chi-squared test and Kappa test were performed to compare the difference between groups.
     3. RESULTS
     HPV16 E6 amplification for 44 EC frozen tissues
     All the forty-four extracted DNA samples showed good quality of DNA after PCR with beta-actin primer. After PCR amplification using HPV-16 E6 specific primer, HPV infection was found in tumor patients for 84.1% (37/44) in Linzhou. There was no association between HPV16 infection and gender, age, differentiation, lymph node metastasis and tumor staging.
     HPV16 E6 amplification for 18 GCA frozen tissues
     All the eighteen extracted frozen gastric cardia cancer samples showed good quality of DNA after PCR with beta-actin primer. PCR amplification using HPV-16 E6 specific primer, HPV infection was found in tumor patients for 44.4%(8/18) in Linzhou, risk incidence area of esophageal cancer. No association between HPV 16 infection and gender, age, differentiation, lymph node metastasis and tumor staging.
     HPV16 E6 amplification for 18 biospy esophageal epithelium
     Using the same method, HPV infection rate was found in endoscopic biopsy esophageal epithelium as normal control was collected from high-incidence regions for33.3%(6/18).
     HPV16 E6 amplification for 30 paraffin-embedded
     Using the same method, HPV infection rate was found in frozen sample of esophagus for 84.1% and 53.3%(16/30) from paraffin-embedded tissue, respectively. But comparing the positive rate of frozen and paraffin-embedded samples, the difference of HPV infection in DNA level was significant (P< 0.05).
     HPV 16 E6 amplification for 17 CC
     All the extracted DNA samples showed good quality of DNA after PCR with beta-actin primer. After PCR amplification using HPV-16 E6 specific primer, HPV infection was found in tumor patients from both tissue, with an infection rate of 47.1% (8/17) in SCC and 29.4% in GCA. There have no significant differences among them by statistics (P> 0.05).
     Immunohistochemical staining for 17 CC
     In CC patients, the positive immunohistochemical staining for p53, p16, p21WAF1 and MDM2 was observed both in SCC and GCA with different degrees. In SCC, the overexpression rates of p53 was the highest with 64.7%(11/17), followed by MDM2, p16 and p21WAF1 with 58.8%(10/17),41.2%(7/17) and 41.2%(7/17), respectively. In GCA, the overexpression rates of MDM2, p53, p16 and p21WAF1 were similar, with 70.6%(12/17),64.7%(11/17),58.8%(10/17) and 47.1%(8/17), respectively. Frequent immunostaining pattern for MDM2 and p53 was "Diffuse" and "Scatter". In p16, and p21WAF1, "Scatter" immunostaining pattern was predominant. High coincidence rates for MDM2, p53, p16 and p21WAF1 positive staining was observed in SCC and GCA from the same patients, and were 70.6%(12/17),64.7%(11/17),58.8%(10/17) and 47.1%(8/17), respectively.
     Comparison for HPV infection and p53, p16, p21WAF1, MDM2 immunohistoche-mical staining in 17 CC
     In CC patients, correction was analyed both in SCC and GCA with HPV infection and immunohistochemical staining for p53, p16, p21WAF1 and MDM2. In GCA, the correction of HPV infection and p53, p21WAF1, MDM2 were the highest for 1.0, followed by p16 for 0.338, respectively. In SCC, the correction of HPV infection and p53, p16 and p21WAF1, MDM2 were similar, with 0.335,0.335,1.0 and 0.637, respectively.
     4. CONCLUSIONS
     4.1 The prevalence of HPV16 in the esophageal cancer patients was higher than that gastric cardia cancer and healthy control subjects, which indicate that high-risk HPV plays an important role in the development of esophageal cancer of risk-incidence areas. Statistical analyses show that the prevalence of HPV is not dependent on gender, age, differentiation, lymph node metastasis and tumor staging.
     4.2 The incidence of gastric cardia adenocarcinoma is also very high in this area, higher detection rate of HPV in gastric cardia adenocarcinoma indicate that HPV may be an aetiological factor in carcinogenesis of GCA.
     4.3 HPV DNA was amplified with a high detection rate in endoscopic biopsy healthy subjects in risk incidence area show HPV as a tumor promoters preceding carcinogenesis progression.
     4.4 30 cases of pair integrity esophageal cancer sample, the fresh(frozen) and paraffin- embedded tissues amplified using the same approach, the two organizations HPV16 E6 in the detection rate was 84.1% and 53.3%, respectively. The matching test, (P<0.01); the limitations of method itself should be excluded, paraffin-embedded tissues was significantly lower than fresh tissue. This may be fixed and all organizations in the process, the DNA breakdown, the formation of some of the smaller fragments.
     4.5 The CC patients (the same individual), and HPV in the SCC in the detection rate of 47.1%(8/17), the detection rate was 29.4%(5/17) in the GCA. When comparing the two no significant difference (P> 0.05). HPV infection may suggest that the high incidence area of common participation in the esophagus and gastric cardia cancer process, the two have similar carcinogenic risk factors.
     4.6 For CC patients, HPV infection and p53, p16, p21WAF1, MDM2 protein changes associated, Which p53, p21WAF1, MDM2 protein changes associated with more GCA, Suggest that the evolution of the process of carcinogenesis may have different molecular basis.
引文
[1]Wang LD, Zhou Q, Yang CS. Esophageal and gastric cardia epithelial cell proliferation in northern Chinese subjects living in a high incidence area. J Cell Biochem Suppls,1997, 28/29:159-165
    [2]Lu JB, Yang WX, Zu SK, et al. Cancer mortality and mortality trends in Henan, China, 1974-1985. Cancer Detect Prev,1988,13:167-173
    [3]Chang F, Syrjanen S, Wang L, et al. Infectious agents in the etiology of esophageal cancer. Gastroenterology,1992,103:1336-1348
    [4]Munoz N. Epidemiological aspects of esophageal cancer. Endoscopy,1993,23:609-612
    [5]Zur Hausen. Papillomavirus infections a major cause of human cancers. Biochemical Biophysics Acts,1996,1288:F55-F58
    [6]Syrjanen KJ. Histological changes identical to those of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwustforsch,1982,52:283-292
    [7]王鹤,乔友林.人乳头瘤病毒型别及其相关疾病.中国医学科学院学报,2007,29:678-684
    [8]Hemminki K, Jiang Y, Dong C. Second primary cancers after anogenital, skin, oral, esophageal and rectal cancers:etiological links?. Int J Cancer,2001,93:294-2987
    [9]陆士新,罗凤歧,李华川,等.食管癌和癌旁上皮中乳头瘤病毒的检测.中国肿瘤杂志,1995,17:321-334
    [10]朱林忠,苏秀兰,陈克能,等.人乳头瘤病毒16在食管癌不同人群中的检出率.癌症,2005,24:870-873
    [11]Fidalgo PO, Carvo ML. Chaves PP, et al. High prevalence of humanpapillomavirus in squamous cell carcinoma and matched normal esophageal mucosa:assessment by polymerase chain reaction. Cancer,1995,76:1522-1528
    [12]Hendricks D, Parker MI. Oesophageal cancer in Africa. IUBMB Life,2002,53: 263-268
    [13]Sobtikc, Kochar J, Singh K, et al. Telomerase activation and incidence of HPV in human gastrointestinal tumors in North Indian population. Mol Cell Biochem,2001,217:51-56
    [14]Benamouzig R, Pigot F, Quiroga G,et al. Human papillomavirus infection in esophageal squamous-cell carcinoma in western countries. Int J Cancer,1992,50:549-552
    [15]Kawaguchi H, Ohno S, Araki K, et al. p53 polymorphism in human papillomavirus-associated esophageal cancer. Cancer Res,2000,60:2753-2755
    [16]Tripodi S, Chang F, Syrianen S, et al. Quantitative image analysis of oesophageal squamous cell carcinoma from the high-incidence area of China, with special reference to tumour progression and papillomavirus (HPV) involvement. Anticancer Res,2000,20: 3855-3862
    [17]Lu Z, Chen K, Guo M. Detection of HPV in human esophageal cancer in high-incidence area and its correlation with p53 expression. Zhonghua Zhong Liu Za Zhi,2001,23: 220-223
    [18]Ma QF, Jiang H, Feng YQ,et al. Detection of human papillomavirus DNA in squamous cell carcinoma of the esophagus. Shijie Huaren Xiaohua Zazhi,2000,8:1218-1224
    [19]Liu J, Su Qin, Zhang W. Relationship between HPV-E6, p53 protein and esophageal squamous cell caecinoma. Shijie Huaren Xiaohua Zazhi,2000,8:494-496
    [20]Souto Damin AP, Guedes Frazzon AP, de Carvalho Damin D,et al. Detection of human papillomavirus DNA in squamous cell carcinoma of the esophagus by auto-nested PCR. Dis Esophagus,2006,19:64-68
    [21]Powell J, McConkey CC. Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer,1990,62:440-443
    [22]Chen H, Wang LD, Guo M, et al. Alterations of p53 and PCNA in cancer and adjacent tissues from concurrent carcinomas of the esophagus and gastric cardia in the same patient in Linzhou, a high incidence area for esophageal cancer in northern China. World J Gastroenterol,2003,9:16-21
    [23]王琳,张申.食管及贲门双原发癌28例报告.济宁医学院学报,1996,19:43-44
    [24]Wang LD, Hong JY, Qiu SL, et al. Accumulation of p53 protein in human esophageal precancerous lesions:a possible early biomarker for carcinogenesis. Cancer Res,1993, 53:1783-1787
    [25]周福有,马金山,韩孝存.同时性食管贲门重复癌34例报告.河南肿瘤学杂志,1996,9:357-358
    [26]Hamabe Y, Ikuta H, Nakamura Y, et al. Clinicopahthological features of exophageal cancer simultaneously associated with gastric cancer. J Surg Oncology 1998,68:179-182
    [27]Li JY, Liu BQ, Li GY, et al. Atlas of cancer mortality in the People's Republic of China. An aid for cancer control and research. Int J Epidemiol,1981,10:127-133
    [28]Li JY. Epidemiology of esophageal cancer in China. Natl Cancer Inst Monogr,1982,62: 113-120
    [29]杜百廉主编.食管癌.中国科学技术技术出版社,1994:30-56
    [30]Chang F, Syrjanen S, Shen Q, et al. Human papillomavirus involvement in esophageal precancerous lesion and squamous cell carcinoma as evidenced by microscopy and different DNA techniques. Scand J Gastroenterol 1992,27:553-563
    [31]DeVilliers EM, Lavergne D, Chang F, et al. An interlaboratory study to determine the presence of HPV DNA in esophageal carcinoma from China. Int J cancer 1999,82: 225-228
    [32]Zhu LZ, Su XL, Chen KN, et al. Detection rate of human papillomavirus-16 in esophageal squamous cell carcinoma from different chinese populations. Ai Zheng,2005, 24:870-873
    [33]Zhou XB, Guo M, Quan LP, et al. Detection of human papillomavirus in Chinese esophageal squamous cell carcinoma and its adjacent normal epithelium. World J Gastroenterol,2003,9:1170-1173
    [34]Lu SX, Luo FQ, Li HC, et al. Detection of HPV in esophageal cancer and adjacent mucosa. Chin J Oncol,1995,17:321-34
    [35]Chang F, Syrjanen S, Shen Q, et al. Human papillomavirus(HPV)DNA in esophageal precancer lesions and squamous cell carcinoma from China. Int J Cancer,1990,45: 21-25
    [36]Agarwal SK, Chatterjii A, Bhambhani S,et al. Immunohistochemical co-expression of human papillomavirus type 16/18 transforming(E6) oncoprotein and p53 tumour suppressor gene proteins in esophageal cancer. Indian J Exp Biol,1998,36:559-563
    [37]Poljak M, Cerar A, Seme K. Human papillomavirus infection in esophageal carcinomas: a study of 121 lesions using multiple broad-spectrum polymerase chain reactions and literature review. Hum Pathol,1998,29:266-271
    [38]Lambot MA, Haot J, Peny MO, et al. Evaluation of the role of human papillomavirus in oesophageal squamous cell carcinoma in Belgium. Acta Gastroenterol Belg, 2000,63:154-156
    [39]Benamouzig R, Jullian E, Chang F, et al. Rautureau J Absence of human papillomavirus DNA detected by polymerase chain reaction in French patients with esophageal carcinoma. J Gastroenterology,1995,109:1876-1881
    [40]Lagergren J, Wang Z, Bergstrom R, et al. Human papillomavirus infection and esophageal cancer:a nationwide seroepidemiologic case-control study in Sweden. J Natl Cancer Inst 1999,91:156-162
    [41]Chang F, Janatuinen E, Pilckarainen P, et al. Esophageal squamous cell papillomas: Failure to detect human papillomavirus DNA by in situ hybridization and polymerase chain reaction. Scand J Gastroenterol,1991,26:535-543
    [42]Takahashi A, Ogoshi S, Ono H, et al. High-risk human papillomavirus infection and overexpression of p53 protein in squamous cell carcinoma of the esophagus from Japan. Dis Esophagus,1998,11:162-167
    [43]Saegusa M, Hashimura M, Takano Y, et al. Absence of human papillomavirus genomic sequences detected by the polymerase chain reaction in esophageal and gastric carcinomas in Japan. Mol Pathol,1997,50:101-104
    [44]Akutsu N, Shirasawa H, Nakano K,et al. Rare association of human papillomavirus DNA with esophageal cancer in Japan. J Infect Dis,1995,171:425-428
    [45]Lu Z, Chen K, Guo M. Detection of HPV in human esophageal cancer in high-incidence area and its correlation with p53 expression. Zhonghua Zhong Liu Za Zhi,2001,23: 220-223
    [46]陶仪声,宗永生.食管鳞癌人乳头状瘤病毒感染的原位杂交检测和观察.中国微生态学杂志,2002,14:156-157
    [47]周晓波.人乳头瘤病毒(HPV)在中国食管癌中的检测以及HPV16 E7作用机制的研究.中国协和医科大学,中国医学科学院,博十研究生学位论文2003
    [48]吕晓东,何欣,李吉林,等.食管贲门双源癌患者癌组织中mdm2,CyclinD 1和p16蛋白的表达.郑州大学学报医学版,2006,41:22-24
    [49]马遇庆,张巍,聊松,等.新疆地区贲门腺癌HPV、HP感染和P53异常改变的病理生物学意义.临床与实验病理学杂志,2007,23:578-582
    [50]Correa P. Precursors of gastric and esophageal cancer. Cancer (Phil),1982,50: 2554-2565
    [51]Blot WJ, Devesa SS, Kneller RW, et al. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA,1991,265:1287-1289
    [52]Botterweck AAM, Schouten LJ, Volovics A, et al. Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J Epidemiol,2000,29:645-654
    [53]王立东,冯常炜,邹建湘等.食管癌高发区楼村居民贲门与胃窦上皮病变的比较.河南医科大学学报,1997,32:53-54
    [54]王立东,周琦,高姗姗等.人食管和贲门癌前病变的细胞增生生物学指标研究.河南医科大学学报,1995,30:104-109
    [55]姚松朝.食管、贲门部双源癌9例报告.肿瘤,1987,7:121
    [56]周海鹏,曹秀峰.食管癌并存贲门肿瘤的诊治.中华外科杂志,1987,25:700
    [57]LD Wang, YJ Qi, H Chen, et al. Alterations of p53, p-Tyr and C-erbB2 in concurrent carcinomas of the esophagus and gastric cardia from the same patient in Henan, Northern China, a high incidence area for esophageal cancer, Proc Am Assoc. Cancer Res,2001, 42:758-763
    [58]陈虹,王立东,高社干等.河南食管癌高发区食管/贲门双源癌MUC1, C-erbB2蛋白表达变化.郑州大学学报医学版,2002,37:758-761
    [59]H Chen, LD Wang, M Guo, et al. Alterations of p53 and PCNA in cancer and adjacent tissues from concurrent carcinomas'of the esophagus and gastric cardia in the same patient in Linzhou, a high incidence area for esophageal cancer in northern China. World J Gastroenterol,2003,9:16-21
    [60]陈虹,李吉林,王立东等.河南食管癌高发区林州市同一个体食管/贲门双源癌P53蛋白表达变化.河南医学研究,2002,11:7-9
    [61]丁广成,王立东,任景丽等.食管贲门双源癌癌组织中人乳头瘤病毒和P16INKA4、 P21 WAF1蛋白检测.郑州大学学报医学版,2009,44:31-34
    [62]王宁博,高姗姗,王立东等.河南食管癌高发区同一个体食管/贲门双源癌Rb蛋白表达变化.郑州大学学报医学版,2006,41:52-54
    [63]吕晓东,王立东,周建炜等.食管/贲门双源癌患者癌组织MDM2, BCL-2, BAX和P53蛋白的表达.中华肿瘤防治杂志,2006,13:5-8
    [64]Si HX, Tsao SW, Poon CS, et al. Viral load of HPV in esophageal squamous cell carcinoma. Int J Cancer,2003,103:496-500
    [65]Akutsu N, Shirasavwa H, Nakano K. Rare association of human papillomavirus DNA with esophageal cancer in Japan. J Infect Dis,1995,171:425-428
    [66]Si HY, Tsao SW, Poon CS, et al. Physical status of HPV-16 in esophageal squamous cell carcinoma. J Clin Virol,2005,32:19-23
    [67]M Pett, N Coleman. Integration of high-risk human papillomavirus:a key event in cervical carcinogenesis? J Pathol,2007,212:356-367
    [68]Au WW, Abdou-Salama S, Al-Hendy A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol Oncol,2007,104:276-280
    [69]Sur M, Cooper K. The role of the human papilloma virus in esophageal cancer. Pathology, 1998,30:348-354
    [70]Zhang H, Jin Y, Chen X, et al. Papillomavirus type 16 E6/E7 and human telomerase reverse transcriptase in esophageal cell immortalization and early transformation. Cancer Lett,2007.245:184-194
    [71]Qi ZL, Huo X, Xu XJ, et al. Relationship between HPV16/18 E6 and 53,21WAF1, MDM2, Ki67 and cyclin D1 expression in esophageal squamous cell carcinoma: comparative study by using tissue microarray technology. Exp Oncol,2006,28:235-240
    [72]Gurley KE, Moser R, Gu Y, et al. DNA-pk suppresses a p53-independent appoptotic response to DNA damage. EMBO Rep,2009,10:87-93
    [73]Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for P53 are develop mentally normal but susceptible to spontaneous tumours. Nature,1992,356:215-221
    [74]Chesnokova V, Zonic S, Rubinek T, et al. Senescence mediates pituitary hypoplasia and restains pituitary tumor growth. Cancer Res,2007,67:10564-10572
    [75]Williams BO, Re mington L, Albert DM, et al. Cooperative tumorigenic effects of germline mutations in Rb and P53. Nat Genet,1994,7:480-484
    [76]Gotz C, Montenarh M. P53:DNA damage, DNA repair, and apoptosis. Rev Physiol Biochem Pharmacol,1996,127:65-95
    [77]Nancarrow DJ, Handoko HY, Smithers BM, et al. Genome-wide copy number analysis in esophageal adenocarcinoma using high-density single-nucleotide polymorphism arrays. Cancer Res,2008,68:4163-4172
    [78]王立东,陈虹,郭丽梅.肿瘤抑制基因P53-Rb系统变化与食管癌变关系研究及展望,世界华人消化杂志,2001,9:367-369
    [79]Sherr CJ. Cancer cell cycles. Science,1996,274:1672-1677
    [80]Wakusugi E, Kobaigashi T. P21 (WAF1/CIP1) and P53 protein expression in breast. J Am J Clin Pathol,1997,107:684-691
    [81]Xiong Y. Why are there so many CDK inhibitors?. J Biochem Biophys Acta,1996, 1288:1-5
    [82]Hashiguchi Y, Tsuda H, Inoue T, et al. Alteration of cell cycle regulators correlates with survival in epithelial ovarian cancer patients. J Hum Pathol,2004,3:165-175
    [83]Wang LD, Hong JY, Qiu SL, et al. Accumulation of P53 protein in Human esophageal precancerous lesions:A possible early biomarker for Carcinogenesis. Cancer Research, 1993,53:1783-1787
    [84]Biemer-Huttmann AE, Walsh MD, McGuckin MA, et al. Immunohistochemical staining patterns of Mucin1, Mucin2, Mucin4 and Mucin5AC mucinsin hyperplastic polyps, serrated adenomas, and traditional adenomas of the colorectum. J Histochem Cytochem, 1999,47:1039-1041
    [85]Shimizu M, Saitoh Y, Itoh H. Immunohistochemical staining of Ha-ras oncogene product in normal, benign, and malignant human pancreatic tissues. Hum Pathol,1990,21:607-612
    [86]黄越承,蔡建明.MDM2功能及其调控机制.国外医学肿瘤学分册,2004,31:336-339
    [87]Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol,2001,2: 169-178
    [88]Flejou JF, Muzeau F, Potet F, et al. Overexpression of the P53 tumor suppressor gene product in esophageal and gastric carcinomas. Pathol Res Pract,1994,190:1141-1148
    [89]Gleeson CM, Sloan JM, McManus DT, et al. Comparison of P53 and DNA content abnormalities in adenocarcinoma of the oesophagus and gastric cardia. Br J Cancer,1998, 77:277-286
    [90]Semczuk A, Jakowicki JA. Alterations of pRb1 cyclinD1 cdk4/6 p16(INK4A) pathway in endometrial carcinogenesis. J Cancer Lett,2004,203:1-12
    [91]Zhou Y, Gao SS, Wang LD, et al. Tumor suppressor gene p16 and Rb expression in gastric cardia precancerouslesions from subjects at a high incidence area in northern China. World J Gastroenterol,2002,8:423-425
    [92]李晓芳,李继昌,王立东.肿瘤抑制基因p16在贲门癌变过程中的表达.肿瘤防治杂志,2003,1O:602-603
    [93]Yang GY, Zhang ZH, Wang LD, et al. Immunohistochemical studies on P21WAF1, p16, pRb, and p53 in human esophageal carcinomas and neighboring epithelia from a high-risk area in northern China. Int J Cancer,1997,72:746-751
    [94]李晓芳,李继昌,王立东.p53和p21WAF-1在贲门癌变过程中的表达及关系.中国误诊学杂志,2003,3:496-498.
    [95]Ei Diery WS, Tokino T, Velculesu V, et al. WAF1, a potential mediator of p53 tutor suppression. Cell,1993,75:817-821
    [96]Harper JW, Adami GR, Wei N, et al. The P21WAF1 cdk-4 interacting protein Cipl is a potent inhibitor of G1 cyclin-dependent kinase. Cell,1993,75:805-812
    [97]Qi ZL, Huo X, Xu XJ, et al. Relationship between HPV16/18 E6 and 53,21WAF1, MDM2, Ki67 and cyclin D1 expression in esophageal squamous cell carcinoma: comparative study by using tissue microarray technology. Exp ONcol,2006,28:235-240
    [98]Zolota V, Batistaton A, Tsamandas A, et al. Immunohistochemical expression of TGF-betal, P21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas:a clinicopathologic study. J Gastrointest Cancer,2003,32:83-90
    [99]Shi ST, Yang GY, Wang LD, et al. Role of p53 gene mutations in human esophageal carcinogenesis:results from immunohistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions. Carcinogenesis,1999,20:591-597
    [100]Gao HK, Wang LD, Zhou Q, et al. P53 tumor suppressor gene mutation in early esophageal precancerous lesions and carcinomas among high risk population in Henan, China. Cancer Res,1994,54:4342-4345
    [101]Hasegawa M, Ohoka Ⅰ, Yamazaki K, et al. Expression of p21/WAF-1, status of apoptosis and p53 mutation in esophageal squamous cell carcinoma with HPV infection. Pathol Int, 2002,52:442-450
    [1]Zur Hausen H. Papillomaviruses in anogenital Cancer as a model to understand the role of viruses in Human Cancers. J Cancer Res,1989,49:4677-4681
    [2]Alani RM, Munger K. Human papillomaviruses and associated malignancies. J Clin Oncol,1998,16:330-337
    [3]Allen AL, Siegfried EC. What's new in Human papillomavirus infection. Curr Opin Pediatr,2000,12:365-369
    [4]Ishiji T. Molecular mechanism of Carcinogenesis by Human papillomavirus-16. J Dematol,2000,27:73-86
    [5]McGlennen Rc. Human papillomavirus oncogenesis. Clin Lab Med,2000,20:383-406
    [6]Garland SM. Human papillomavirus update with a particular focus on cervical disease. Pathology,2002,34:213-214
    [7]Syrijanen KJ. Histological changes identical to these of condylomatous lesions found in esophageal squamous cell carcinomas. Arch Geschwulstforsch,1982,52:283-292
    [8]许廷贵,王敬云,张惠珍.HPV的分子生物学特征及其致病机理.国外医学病毒学分册,2004,11:1-5
    [9]Zur Hausen H. Papillomavirus infections—a major cause of human cancers J Biochim Biophys Acta,1996,1288:F55-F58
    [10]Alani RM, Munger K. Human papillomaviruses and associated malignancies. J Clin Oncol,1998,16:330-337
    [11]Munger K. The role of human papillomaviruses in human cancers. Front Biosci,2002, 7:641-649
    [12]Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev,1997,11:2101-2111
    [13]Stunkel W, Bernard HU. The chromatin structure of the long control region of human papillomavirus type 16 represses viral oncoprotein expression. J Virol,1999,73: 1918-1930
    [14]Alani RM, Munger K. Human Papillomavirus and associated malagnancies. J Clin Oncol,1998,16:330-337
    [15]Wilke CM, Hall BK, Hoge A, et al. FRA3B extends over a broad region and contains a spontaneous HPV 16integration site:direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet,1996.5:187-195
    [16]Rurumoto H, Irahara M. Human papilloma virus (HPV) and cervical cancer. J Med Invest,2002,49:124-133
    [17]Jun Yile, Vittorio Defendi. A viral-cellular junction fragment from a human papillomavirus type 16-positive tumor is competent in transformation of NIH3 T3 cells. Journal of Virology,1988,62:4420-4426
    [18]Kehmeier E, Ruhl H, Voland B, et al. Cellular steady-state levels of "high risk"but not "low risk" human papillomavirus(HPV) E6 proteins are increased by inhibition of proteasome-dependent degradation independent of their p53-and E6AP-binding capabilities. Virology,2002,299:72-87
    [19]Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18E6 proteins with p53. Science,1990,248:76-79
    [20]Talis AL, Huibregtse JM, Howley PM. The Role of E6AP in the Regulation of p53 Protein Levels in Human Papillomavirus (HPV)-positive and HPV-negative. Cells J Biol Chem,1998,273:6439-6445
    [21]Brown J, Higo H, McKalip A, et al. Human papillomavirus(HPV) 16 E6 sensitizes cells to atractyloside-induced apoptosis:Role of p53, ICE2 like proteases and the mitochondrial permeability transition. J Cell Biochem,1997,66:245-255
    [22]Pillai MR, Lakshmi S, Sreekala S, et al. High-risk human papillomavirus infection and E6 protein expression in lesions of the uterine cervix. Pathobiology,1998,66:240-246
    [23]Pim D, Storey A, Thomas M, et al. Mutational analysis of HPV-18 E6 identifies domains required for p53 degradation in vitro, abolition of p53 transactivation in vivo and immortalisation of primary BMK cells. Oncogene,1994,9:1869-1876
    [24]张景涛,范跃祖.原发性胆囊癌nm23-H1和p53基因的表达及意义.中国肿瘤临床,2002,29:750-751
    [25]Wesierska Gadek J, Schloier D, Kotala V, et al. Escape of p53 protein from E6-mediated degradation in Hela a cells after cisplatin therapy. Int J Cancer,2002,101:128-136
    [26]Magnus von knebel doeberitz, Claudia rittmuller, Frank Aengeneyndt, et al. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: Consequences for the phenotype and E62p53 and E72pRb interactions. J Virol,1994, 68(5):2811-2821,
    [27]Balsitis S, Dick F, Dyson N, et al. Critical roles for non-Prb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. Cancer Res,2006,66:9393-9400
    [28]Wang J, Sampath A, Raychaudhuri P, et al. Both Rb and E7 are regulated by the ubiquitin proteasome pathway in HPV containing cervical tumor cells. Oncogene,2001,20: 4740-4749
    [29]Higashitsuji H, Itoh K, Nagao T, et al. Reduced stability of retinoblastoma protein by gankyrin,an oncogenic ankyrin-repeat overexpressed in hepatomas. Nat Med,2000,6: 96-99
    [30]Hwang SG, Lee D, Kim J, et al. Human papillomavirus type 16E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem,2002,277:2923-2930
    [31]Kuballa P, Matentzoqlu K, Scheffner M, et al. The role of the ubiquitin ligase E6-AP in human papillomavirus E6-mediated degradation of PDZ domain-containing proteins. J Biol Chem,2007,282:65-71
    [32]Mishra A, Jana NR. Regulation of turnover of tumor suppressor p53 and cell growth by E6-AP, a ubiquitin protein ligase mutated in Angelman menyal retardation syndrome. Cell Mol Life Sci,2008,65:656-666
    [33]Armstrong DJ, Roman A. The relative ability of human papillomavirus type 6 and human papillomavirus type 16 E7 proteins to celldependent. Virology,1997,239:238-246
    [34]Dick FA, Saihamer E, Dyson NJ, et al. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol Cell Biol, 2000,20:3715-3727
    [35]Balsitis S, Dick F, Dyson N, et al. Critical roles for non-pRB targets of human papillomavirus type16 E7 in cervical carcinogenesis.Cancer Rws,2006,66:9393-9400
    [36]Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma. Yongsei Med J, 2005,46:597-613
    [37]Westerbrok TF, Nguyen DX, Trash BR, et al. E7 abolishes raf-induced srrest via mislocation of p21(cip1). Mol Cell Bio,2002,22:7041-7052
    [38]Wells SI, Francis DA, Karpova AY, et al. Papillomavirus E2 induces senescence in HPV-positive cells via pRB-and p21(CIPI)-dependent pathways. EMBO J,2000,19: 5762-5771
    [39]Katsube T, Takahisa M, Ueda R, et al. Cortactin associates with the cell-celljunction protein ZO-1 in both Drosophila and mouse. J Biol Chem,1998,273:29672-29677
    [40]James M A, Lee J H, Klingelhutz A J. Human papillomavirus type 16 E6 activates NF-Kappab,induces cIAP-z expression, and protects againstapoptosis in a PDZ binding motif-dependent manner. J Virol,2006,80:5301-5307
    [41]Spanos WC, Geiger J, Anderson ME, et al. Deletion of the PDZ motif of HPV16 E6 preventing immortalization and anchorage-independent growth in human tonsil epithelial cells. Head Neck,2008,30:139-147
    [42]Watson RA, Thomas M, Banks L, et al. Activity of the human papillomavirus E6 PDZ-binding motif correlates with an enhanced morphological transformation of immortalized human keratinocytes. J Cell Sci,2003,116:4925-4934
    [43]Glaunsinger BA, Lee SS, Thomas M, et al. Interaction of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene,2000,19: 5270-5280
    [44]Mantovani F, Banks L. The human papillomavirus E6 protein and its contribution to malignant progression. Oncogene,2001,20:7874-7887
    [45]Xu Q, Wang S, Xi L, et al. Effects of human papillomavirus type16E7 protein on the growth of cervical carcinoma cells and immuno-escape through the TGF-betal signaling pathway. Gynecol Oncol,2006,101:132-139
    [46]Wang M, Liu A, Garcia FU, et al. Growth of HPV-18 immortalized human prostatic intraepithelial neoplasia cell lines influence of IL-10,follistatin,activin-A and DHT. Int Oncol,1999,14:1185-1195
    [47]Casana PH, Hernandez H, Arana MJ. Interleukin-2 inhibits proliferation of HPV associated tumor cells and halts tumor growth in vivo. Biochem Biophys Res Commun, 2002,299:818-824
    [48]Um SJ, Rhyu JW, Kim EJ, et al. Abrogation of IRF-1 response by high-risk E7 protein in vivo. Cancer Lett,2002,179:205-212
    [49]Johnson JA, Hochkeppel HK, Gangemi JD. IFN-tau exhibits potent suppression of human papillomavirus E6/E7 oncoprotein expression. J Interferon Cytokine Res,1999, 19:1107-1116
    [50]Oshita T, Murakami J. Semiquantitative analysis of telomerase activity in cervical cancer and precancerous lesions. Oncol Rep,1999,6:325-328
    [51]Veldman T, Horikawa I, Barrett JC, et al. Transcriptional activation of the telomerase hTERT gene by human papillomavirus type 16 E6 oncoprotein. J Virol,2001,75: 4467-4472
    [52]Shen ZY, Xu LY, Li EM, et al. Telomere and telomerase in the initial stage of immortalization of esophageal epithelial cell. World J Gastroenterol,2002,8:357-362
    [1]Attardi LD, Jacks T. The role of p53 in tumour suppression:lessans from mouse models. Cell Mol Life Sci,1999,55:48-63
    [2]Greenblatt MS, Bennett WP, Hollstein M, et al. Mutations in the p53 tumor suppressor gene:clues to cancer etiology and molecular pathogenesis. Cancer Res,1994,54: 4855-4878
    [3]Chen X. The p53 family:same response, different signals? Mol Mel Today,1999,5: 387-392
    [4]Kaelin WG. The p53 gene family. Oncogene,1999,18:7701-7705
    [5]Yang A, Schweitzer R, Sun D, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature,1999,398:714-718
    [6]Mills AA, Zheng B, Wang XJ, et al. P63 is a p53 homologue required:for limb and epidermal morphogenesis. Nature,1999,398:708-713
    [7]Yang A, Walker N, Bronson R, et al. p73-deficient mice have neurological phermonal and inflammatory defects but lack spontaneous rumours. Nature,2000,404:99-103
    [8]Kanda Y, Nishiyama Y, Shimada Y, et al. Analysis of gene amplification and overexpression in human esophageal-carcinoma cell lines. Int J Cance,1994,58: 291-297
    [9]梁苑苑,陆十新,郭永军,等.林县食管癌p53基因突变和PS3高表达相关性的研究.中华肿瘤杂志,1995,17:412-414
    [10]陆哲明,陈克能,郭梅,等.食管癌高发区HPV检测及与p53的关系.中华肿瘤杂志2001,23:220-223
    [11]靳玉兰,张伟,刘伯奇,等.食管癌前病变及原位癌组织中Ki67,p53,iNOS的异常表达.中华肿瘤杂志,2001,23:129-131
    [12]He D, Zhang DK, Lam KY, et al. Prevalence of HPV in esophageal squamous cell carcinoma in Chinese patients and itsrelationship to the p53 gene mutation. Int J Cancer, 1997,72:959-964
    [13]Hu N, Huang J, Emmert-Buck MR, et al. Frequent inactivation of the TP53 gene in esophageal squamous cell carcinoma from a high-risk population in China. Clinical Cancer Research,2001,7:883-891
    [14]Gao H, Wang LD, Zhou Q, et al. p53 tumor suppressor gene mutation in early esophageal precancerous lesions and carcinoma among high-risk populations in Henan, China. Cancer Res,1994,54:4342-4346
    [15]Wang LD, Liu B, Zheng S. Analysis of p53 mutational spectra of esophageal squamous cell carcinomas from Linzhou, comparison with esophageal and other cancers from other areas. Zhonghua Liu Xing Bing Xue Za Zhi,2003,24:202-245
    [16]Astori G, Merluzzi S, Arzese A, et al. Detection of human papillomavirus DNA and p53 gene mutations in esophageal cancer samples and adjacent normal mucosa. Digestion, 2001,64:9-14
    [17]Audrezet MP, Robaszkiewicz M, Mercier B, et al. TP53 gene mutation profile in esophageal squamous cell carcinomas. Cancer Res,1993,53:5745-5749
    [18]Bennett WP, von Brevern MC, Zhu SM, et al. p53 mutations in esophageal tumors from a high incidence area of china in relation to patient diet and smoking history. Cancer Epidemiol Biomarkers Prev,1997,6:963-966
    [19]Hollstein MC, Peri L, Mandard AM, et al. Genetic analysis of Human esophageal tumors from two high incidence geographic areas:frequent p53 base substitutions and absence of ras mutations. Cancer Res,1991,51:4102-4106
    [20]Montesano R, Hainaut P. Molecular precursor lesions in oesophageal cancer. Cancer Surv,1998,32:53-68
    [21]Stephanie TS, Yang GY, Wang LD, et al. Role of p53 gene mutation in human esophageal carcinogenesis:results from immunhistochemical and mutation analyses of carcinomas and nearby non-cancerous lesions. Carcinogenesis,1999,20:591-597
    [22]Hamada M, Naomoto Y, Shirakawa Y, et al. p53 expression and p21 expression are mutually exclusive in esophageal squamous cell carcinoma. Oncol Rep,2004,11:57-63
    [23]Fong LY, Ishii H, Nguyen VT, et al. p53 deficiency accelerates induction and progression of esophageal and forestomach tumors in zinc-deficient mice.Cancer Res, 2003,63:186-195
    [24]Matsumoto M, Furihata M, Kurabayashi A, et al. Association between inducible nitric oxide synthase expression and p53 status in human esophageal squamous cell carcinoma. Oncology,2003,64:90-96
    [25]Gibson MK, Abraham SC, Wu TT, et al. Epidermal growth factor receptor, p53 mutation, and pathological response predict survival in patients with locally advanced esophageal cancer treated with preoperative chemoradiothera:py. Clin Cancer Res,2003,9: 6461-6468
    [26]Kou Y, Zhang J, ChenG, et al. Mutation of p53 gene in esophageal precancerous cells. Sichuan Da Xue Xue Bao Yi Xue Ban,2003,34:306-309
    [27]Hattori K, Kajiyama Y, Tsurumaru M. Mutation of the p53 gene predicts lymph node metastases in Japanese patients with esophageal carcinoma:DNA and immunohistochemical analyses. Dis Esophagus,2003,16:301-316
    [28]Shimada H, Nabeya Y, Okazumi S, et al. Prognostic significance of sennm p53 antibody in patients with esophageal squamous cell carcinoma. Surgery,2002,132:41-47
    [29]Putz A, Hartmann AA, Fontes PR, et al. TP53 mutation pattern of esophageal squamous cell carcinomas in a high risk area (Southern Brazil):role of life style factors. Int J Cancer,2002,98:99-105
    [30]Elledge SJ, Winston J, Harper JW. A question of balance:the role of cyclin2 kinase inhibitors in development and tumorigenesis. Trends Cell Biol,1996,6:388-392
    [31]Ei Diery WS, Tokino T, Velculesu V, et al. WAF1, a potential mediator of p53 tutor suppression. Cell,1993,75:817-821
    [32]Harper JW, Adami GR. The p21 Cdk-interacting protein Ciplis a potent inhibitor of Gl cyclin-dependent kinases. Cell,1993,75:805-816
    [33]Judith A, Mckay JJ, Douglas VG, et al. Expression of cell cycle control proteins in primary colorectal tumors does not always predict expression in lymph node metastasis. Clin Cancer Res,2000,6:1113-1118
    [34]张春林,廖威明.细胞周期调控基因P21WAF1/CIP1与肿瘤.肿瘤研究与临床,2002,14:141-143
    [35]Facher EA, Becich MJ, Deka A, et al. Association between human cancer and two polymorphisms occurring together in tye p21WAFI/CIPI cyclin-dpendent kinase inhibitor gene. J Cancer,1997,79:2424-2429
    [36]Zolota V, Batistaton A, Tsamandas A, et al. Immunohistochemical expression of TGF-betal, P21WAFI, p53, Ki67, and angiogenesis in gastric carcinomas:a clinicopathologic study. J Gastrointest Cancer,2003,32:83-90
    [37]Rousseau D, Cannella D, Boulairel, et al. Growth inhibition by CDK-cyclin and PCNA binding domains of p21 occurs by distinct mechanisms and is regulated by ubiquitin-proteasome pathway. Oncogene,1999,18:3290-3302
    [38]Chen J, Chen S, Saha P, et al. p2lciP/WafI disrupts the recruitment of human Fenl by proliferating cell nuclear antigen into the DNA replication complex. Proc Natl Acad Sci USA,1996,93:11597-11602
    [39]Chene P, Ory K, Ruedi D, et al. Functional analyses of a unique p53 germ line mutant (Y236 delta) associated with a familia brain tumor syndrome J Cancer,1999,82:17-22
    [40]Li W, Fan J, Banerjee D, et al. Overexpression of P21WAFI decrease G2-M arrest and apoptosis induced by paclitaxelin human sarcoma cells lacking both p53 and functional Rb protein. J Mol Pharmacol,1999,55:1088-1093
    [41]Hui A, Mkanai Y, Sakamoto M, et al. Reduced P21WAFI/CIPI expression and p53 mutation in hepatocellular carcinomas. J Hepatology,1997,25:575-579
    [42]Tokunage E, Machara Y, Oki E, et al. Diminished expression of ING1 Mrna and the correlation with p53 expression in breast cancers. J Cancer Leters,2000,152:15-23
    [43]Khalid MH, Yagi N, Hiura T, et al. Immunohistochemical analysis of p53 and p21 in human primary glioblastomas in relation to proliferative potential and apoptosis. J Brain Tumor Path 1,1998,15:89-94
    [44]Mitchell KO, EL-deity WS. Over expression of c-Myc inhibits P21WAFI CIPI expression and induces S-phase entry in 12-Otetradecanoylp horbol-13-acetate (TPA)-sensitive human cancer cells W. Cell Growth Difer,1999,10:223-230
    [45]Costanzi-Strauss E, Strauss BE, Naviaux RK, et al. Restoration of growth arrest by p16INK4, P21WAF1, PRB, and p53 is dependent on the intergrity of the endogenous cell-cycle control pathway in human gliobastoma cell oines. J Exo Cell Res,1998, 238:51-62
    [46]Kokunai T; IzawaI. Over expression of P21WAFI/CIPI induces cell diferentiation and growth inhibition in a human glioma cell line. J Cancer,1998,75:643-648
    [47]Waldman T, Lengauer C, Kinzler KW, et al. Uncoupling of Sphase and mitosis induced by anticancer agents in cells lacking p21. Nature,1996,381:713-716
    [48]Seoane J, Le HV, Massague J. Myc suppression of the p21cipI Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature,2002,419:729-734
    [49]Suzuki A, Tsutomi Y, Miura M, et al. Caspase 3 inactivation to suppress Fas2mediated apoptosis:identification of binding domain with p21 and inactivation machinery by p21. Oncogene,1999,18:1239-1244
    [50]Levkau B, Koyama H, Raines EW, et al. Cleavage of p21cip1 Waf1 and p27 Kip1 mediates apoptosis in endothelial cells through activation of Cdk2:role of a caspase cascade. Mol Cell,1998,1:553-563
    [51]Ei Deiry WS, Tokino T, Waldman T, et al. Topological control of P21WAF1/C1P1 expression in normal and neoplastic tissues. Cancer Res,1995,88:2910-2919
    [52]Dotto GP. p21WAFI/CIPI:more than a break to the cell cycle? Biochim Biophys Acta, 2000,1471:1143-1156
    [53]Sjalander A, Birgander R, Rannug A, et al. Association between the p21 codon 31 A1 (arg) allele and lung cancer. J Hum Hered,1996,46:221-225
    [54]Shi Y, Zou M, Farid NR, et al. Evidence of gene deletion of p53WAFI CIPI, a cyclin-dependent protein kinase inhibitor in thyroid carcinomas. J Cancer,1996,74 1336-1341
    [55]Hachiya T, Kuriaki Y, Ueoka Y, et al. WAF1 genotype and endometrial cancer susceptibility. J Gynecol Oncol,1999,72:187-192
    [56]Chen WC, Wu HC,Hsu CD, et al. p21 gene codon 31 polymorphism is associated with bladder cancer. J Urol Oncol,2002,7:63-66
    [57]Bahl R, Arora S, Nath N, et al. Novel polymorphism in P21WAFI/cipI cyclin dependent kinase inhibitor gene:association with human esophageal cancer. J Oncogene,2000,19: 323-328
    [58]Ralhan R, Agarwal S, Mathur M, et al. Association between polymorphism in p21WafI CipI cyclin-dependent kinase inhibitor gene and human oral cancer. J Clin Cancer Res, 2000,6:2440-2447
    [59]Xi YG, Ding KY, Ren YH, et al. Esophageal cancer in Chinese population:no polymorphism in codon 149 of p21WafI/CipI cyclin dependent kinase gene. J Oncogene, 2002,21:7745-7748
    [60]Mousses S, Ozcelik H, Lee PD, et al. Two variants of the P21C1PI/WAFI gene occur together are associated with human cancer. J Hum Mol Genet,1995,4:1089-1092
    [61]Doglioni C, Pelosio P. p21WAFI/CIPI expression in normal mucosa and in adenomas and adenocarcinomas of the colon:its relationship with diferentiation. J Pathol.1996,179: 248-253
    [62]张春林,廖威明,李佛保,等.骨肉瘤p21WA F1蛋白、PCNA、Ki267(?)的表达及其意义.中国癌症杂志,2001,11:109-112
    [63]Rose SL, Goodheart MJ, DeYoung BR, et al. p21 expression predicts outcome in p53 null ovarian carcinoma. J Clin Cancer Res,2003,9:1028-1032
    [64]Li X, Hui A, Takayama T, et al. Altered p21WAF1/CIP1 expression is associated with poor prognosis in extrahepatic bile duct carcinoma. J Cancer Lett,2000,154:85-91
    [65]Gomyo Y, Ikeda M, Osaki M, et al. Expression of p21waf1/cip1/sdi1, but not P53 protein, is a factor in the survival of patients with advanced gastric carcinoma. J Cancer,1997,79: 2067-2072
    [66]Slebos RJC, Baas IO, Clement M, et al. Clilical and pathological associations with p53 tumor-suppressor gene mutations and expression of P21WAF1/CIPI in colorectal carcinoma. Br J Cancer,1996,74:165-171
    [67]Hayashi H, Miyamoto H, Ito T, et al. Analysis of P21WAF1/CIP1 expression in normal, premalignant, and malignant cells during the development of human lung adenocarcinoma. Am J Pathol,1997,151:461-470
    [68]Li WW, Fan JG, Hochhauser D, et al. Overexpression of P21(waf1) lesds to increased inhibition of E2F-1 phosphorylation and sensitivity to anticancer drugs in retinoblastoma negative human sarcoma cells. Cancer Res.1997,57:2193-2199
    [69]薄爱华,张晓丽.MDM2与p21,p53在胃癌、食管癌中表达的相关性研究.实用癌症杂志,2001,16:34-36
    [70]张春林,廖威明,李佛保,等.P21WAF1/CIP1和PCNA在骨肉瘤中的表达及对预后的评价.癌症,2000,19:850-855
    [71]Tsao YP, Huang SJ, Chang JL, et al. Adenovirus-mediated p21WAF1SDCIP1gene transfer induces apoptosis of human cervical cancer cell lines. J Virol,1999,73:4983-4990
    [72]黄越承,蔡建明.MDM2功能及其调控机制.国外医学.肿瘤学分册,2004,31:336-339
    [73]Saito H, Tsujitani S, Oka S, et al. The expression of murine double minute 2 is a favorable prognostic marker in esophageal squamous cell carcinoma without P53 protein accumulation. Ann Surg Oncol,2002,9:450-456
    [74]Rayburn E, Zhang R, He J, et al. MDM2 and human malignancies:expression, clinical pathology, prognostic markers, and implications for chemotherapy. Curr Cancer Drug Targets,2005,5:27-41
    [75]Momand J, Zambet ti GP. MDM2:big brother of P53. Journal of cellular Biochemistry, 1997,64:343-352
    [76]Latonen L, Kurki S, Pitkanen K, et al. P53 and MDM2 are regulated by PI232kinases on multiple levels under stress induced by UV radiation and proteasome dysfunction. Cell Signal,2003,15:95-102
    [77]Jin Y, Zeng SX, Dai MS, et al. MDM2 inhibits PCAF (p300PCR EB binding protein associated factor) mediated P53 acetylation. J Biol Chem,2002,277:30838-30843
    [78]Yin Y, Luciani MG, Fahraeus. P53 stability and activity is regulated by MDM22mediated induction of alternative P53 translation products. Nat Cell Biol,2002,4:462-467
    [79]Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol,2001,2: 169-178
    [80]Blattner C, Hay T, Meek DW, et al. Hypophosphorylation of MDM2 augments P53 stability. Mol Cell Biol,2002,22:6170-6182
    [81]Leung KM, Po LS, Tsang FC, et al. The candidate tumor suppressor ING1b can stabilizes P53 by disrupting the regulation of P53 by MDM2. Cancer Res,2002,62:4890-4893
    [82]Clark PA, Llanos S, Peters G Multiple interacting domains contribute to p14ARF mediated inhibition of MDM2. Oncogene,2002,21:498-450
    [83]Gu J, Kawai H, Nie L, et al. Mutual dependence of MDM2 and MDMX in their functional inactivation of P53. J Biol Chem,2002,277:9251-9254
    [84]郭洪涛,刘彤华.MDM2癌基因的发现和研究进展.国外医学.遗传学分册,1994,17:320-324
    [85]Arora S, Mathew R, Mathur M, et al. Alterations in MDM2 expression in esophageal squamous cell carcinoma:relationship with P53 status. Pathol Oncol Res,2001,7: 203-208
    [86]Soslow RA, Altorki NK, Yang G, et al. mdm-2 expression correlates with wild-type P53 status in esophageal adenocarcinoma. Mod Pathol,1999,12:580-586
    [87]Fujii T, Nakagawa S, Hanzawa M, et al. Immunohistological study of cell cycle-related factors, oncogene expression, and cell proliferation in adenocarcinoma developed in Barrett's esophagus. Oncol Rep,2003,10:427-431
    [88]Nikitakis NG, Drachenberg CB, Papadimitriou JC. MDM2 and CDK4 expression in carcinosarcoma of the esophagus:comparison with squamous cell carcinoma and review of the literature. Exp Mol Pathol,2002,73:198-208
    [89]Bond GL, Hu W, Bond EE, et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the P53 tumor suppressor pathway and accelerates tumor formation in humans. Cell,2004,119:591-602
    [90]Hong Y, Miao X, Zhang X, et al. The role of P53 and MDM2 polymorphisms in the risk of esophageal squamous cell carcinoma. Cancer Res,2005,65:9582-9587
    [91]Li WD, Wang MJ, Ding F, et al. Cytotoxic effect of a non-peptidic small molecular inhibitor of the P53-HDM2 interaction on tumor cells. World J Gastroenterol,2005,11: 2927-2931
    [92]Itoshima T, Fujiwara T, Waku T, et al. Induction of apoptosis in human esophageal cancer cells by sequential transfer of the wild-type P53 and E2F-1 genes:involvement of P53 accumulation via ARF-mediated MDM2 down-regulation. Clin Cancer Res,2000,6: 2851-2859
    [93]Buolamwini JK, Addo J, Kamath S, et al. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr Cancer Drug Targets,2005,5:57-68
    [94]赵伸生,张梅,徐文娟.P53蛋白和MDM2蛋白在食管鳞状细胞癌中的表达及意义.实用癌症杂志,1998,13:201-203
    [95]Saito H, Tsujitani S, Oka S, et al. The expression of murine double minute 2 is a favorable prognostic marker in esophageal squamous cell carcinoma without P53 protein accumulation. Ann Surg Oncol,2002,9:450-456
    [96]Shimada Y, Maeda M, Watanabe G, et al. Cell culture in esophageal squamous cell carcinoma and the association with molecular markers. Clin Cancer Res,2003,9: 243-249
    [97]Shimada Y, Imamura M, Shibagaki Ⅰ, et al. Genetic alterations in patients with esophageal cancer with short-and long-term survival rates after curative esophagectomy. Ann Surg,1997,226:162-168
    [98]Mathew R, Arora S, Khanna R, et al. Alterations in P53 and pRb pathways and their prognostic significance in oesophageal cancer. Eur J Cancer,2002,38:832-841
    [99]Ikeguchi M, Ueda T, Fukuda K, et al. Expression of the murine double minute gene-oncoprotein in esophageal squamous cell carcinoma as a novel marker for lack of response to chemoradiotreatment. Am J Clin Oncol,2002,25:454-459

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700