基于包结作用的高分子及纳米晶体自组装的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于包结作用的高分子及纳米晶体自组装的研究
     超分子化学中的核心问题是分子自组装,这是指构筑基元借助于分子间力自发地形成有序结构。构筑基元可以是无机分子,有机小分子,高分子,以及生物大分子等。在分子自组装的多种驱动力中,主—客体包结络合作用占有重要的地位,环糊精(Cyclodextrin)是第二代主体化合物的代表,其空腔可以包结多种分子,它已被深入研究。特别是,β-环糊精和金刚烷因其包结络合常数高达10~5,被科学家们应用到各个领域。
     近年来我们课题组建立了一种构建聚合物胶束的非嵌段共聚物路线,由此可采用均聚物对作为组装单元,这样连接聚集体胶束的壳和核层的作用力是氢键而不是化学键,这种方法形成的就是“非共价键接胶束”(NCCM)。用来构筑NCCM的驱动力通常为氢键、疏水相互作用或范德华力等等,本论文在此基础上开展,将环糊精—金刚烷的包结络合作用引入到我组大分子自组装的研究中,论文可分为以下几个方面:
     一:我们将β-环糊精和金刚烷分别引入到两种高分子链段,使它们组装成为非共价键胶束。含金刚烷的疏水高分子PtBA-ADA形成核,而含环糊精的水溶性高分子PGMA-CD成壳,核壳之间由环糊精和金刚烷的包结力稳定。将胶束壳交联,然后除去内核,我们可以获得只由环糊精聚合物组成的空心球。这样获得的空心球不仅含有尺寸在几百纳米的空心,而且还含有大量的环糊精空穴,其尺寸在0.7纳米左右,由此我们就获得了具有含不同尺度疏水空穴的空心球结构。它们在负载和释放方面具有独特的应用。无论是上述胶束或空心球,因表面存在环糊精空穴,我们可以方便对其进行表面修饰,得到带正电荷或者负电荷的聚集体。
     二:纳米粒子的有序结构是纳米功能材料制备研究工作的重要方面,水—油界面对纳米粒子的排列有促进引导作用,在此类不相容溶剂的界面上,纳米粒子仍然保持很好的流动性。本文中我们将环糊精和金刚烷的包结作用力作为界面组装的驱动力引入到纳米粒子组装体系中来,首先将金刚烷修饰到磁性纳米晶体CoPt_3或Fe_3O_4表面,将此类疏水纳米粒子溶解在如甲苯等有机溶剂中,然后将其与环糊精水溶液混合。借助于纳米晶体表面的金刚烷基团与环糊精的包结络合作用,纳米晶体会从甲苯相中转移到水和甲苯的界面相上,且大量的纳米晶体堆积形成了纳米粒子的单层膜。进一步地,我们还用含有氨基、巯基等活性基团的环糊精衍生物修饰金、银纳米粒子,从而可以将这些金属纳米晶体再吸附到已经形成的磁性纳米晶体膜表面,由此获得了两层、三层的复合纳米晶体组装膜,这种逐层自组装制备的多层膜具有磁性,光学性能等多种特性。
     三:刚性大分子组分的引入可以诱导发生特殊的自组装行为。本文中我们合成了低分子量的端羧基聚酰亚胺,它可通过pH诱导自组装,在水相中微相反转形成多种形态的单组分聚合物组装体,即“酒窝”型、多孔聚集体和囊泡等。对此我们采用DLS、SEM、TEM和ζ—电位等多种测试手段对聚集体的形态和尺寸进行表征,并讨论了聚集体多种形态形成机理。
     四:本章研究发光共轭聚合物刚性链的自组装,首先将金刚烷修饰到低分子量的聚芴端基处,然后利用β-环糊精和金刚烷的包结络合力在水相中诱导聚合物的自组装。如果采用可与聚芴形成“荧光给体—受体”的荧光素来修饰环糊精,并将其水溶液诱导聚芴进行自组装,荧光素基团和聚芴主链由于环糊精和金刚烷的包结作用能互相接近,发生荧光共振能量转移(FRET)效应。我们对这种包结络合诱导荧光能量转移进行了研究。
     五:环糊精聚合物PGMA-CD和以PGMA-CD为壳的胶束,均有大量的环糊精空穴存在。我们研究了经金刚烷修饰的染料分子通过包结络合与PGMA-CD聚合物及相应胶束的结合和相应的荧光淬灭。再通过超分子取代反应,实现染料分子的释放和荧光回复。这部分的工作是为今后将包结络合作用应用于荧光生物检测的研究打下基础。
Studies on Polymeric and NCs Self-assembly via Inclusion Interaction
     Molecular self-assembly, the most important area in suprachemistry, means spontaneous building-up of complex structures via intermolecular interaction, from various building blocks including inorganic and organic molecules and macromolecules, etc. Among different kinds of driving forces leading to self-assembly, the host-guest inclusion plays an important role. Cyclodextrins (CD) seem to be the most extensively studied host compounds characteristic of a hydrophilic exterior surface and hydrophobic interior cavity, which can accommodate a wide range of molecules as guests. Among the varieties of such host-guest pairs,β-CD and adamtantly group (ADA) has been mostly investigated due to their high association constant (~10~5).
     In recent years our group has developed 'block-copolymer-free strategies' to fabricate polymeric micelles using polymer pairs as building blocks. These novel approaches result in noncovalently connected micelles (NCCM), in which intermolecular specific interactions (hydrogen bonding and hydrophobic interaction etc.) rather than chemical bonding exist between the shell and core. Being a substantial progress in the studies on NCCMs, in this thesis we investigate a series of new self-assembly systems including polymeric micelles and hollow spheres and structured films of nanocrystals, by introducing the inclusion complexes ofβ-CD and adamantane into our work. The thesis is constituted of five parts:
     Firstly, a hydrophilic polymer PGMA-CD containingβ-CD and hydrophobic ADA-containing polymer PtBA-ADA were used as building blocks to construct micelles. Driven by the inclusion interaction betweenβ-CD and ADA, the micelles in aqueous media with PtBA-ADA as the core and PGMA-CD as the shell are formed. The resultant micelles stably dispersed in water possess unique characters: it contains both a hydrophobic PtBA-ADA core on a scale of hundreds of nanometers and hydrophobic cavities of CD in a size of 0.7 nm in the shell. Taking advantages of the cavities being able to accommodate different molecules, the micellar surface can be easily modified to either hydrophobic or charged ones. Besides, by subsequently crosslinking the shell and dissolving the core, the micelles can be converted toβ-CD-containing nanocages. The resultant hollow spheres contain multi-scale holes: the large central one andβ-CD interior cavities. These CD cavities provide a broad range of opportunities for further surface modifications of the micelles or hollow spheres by incorporating different kinds of functional molecules. Thus, a neutral surface is converted to an anionic or a cationic surface via the inclusion interaction between the CD cavities and adamantly groups.
     Secondly, the self-assembly of inorganic nanocrystals (NCs) into hierarchical structures is pivotal in preparation of nano-functional materials. The interfacial ordering effects in NCs arrangement can be utilized since good fluidity of NCs is kept on the immiscible liquid-liquid interface. Herein, interfacially self-assembly of NCs is demonstrated driven by the inclusion interaction betweenβ-CD and adamantyl groups. The hydrophobic NCs (CoPt_3, Fe_3O_4) with surface modified by adamantyl groups dispersed in organic solvent, i.e. toluene, was mixed withβ-CD water solution. A phase transition of NCs would occur from toluene to water/oil interface via the inclusion interaction from adamantyl groups on NCs surface andβ-CDs. Furthermore,β-CDs functionalized with one SH or NH_2 group were recruited as new ligands to direct consecutively metal NCs(Ag, Au) onto magnetic monolayers of CoPt_3 or Fe_3O_4 NCs between water/oil interface. Thus, these heterogeneous bi- or trilayers composed of different NCs may be generated, which possess novel optical and magnetic properties.
     Thirdly, we concentrate on self-assembly of rigid low-molecular-weight polyimide with two carboxyl ends (CPI) via microphase inversion by adding water with different pH into CPI/THF solutions. The aggregates with multiple morphologies including dimpled-beads, porous spheres and vesicles were obtained and investigated by TEM, SEM, DLS andζ-potential technologies. The rigid structure of CPI plays an important role in the formation of the multiple morphologies.
     In the fourth part, we present self-assembly of luminescent conjugated polymer via inclusion interaction betweenβ-CD and adamantane. Aggregates are fabricated by addingβ-CD water solution into low-molecular-weight polyfluorene (PF) with adamantyl-terminated group (PF-ADA) in THF. The luminescent polymer PF-ADA acts as fluorescent donor while fluorescent dye fluorescein as an acceptor. Therefore, CD-FITC, a CD derivative containing fluorescein group, is used to induce the self-assembly of polyfluorene. FRET (fluorescence resonance energy transfer) behavior of the assembly was investigated as FITC and polyfluorene are close to each other.
     Finally, great deals of CD cavities remain intact in both CD polymer (PGMA-CD) and the micelles with PGMA-CD as the shell. Two ADA modified fluorescent dyes, fluorescein and rhodamine, were synthesized and used to investigate the dye loading onto the CD polymer chain or micelle surface. The inclusion complexation of the modified dyes and CD causes fluorescent quenching. Afterwards dye release and fluorescence recovery could be realized by supramolecular replacement, i.e. the dye molecule is excluded from the CD cavities by adding excess ACA (1-adamantylcarboxylic acid). Our work provides wide potential for introducing the inclusion interaction into fluorophore-based biodetection field in future research.
引文
[1] 张金中,王中林,刘俊,陈少伟,刘刚玉著,曹茂盛,曹传宝.自组装纳米结构,北京:化学工业出版社,2004.
    [2] J.M. Lehn. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl., 1989, 27(1): 89-112.
    [3] Jean-Marie Lehn.超分子化学—概念和展望,北京:北京大学出版社,2001:2.
    [4] P. N. W. Baxter, J. M. Lehn, G. Baurn, D. Fenske. The Design and Generation of Inorganic Cylindrical Cage Architectures by Metal-Ion-Directed Multicomponent Self-Assembly. Chem. Eur J., 1999, 5(1): 102-112.
    [5] P. N. W. Baxter, J. M. Lehn, B. O. Knensel, G. Baurn, D. Fenske. The Designed Self-Assembly of Multicomponent and Multicompartmental Cylindrical Nanoarchitectures. Chem. Eur. J., 1999, 5(1): 113-120.
    [6] P. N. W. Baxter, J. M. Lehn, J. Fischer, M. T. Youinou. Self-Assembly and Structure of a 3×3 Inorganic Grid from Nine Silver Ions and Six Ligand Components. Angew. Chem. Int. Ed. Engl., 1994, 33(22): 2284-2287.
    [7] D. Philip, J. F. Stoddart. Self-Assembly in Natural and Unnatural Systems, Angew. Chem. Int. Ed. Engl., 1996, 35(11): 1154-1196.
    [8] G. M. Whitesides, J. P. Mathias, C. T. Seto. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science, 1991, 254(5036): 1312-1319
    [9] S. Foster, T. Plantenberg. From Self-Organizing Polymers to Nanohybrid and Biomaterials. Angew. Chem. Int. Ed., 2002, 41(2): 688-714.
    [10] J.H. Fendler. Self-Assembled Nanostructured Materials. Chem. Mater., 1996, 8(8): 1616-1624.
    [11] G.M. Whitesides, B. Grzybowski. Self-Assembly at All Scales. Science, 2002, 295(5564): 2418-2421.
    [12] D.Y. Wang, H. Mohwald. Template-directed colloidal self-assembly-the route to top-down nanochemical engineering. J. Mater. Chem., 2004, 14, 459-468.
    [13] 邓景发,范康年.物理化学,北京:高等教育出版社,1993:434-435.
    [14] T. Sugimoto, Fine Particles: Synthesis, Characterization, and Mechanisms of Growth. Marcel Dekker, New York, NY, USA, 2000.
    [15] E. Matijevic. Preparation and properties of uniform size colloids. Chem. Mater., 1993, 5(4): 412-426.
    [16] F. Caruso. Colloids and Colloid Self-assembly. Wiley VCH, 2003: 284-316.
    [17] Y. Xia, J. Tien, D. Qin, G. M. Whitesides. Non-Photolithographic Methods for Fabrication of Elastomeric Stamps for Use in Microcontact Printing. Langmuir, 1996, 12(16): 4033-4038.
    [18] Y. Lu, Y. Yin, Y. Xia. A Self-Assembly Approach to the Fabrication of Patterned, Two-Dimensional Arrays of Microlenses of Organic Polymers. Adv. Mater., 2001, 13(1): 34-37.
    [19] H. Wu, T. W. Odom, G. M. Whitesides. Connectivity of Features in Microlens Array Reduction Photolithography: Generation of Various Patterns with a Single Photomask. J. Am. Chem. Soc., 2002, 124(25): 7288-7289.
    [20] Z. Liang, A. S. Susha, F. Caruso. Metallodielectric Opals of Layer-by-Layer Processed Coated Colloids. Adv. Mater., 2002, 14(16): 1160-1164.
    [21] M.E. Turner, T. J. Treneler, V. L. Colvin. Thin Films of Macroporous Metal Oxides. Adv. Mater., 2001, 12(3): 180-183.
    [22] M. Weissman, H. B. Sunkara, A. S. Tse, S. A. Asher. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science, 1996, 274(5289): 959-960.
    [23] C. Murray. Phases of thin colloidal layers. MRS Bull., 1998, 23(10): 33-38
    [24] G. Zhang, D. Y. Wang, H. Mohwald. Ordered Binary Arrays of Au Nanoparticles Derived from Colloidal Lithography. Nano Lett., 2007, 7(1): 127-132.
    [25] G. Zhang, D. Y. Wang, H. Mohwald. Decoration of Microspheres with Gold Nanodots-Giving Colloidal Spheres Valences. Angew. Chem. Int. Ed., 2005 44(47): 7767-7770.
    [26] G. Zhang, D. Y. Wang, H. Mohwald. Patterning Microsphere Surfaces by Templating Colloidal Crystals. Nano Lett., 2005, 5(1): 143-146.
    [27] C.B. Murray, C. R. Kagan, M. G. Bawendi. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices. Science, 1995, 270(5240): 1335-1338.
    [28] C.J. Kiely, J. Fink, M. Brust, D. Bethell, D. J. Schiffrin. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature, 1998, 396: 444-446.
    [29] C.J. Kiely, J. Fink, J. G. Zheng, M. Brust, D. Bethell, D. J. Schiffrin. Ordered Colloidal Nanoalloys. Adv. Mater., 2000, 12(9): 640-643.
    [30] Y. Mogi, K. Mori, Y. Matsushita, I. Noda. Tricontinuous morphology of triblock copolymers of the ABC type. Macromolecules, 1992, 25(20): 5412-5415.
    [31] S. P. Gido, D. W. Schwark, E. L. Thomas, M. C. Goncalves. Observation of a nonconstant mean-curvature interface in an ABC triblock copolymer. Macromolecules, 1993, 26(10): 2636-2640.
    [32] P. Tang, F. Qiu, H. D. Zhang, Y. L. Yang. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers. Phys. Rev. E, 2004, 69: 031803-031811.
    [33] J.T. Chen, E. L. Thomas, C. K. Ober, S. S. Hwang. Zigzag Morphology of a Poly(styrene-b-hexyl isocyanate) Rod-Coil Block Copolymer. Macromolecules, 1995, 28(5): 1688-1697.
    [34] J.K. Kim, M. K. Hong, J. H. Ahn, M. Lee. Liquid-Crystalline Assembly from Rigid Wedge-Flexible Coil Diblock Molecules. Angew. Chem. Int. Ed., 2005, 44(2): 328-332.
    [35] M. Lee, B. K. Cho, K. J. Ihn, W. K. Lee, N. K. Oh, W. C. Zin. Supramolecular Honeycomb by Self-Assembly of Molecular Rods in Rod-Coil Molecule. J. Am. Chem. Soc., 2001, 123(19): 4647-4648.
    [36] B. K. Cho, M. Lee, N. K.Oh, W. C. Zin. Chain Length-Dependent Three-Dimensional Organization of Molecular Rods with Flexible Coils. J. Am. Chem. Soc., 2001, 123(39): 9677-9678.
    [37] J.H. Ryu, N. K. Oh, W. C. Zin, M. Lee. Self-Assembly of Rod-Coil Molecules into Molecular Length-Dependent Organization. J. Am. Chem. Soc,. 2004, 126(11): 3551-3558.
    [38] S.I. Stupp, V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser, A. Amsutz. Supramolecular Materials: Self-Organized Nanostructures. Science, 1997, 276(5311): 384-389.
    [39] A. Halperin, M. Tirrell, T. P. Lodge, Tethered chains in polymer microstructures. Adv. Polym. Sci., 1992, 100: 31-71.
    [40] L. Zhang, A. Eisenberg. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 1995, 268(5218): 1728-1731.
    [41] K. Yu, L. Zhang, A. Eisenberg. Novel morphologies of "Crew-Cut" aggregates of amphiphilic diblock copolymers in dilute solution. Langmuir, 1996, 12(25): 5980-5984.
    [42] L. Zhang, K. Yu. A. Eisenberg. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science, 1996, 272(5269): 1777-1779.
    [43] L. Zhang, A. Eisenberg. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol., 1998, 9(10-11): 677-699.
    [44] L. Zhang, A. Eisenberg. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution. J. Polym. Sci. B.: Polym. Phys., 1999, 37(13): 1469-1484.
    [45] L. Zhang, A. Eisenberg. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules, 1996, 29(27): 8805-8815.
    [46] 江明,A.Eisenberg,刘国军,张希,大分子自组装[M],北京:科学出版社,2006
    [47] Y. Y. Won, H. T. Davis, S. S. Bates. Giant wormlike rubber micelles. Science, 1999, 283(5404): 960-963.
    [48] B.M. Discher, Y. Y. Won, D. S. Ege, J. C. M. Lee, F. S. Bates, D. E. Discher, D. A. Hammer. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999, 284(5417): 1143-1146.
    [49] B.M. Discher, H. Bermudez, D. A. Hammer, D. E. Discher, Y. Y. Won, F. S. Bates. Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. J. Phys. Chem. B, 2002, 106(11): 2848-2854.
    [50] Thurmond K. B., Kowalewski T., Wooley K. L. Shell cross-linked knedels: A synthetic study of the factors affecting the dimensions and properties of amphiphilic core-shell nanospheres. J. Am. Chem. Soc., 1997, 119(28): 6656-6665.
    [51] Ding J. F., Liu G. J., Water-Soluble Hollow Nanospheres as Potential Drug Carriers. J. Phys. Chem., 1998, 102(31): 6107-6113.
    [52] Du J. Z., Chen Y. M. Preparation of orgainic/inorganic hybrid hollow particles based on gelation of polymer vesicles, Macromolecules, 2004, 37(15): 5710-5716.
    [53] Yan D. Y., Zhou Y. F., Hou J. Supramolecular Self-Assembly of Macroscopic Tubes. Science, 2004, 303(5654): 65-67.
    [54] Park S., Lim J. H., Chung S. W., Mirkin C. A., Self-assembly of mesoscopic metal-polymer amphiphiles. Science, 2004, 303(5656): 348-351.
    [55] Martin T. J., Prochazka K., Munk P., Webber S. E. pH-Dependent Micellization of Poly(2-vinylpyridine)-block-poly(ethylene oxide). Macromolecules, 1996, 29(18): 6071-6073.
    [56] Bütün V., Billingham N. C., Armes S. P. Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution. J. Am. Chem. Soc., 1998, 120(45): 11818-11819.
    [57] Liu S., Armes S. P., Polymeric Surfactants for the New Millennium: A pH-Responsive, Zwitterionic, Schizophrenic Diblock Copolymer. Angew. Chem. Int. Ed., 2002, 41(8): 1413-1416.
    [58] Vamvakaki M., Billingham N. C., Armes S. P., Synthesis of Controlled Structure Water-Soluble Diblock Copolymers via Oxyanionic Polymerization. Macromolecules, 1999, 32(6): 2088-2090.
    [59] Gohy J. F., Antoun S., Jérome R., pH-Dependent Micellization of Poly(2-vinylpyridine)-b-poly((dimethylamino)ethyl methacrylate) Diblock Copolymers. Macromolecules, 2001, 34(21): 7435-7440.
    [60] Zezin A. B., Rogacheva V. B., Novoskoltseva O. A., Kabanov V. A., Self-assembly in ternary systems: cross-linked polyelectrolyte, linear polyelectrolyte and surfactant. Macromol. Symp., 2004, 211 (1): 157-174.
    [61] Kasaikin V. A., Zakharova J. A., Litmanovich E. A., Ivleva E. M., Zezin A. B., Kabanov V. A., Aggregation of ionic amphiphils in dilute solutions controlled by oppositely charged polyelectolyte templates. Macromol. Symp., 2003, 195(1): 269-274.
    [62] Bronich T. K., Keifer P. A., Shlyakhtenko L. S., Kabanov A. V., Polymer Micelle with Cross-Linked Ionic Core. J. Am. Chem. Soc., 2005, 127(23): 8236-8237.
    [63] Kakizawa Y., Harada A., Kataoka K., Environment-Sensitive Stabilization of Core-Shell Structured Polyion Complex Micelle by Reversible Cross-Linking of the Core through Disulfide Bond J. Am. Chem. Soc., 1999, 121(48): 11247-11248.
    [64] Harada A., Kataoka K., Chain Length Recognition: Core-Shell Supramolecular Assembly from Oppositely Charged Block Copolymers. Science, 1999, 283(5398): 65-67.
    [65] Koide A., Kishimura A., Osada K., Jang W. D., Yamasaki Y., Kataoka K., Semipermeable Polymer Vesicle (PICsome) Self-Assembled in Aqueous Medium from a Pair of Oppositely Charged Block Copolymers: Physiologically Stable Micro-/Nanocontainers of Water-Soluble Macromolecules. J. Am. Chem. Soc., 2006, 128(18): 5988-5989.
    [66] Gohy J. F., Varshney S. K., Jérome R. Water-Soluble Complexes Formed by Poly (2-vinylpyridinium)-block-poly(ethylene oxide) and Poly(sodium methacrylate)-block-poly(ethylene oxide) Copolymers. Macromolecules, 2001, 34(10): 3361-3366.
    [67] Gohy J. F., Varshney S. K., Antoun S., Jérome R., Water-Soluble Complexes Formed by Sodium Poly(4-styrenesulfonate) and a Poly(2-vinylpyridinium)-b-poly(ethyleneoxide) Copolymer. Macromolecules, 2000, 33(25): 9298-9305.
    [68] Sukhorukov G. B., Donath E., Lichtenfeld H., Knippel E., Knippel M., Budde A., Mohwald H., Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surfaces A, 1998, 137(1-3): 253
    [69] Donath E., Sukhorukov G. B., Caruso F., Davis S. A., Mohwald H., Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed., 1998, 37(16): 2201-2205.
    [70] Johnston A. P. R., Cortez C., Angelatos A. S., Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science, 200611 (4): 203-209.
    [71] Caruso F. Nanoengineering of particle surfaces. Adv. Mater., 2001, 13(1): 11-22.
    [72] Caruso F., Lichtenfeld H., Mohwald H., Giersig M., Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles. J. Am. Chem. Soc., 1998, 120(33): 8523-8524.
    [73] Caruso R. A., Susha A., Caruso F., Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chem. Mater., 2001, 13(2): 400-409.
    [74] Cassagneau T., Caruso F., Contiguous Silver Nanoparticle Coatings on Dielectric Spheres. Adv. Mater., 2002, 14(10): 732-736.
    [75] Caruso F., Caruso R. A, Mohwald H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(5391): 1111-1114.
    [76] Dong A. G., Wang Y. J., Tang Y., Ren N., Yang W. L., Gao Z., Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem. Commun., 2002, 4: 350-351.
    [77] Oldenburg S. J., Averitt R. D., Westcott S. L., Halas N. J., Nanoengineering of optical resonances. Chemical Physics Letters, 1998, 288(2-4): 243-247.
    [78] Hong X., Li J., Wang M. J., Xu J. J., Guo W., Li J. H., Bai Y. B., Li T. J., Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chem. Mater., 2004, 16(21): 4022-4027.
    [79] Gole A., Murphy C. J., Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization. Chem. Mater., 2005, 17(6): 1325-1330.
    [80] Johnston A.P.R., Cortez C., Angelatos A.S., Layer-by-layer engineered capsules and their applications. Current Opinion in Colloid & Interface Science, 2006, 11(4): 203-209.
    [81] Euliss L. E., Grancharov S. G., O'Brien S., Deming T. J., Stucky G. D., Murray C. B., Held G. A., Cooperative assembly of magnetic nanoparticles and block copolypeptides in aqueous media. Nano Lett., 2003, 3(11): 1489-1493.
    [82] Berret J.F., Schonbeck N., Gazeau F., El Kharrat D., Sandre O., Vacher A., Airiau M., Controlled Clustering of Superparamagnetic Nanoparticles Using Block Copolymers: Design of New Contrast Agents for Magnetic Resonance Imaging. J. Am. Chem. Soc., 2006, 128(5): 1755-1761.
    [83] Shenhar R., Rotello V. M., Nanoparticles: Scaffolds and Building Blocks. Acc. Chem. Res., 2003, 36(7), 549-561.
    [84] Frankamp B. L., Boal A. K., Tuominen M. T., Rotello V. M., Direct Control of the Magnetic Interaction between Iron Oxide Nanoparticles through Dendrimer-Mediated Self-Assembly. J. Am. Chem. Soc., 2005, 127(27): 9731-9735.
    [85] Kato T., Hydrogen-Bonded Liquid Crystals: Molecular Self-Assembly for Dynamically Functional Materials. Structure & Bonding, 2000, 96(1): 95-146.
    [86] Kato T., Self-Assembly of Phase-Segregated Liquid Crystal Structures, Science, 2002, 295(2414): 2414-2418.
    [87] Ruokolainen J., Makinen R., Torkkeli M., Makela T., Serimaa R., ten Brinke G., Ikkala O.. Switching supramolecular polymeric materials with multiple length scales, Science, 1998, 280(5363): 557-560.
    [88] Jiang M., Li M., Xiang M. L., Zhou H., Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding. Adv. Polym. Sci. 1999, 146: 121-196.
    [89] Jiang M., Duan H. W., Chen D. Y., Macromolecular assembly: from irregular aggregates to regular nanostructures. Macromol. Symp., 2003, 195(1): 165-170.
    [90] Liu S. Y., Zhang, G. Z., Jiang, M., Soluble graft-like complexes based on poly(4-vinyl pyridine) and carboxy-terminated polystyrene oligomers due to hydrogen bonding. Polymer, 1999, 40(19): 5449-5453.
    [91] Liu S. Y., Jiang M., Liang H. J., Wu C., Intermacromolecular complexes due to specific interactions. 13. Formation of micelle-like structure from hydrogen-bonding graft-like complexes in selective solvents. Polymer, 2000, 41(24): 8697-8702.
    [92] Wang M., Zhang G,; Chen D., Jiang M., Liu S., Noncovalently Connected Polymeric Micelles Based on a Homopolymer Pair in Solutions. Macromolecules, 2001, 34(20): 7172-7178.
    [93] Yuan X., Jiang M., Zhao H., Wang M., Zhao Y., Wu C., Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir, 2001, 17 (20): 6122-6126.
    [94] Zhao H.Y., Gong J., Jiang M., An Y L, A new approach to self-assembly of polymer blends in solutions. Polymer, 1999, 40916): 4521-4525.
    [95] Zhang Y. W., Jiang M., Zhao J. X., Zhou J., Chen D. Y., Hollow spheres from shell cross-linked, non-convalently connected micelles of carboxyl-terminated polybutadiene and poly(vinyl alcohol) in water. Macromolecules, 2004, 37(4): 1537-1543.
    [96] Peng H. S., Chen D. Y., Jiang M., Self-assembly of formic acid/polystyreneblock-poly (4-vinylpyridine) complexes into vesicles in a low-polar organic solvent chloroform, Langmuir, 2003, 19(26): 10989-10992.
    [97] Peng HS, Chen DY, Jiang M. Self-assembly of perfluorooctanoic acid (PFOA) and PS-b-P4VP in chloroform and the encapsulation of PFOA in the formed aggregates as the nanocrystallites, J. Phys. Chem. B 2003, 107: 12461;
    [98] Cornelissen J.J.L.M, Fischer M.,Sommerdijk NAJM, Nolte RJM Science, 1998, 280, 1427
    [99] Jenekhe S. A., Chen X. L., Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science, 1998, 279(5358): 1903-1907.
    [100] Zubarev E. R., Eli D. Sone, Stupp S. I., The Molecular Basis of Self-Assembly of Dendron-Rod-Coils into One-Dimensional Nanostructures Chem. Eur. J., 2006, 12(28): 7313-7327.
    [101] Duan H.W., Chen D. Y., Jiang M., Gan W., Li S., Wang M., Gong J., Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J.. Am. Chem. Soc., 2001, 123 (48): 12097-12098.
    [102] Kuang M., Duan H. W., Wang, J., Chen D. Y., Jiang M., A novel approach to polymeric hollow nanospheres with stabilized structure. Chem Commun., 2003, (4): 496-497.
    [103] Duan H. W., Kuang M., Wang J., Chen D. Y., Jiang M., Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. J. Phys. Chem. B, 2004, 108(2): 550-555.
    [104] Kuang M., Duan H. W., Wang J., Jiang M., Structural Factors of Rigid-Coil Polymer Pairs Influencing Their Self-Assembly in Common Solvent. J. Phys. Chem. B, 2004, 108(41): 16023-16029.
    [105] Mu M. F., Ning F. L., Jiang M., Chen D. Y., Giant vesicles based on self-assembly of a polymeric complex containing a rodlike oligomer. Langmuir, 2003, 19(24): 9994-9996.
    [106] Xie D., Jiang M., Zhang G. Z., Chen D. Y., Hydrogen-Bonded Dendronized Polymers and Their Self-Assembly in Solution. Chem. Eur. J., 2007, 13(12): 3346-3353.
    [107] Ilhan F., Valow T. H., Gray M., Clavier G., Rotello V. M., Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers. J Am. Chem. Soc., 2000, 122(24): 5895-5896.
    [108] Shenhar R., Norsten T. B., Rotello V. M., Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications. Adv. Mater., 2005, 17(6): 657-669.
    [109] Boal A. K., Ilhan F., DeRouchey J. E., Thurn-Albrecht T., Russell T. P., Rotello V. M., Self-assembly of nanopartMes into structured spherical and network aggregates, Nature, 2000, 404: 746-748.
    [110] Cha J. N., Birkedal H., Euliss L. E., Bartl M. H., Wong M. S., Deming T. J., Stucky G. D., Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. J. Am. Chem. Soc., 2003, 125(27): 8285-8289.
    [111] Dai Q., Worden J. G., Trullinger J., Huo Q., A "Nanonecklace" Synthesized from Monofunctionalized Gold Nanoparticles. J. Am. Chem. Soc., 2005, 127(22): 8008-8009.
    [112] Wang J., Nanomaterial-Based Amplified Transduction of Biomolecular Interactions. Small, 2005, 1(11): 1036-1043.
    [113] Nam J. M., Thaxton C. S., Mirkin C. A., Nanoparticle-Based Bio-BarCodes for the Ultrasensitive Detection of Proteins. Science, 2003, 301(5641): 1884-1886.
    [114] Mucic R. C., Storhoff J. J., Mirkin C. A., Letsinger R. L. DNA-Directed Synthesis of Binary Nanoparticle Network Materials. J. Am. Chem. Soc., 1998, 120(48): 12674-12675.
    [115] Dujardin E., Hsin L. B.,Wang C. R., Mann S. DNA-driven self-assembly of gold nanorods. Chem. Commun., 2001, (14): 1264-1265.
    [116] Katz E., Willner I., Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angew. Chem. Int. Ed, 2004, 43(45): 6042-6108.
    [117] Kanaras A. G., Wang Z., Bates A. D., Cosstick R., Brust M., Towards Multistep Nanostructure Synthesis: Programmed Enzymatic Self-Assembly of DNA/Gold Systems. Angew. Chem. Int. Ed. 2003, 42(2): 191-194.
    [118] Gole A., Murphy C. J., Biotin-Streptavidin-Induced Aggregation of Gold Nanorods: Tuning Rod-Rod Orientation. Langmuir, 2005, 21(23), 10756-10762.
    [119] Caswell K. K., Wilson J. N., Bunz U. H. F., Murphy C. J., Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors J. Am. Chem. Soc., 2003, 125(46): 13914-13915.
    [120] Harrison P. M., Arosio P., The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta Bioenergetics, 1996, 1275(3): 161-203.
    [121] Chang J. Y., Wu H. M., Chen H., Ling Y. C., Tan W. H., Oriented assembly of Au nanorods using biorecognition system. Chem. Commun., 2005, (8): 1092-1094.
    [122] 童林荟.环糊精化学,北京:科学出版社,2001:84.
    [123] 刘育,尤长城,张衡益.超分子化学,天津:南开大学出版社,2001:ⅹⅹ.
    [124] Dodziuk Helena, Cyclodextrin and their Complexes, Chimica, Wiley/VCH, 2006, Vincieri, DSF, Vincieri, 3237
    [125] Szejtli J., Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev., 1998, 98(5): 1743-1754.
    [126] Engeldinger E., Armspach D., Matt D., Capped Cyclodextrins. Chem. Rev., 2003, 103(11): 4147-4173.
    [127] http://www.lsbu.ac.uk/water/cyclodextrin.html
    [128] Helena Dodziuk. Cyclodextrins and Their Complexes. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2006
    [129] Harada A., Cyclodextrin-Based Molecular Machines. Acc. Chem. Res. 2001, 34(6): 456-464.
    [130] Rekharsky M. V., Inoue Y., Complexation Thermodynamics of Cyclodextrins. Chem. Rev., 1998, 98(5): 1875-1917.
    [131] Auzely-Velty R., Djedaini-Pilard F., Desert S., Perly, B., Zemb T., Micellization of Hydrophobically Modified Cyclodextrins. 1. Micellar Structure. Langmuir, 2000, 16(18): 3727-3734.
    [132] Mazzaglia A., Ravoo B. J., Darcy R., Gambadauro P., Mallamace F., Aggregation in Water of Nonionic Amphiphilic Cyclodextrins with Short Hydrophobic Substituents. Langmuir, 2002, 18(5): 1945-1948.
    [133] Liu Y., Chen Y., Cooperative binding and multiple recognition by bridged bis(beta-cyclodextrin)s with functional linkers. Acc. Chem. Res., 2006, 39(10): 681-691.
    [134] Hoshino T., Miyauchi M., Kawaguchi Y., Yamaguchi H., Harada A., Daisy Chain Necklace: Tri[2]rotaxane Containing Cyclodextrins. J. Am. Chem. Soc., 2000, 122(40): 9876-9877.
    [135] Miyauchi M., Harada A., Construction of Supramolecular Polymers with Alternating -, -Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J. Am. Chem. Soc., 2004, 126(37): 11418-11419.
    [136] Liu J., Alvarez J., Ong W., Kaifer A. E., Network Aggregates Formed by C_(60) and Gold Nanoparticles Capped with -Cyclodextrin Hosts. Nano Lett., 2001, 1(2): 57-60.
    [137] Sandier A., Brown W., Mays H., Amiel C., Interaction between an Adamantane End-Capped Poly(ethylene oxide) and a -Cyclodextrin Polymer. Langmuir, 2000, 16(4): 1634-1642.
    [138] Tomatsu I., Hashidzume A., Harada A., Photoresponsive Hydrogel System Using Molecular Recognition of -Cyclodextrin. Macromolecules, 2005, 38(12): 5223-5227.
    [139] Maury P., Péter M., Crespo-Biel O., Ling X. Y., Reinhoudt D. N., Huskens J., Patterning the molecular printboard: patterning cyclodextrin monolayers on silicon oxide using nanoimprint lithography and its application in 3D multilayer nanostructuring. Nanotechnology, 2007, 18: 044007-044015.
    [140] Crespo-Biel O., Dordi B., Maury P., Peter M., Reinhoudt D. N., Huskens J., Patterned, Hybrid, Multilayer Nanostructures Based on Multivalent Supramolecular Interactions. Chem. Mater., 2006, 18(10): 2545-2551.
    [141] Crespo-Biel O., Dordi B., Reinhoudt D. N., Huskens J., Supramolecular Layer-by-Layer Assembly: Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions. J. Am. Chem. Soc., 2005, 127(20): 7594-7600.
    [1] Szejtli J., Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev., 1998, 98(5): 1743-1754.
    [2] Rekharsky M. V., Inoue Y., Complexation Thermodynamics of Cyclodextrins. Chem. Rev., 1998, 98(5): 1875-1917.
    [3] Carrazana J., Jover A., Meijide F., Soto V. H., Taro J. V., Complexation of Adamantyl Compounds by -Cyclodextrin and Monoaminoderivatives. J. Phys. Chem. B, 2005, 109(19): 9719-9726.
    [4] Harries D., Rau D. C., Parsegian V. A., Solutes Probe Hydration in Specific Association of Cyclodextrin and Adamantane. J. Am. Chem. Soc. 2005, 127(7): 2184-2190.
    [5] Miyauchi, M.; Hoshino, T.; Yamaguchi, H.; Kamitori, S.; Harada, A., A [2]Rotaxane Capped by a Cyclodextrin and a Guest: Formation of Supramolecular [2]Rotaxane Polymer. J. Am. Chem. Soc., 2005, 127(7): 2034-2035.
    [6] Miyauchi M., Harada A., Construction of Supramolecular Polymers with Alternating α-, β-Cyclodextrin Units Using Conformational Change Induced by Competitive Guests. J. Am. Chem. Soc., 2004, 126(37): 11418-11419.
    [7] Miyauchi M., Takashima Y., Yamaguchi H., Harada A., Chiral Supramolecular Polymers Formed by Host-Guest Interactions. J. Am. Chem. Soc., 2005, 127(9): 2984-2989.
    [8] Liu Y., Xu J., Craig S. L., Hierarchical self-assembly of noncovalent amphiphiles, Chem. Commun., 2004, (16): 1864-1865.
    [9] Pun S. H., Bellocq N. C., Liu A. J., Jensen G., Machemer T., Quijano E., Schluep T., Wen S. F., Engler H., Heidel J., Davis M. E., Cyclodextrin-Modified Polyethylenimine Polymers for Gene Delivery. Bioconjugate. Chem., 2004, 15(4): 831-840.
    [10] Crespo-Biel O., Dordi B., Reinhoudt D. N., Huskens J., Supramolecular Layer-by-Layer Assembly: Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions. J. Am. Chem. Soc. 2005, 127(20): 7594-7600.
    [11] Sandier A., Brown W., Mays H., Amiel C., Interaction between an Adamantane End-Capped Poly(ethylene oxide) and a -Cyclodextrin Polymer. Langmuir, 2000, 16(4): 1634-1642.
    [12] Chen D. Y., Jiang M., Strategies for Constructing Polymeric Micelles and Hollow Spheres in Solution via Specific Intermolecular Interactions. Accounts. Chem. Res,. 2005, 38(6): 494-502.
    [13] 江明,A.Eisenberg,刘国军,张希,大分子自组装[M],北京:科学出版社,2006
    [14] Wang M., Jiang M., Ning F. L., Chen D. Y., Liu S. Y., Duan H. W., Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene. Macromolecules, 2002, 35(15): 5980-5989.
    [15] Ilhan F., Galow T. H., Gray M., Clavier G., Rotello V. M., Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers. J. Am. Chem. Soc., 2000, 122(24): 5895-5896.
    [16] Raymond C. Fort, Paul von R. Schleyer, Adamantane: Consequences of the Diamondoid Structure. Chem. Rev., 1964, 64(3): 277-298.
    [17] William C. Cromwell, Katarina Bystrom, Maurice R. Eftink, Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J. Phys. Chem., 1985, 89(2): 326-332.
    [18] Petter R. C., Salek J. S., Sikorski C. T., Kumaravel G., Lin F. T., Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins. J.. Am. Chem. Soc., 1990, 112(10): 3860-3868.
    [19] Liu Y. Y., Fan X. D., Gao L., Synthesis and Characterization of -Cyclodextrin Based Functional Monomers and its Copolymers with N-isopropylacrylamide. Macromol. Biosci., 2003, 3 (12): 715-719.
    [20] Weickenmeier M., Wenz G., Huff J., Association thickener by host guest interaction of a -cyclodextrin polymer and a polymer with hydrophobic side-groups. Macromol. Rapid. Comm., 1997, 18(12): 1117-1123.
    [21] Weickenmeier M., Wenz G., Cyclodextrin sidechain polyesters-synthesis and inclusion of adamantan derivatives. Macromol. Rapid. Comm., 1996, 17(10): 731-736.
    [22] Martel B., Leckchiri Y., Pollet A., Morcellet M., Cyelodextrin-poly(vinylamine) systems-Ⅰ. Synthesis, characterization and conformational properties. Eur. Polym. J., 1995, 31(11): 1083-1088.
    [23] Crini G., Torri G., Guerrini M., Martel B., Lekchiri Y., Morcellet M., Linear Cyclodextrin-Poly(Vinylamine): Synthesis And Nmr Characterization. Eur. Polym. J., 1997, 33(7): 1143-1151.
    [24] Harada A., Furue M., Nozakura S., Cyclodextrin-Containing Polymers. 1. Preparation of Polymers. Macromolecules, 1976, 9(5): 701-704.
    [25] Jiang M., Li M., Xiang M. L., Zhou H., Interpolymer Complexation and Miscibility Enhancement by Hydrogen Bonding. Adv. Polym. Sci. 1999,146: 121-196.
    [26] Schneider H. J., Hacket F., Rudiger V., Ikeda H., NMR Studies of Cyclodextrins and Cyclodextrin Complexes. Chem. Rev., 1998, 98(5): 1755-1785.
    [27] Rudiger V., Eliseev A., Simova S., Schneider H. J., Blandamer M. J., Cullis P.M., Meyer A. J., Conformational, calorimetric and NMR spectroscopic studies on inclusion complexes of cyclodextrins with substituted phenyl and adamantane derivatives. J. Chem. Soc. Perk T 2, 1996, (10): 2119-2123.
    [28] Jaime C., Redondo J., Sanchezferrando F., Virgili A., Solution geometry of. beta.-cyclodextrin-1-bromoadamantane host-guest complex as determined by 1H[1H] intermolecular NOE and MM2 calculations. J. Org. Chem., 1990, 55(15): 4772-4776.
    [29] Mo H. P., Pochapsky T. C., Intermolecular interactions characterized by nuclear Overhauser effects. Prog. Nucl. Mag. Res. Sp., 1997, 30(1-2): 1-38.
    [30] Soppimath K. S., Aminabhavi T. M., Kulkarni A. R., Rudzinski W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release. 2001, 70(1-2): 1-20.
    [31] Nozaki T., Maeda Y., Ito K. Kitano H., Cyclodextrins Modified with Polymer Chains Which Are Responsive to External Stimuli. Macromolecules, 1995, 28(2): 522-524.
    [32] Wagner B. D., Fitzpatrick S. J., McManus G. J., Fluorescence Suppression of 7-Methoxycoumarin upon Inclusion into Cyclodextrins. J. Incl. Phenom. Macro., 2000, 38(3-4): 467-478.
    [33] Bergbreiter D. E., Self-Assembled, Sub-Micrometer Diameter Semipermeable Capsules. Angew. Chem. Int. Ed., 1999, 38(19): 2870-2872.
    [34] Caruso F., Caruso R. A., Mohwald H., Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(5391): 1111-1114.
    [35] Jenekhe S. A., Chen X. L., Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science, 1998, 279(5358): 1903-1907.
    [36] Stewart S., Liu G., Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem. Mater., 1999, 11(4): 1048-1054.
    [37] Huang H. Y., Remsen E. E., Kowalewski T., Wooley K. L., Nanocages Derived from Shell Cross-Linked Micelle Templates. J. Am. Chem. Soc., 1999, 121(15): 3805-3806.
    [38] Renard E., Deratani A., Volet G., Sebille B., Preparation and characterization of water soluble high molecular weight β-cyclodextrin-epichlorohydrin polymers. Eur. Polym. J., 1997, 33(1): 49-57.
    [39] Renard E., Barnathan G., Deratani A., Sebille B., Polycondensation of cyclodextrins with epichlorohydrin. Influence of reaction conditions on the polymer structure Macromol. Symp. 1997, 1220: 229-234.
    [40] Crini G., Morcellet M., Synthesis and applications of adsorbents containing cyclodextrins. J. Sep. Sci., 2002, 25(13): 789-813.
    [41] Sano S., Kato K., Ikada Y., Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials, 1993, 14(11): 817-822.
    [42] Donath E., Sukhorukov G. B., Caruso F., Davis S. A., Mohwald H., Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew. Chem. Int. Ed., 1998, 37(16): 2201-2205.
    [43] Shi X. Y., Shen M. W., Mohwald H., Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials. Prog. Polym. Sci. 2004, 29(10): 987-1019.
    [44] Crini G., Morcellet M., Synthesis and applications of adsorbents containing cyclodextrins J. Sep.Sci. 2002, 25(13): 789-813
    [45] Janus L., Crini G., El-Rezzi V., Morcellet M., Cambiaghi A., Torri G., Naggi A., Vecchi C., New sorbents containing beta-cyclodextrin. Synthesis, characterization, and sorption properties. React. Funct. Polym., 1999, 42(3): 173-180.
    [46] Harada A., Li J., Kamachi M., The Molecular Necklace: a Rotaxane Containing Many Threaded α-cyclodextrins. Nature, 1992, 356: 325-327.
    [47] Martel B., Lechchiri Y., Pollet A., et al. Cyclodextrin-poly(vinylamine) systems .1. Synthesis, characterization and conformational properties, Eur. Poly. J. 1995, 31 (11): 1083-1088
    [48] Ruebner A., Statton G. L., James M. R., Synthesis of a linear polymer with pendent γ-cyclodextrins. Macromol. Chem. Phys., 2000, 201(11): 1185-1188.
    [1] A. P. Alivisatos, Semiconductor Clusters, Nanocrystals, and Quantum Dots。 Science, 1996, 271(5251): 933-937.
    [2] C. Collier, T. Vossmeyer, J. Heath, Nanocrystal Superlattices. Annu. Rev. Phys. Chem., 1998, 49: 371-404.
    [3] H. Weller, Synthesis and self-assembly of colloidal nanoparticles. Phil. Trans. R. Soc. Lond. A, 2003, 361(1803): 229-240.
    [4] B. Binks, Particles as surfactants—similarities and differences. Curr. Opin. Colloid In. 2002, 7(1-2): 21-41.
    [5] R. Aveyard, B. Binks, J. Clint, Adv. Colloid Interfac. 2003, 100, 503-546
    [6] Y. Lin, H. Skaff, T. Emrick, A. Dinsmore, T. Russell, Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces. Science, 2003, 299(5604): 226-229.
    [7] Y. Lin, H. Skaff, A. Boker, A. Dinsmore, T. Emrick, T. Russell, Ultrathin Cross-Linked Nanoparticle Membranes. J. Am. Chem. Soc., 2003, 125(42): 12690-12691.
    [8] J. Russell, Y. Lin, A. Boker, L. Su, P. Carl, H. Zettl, J. He, K. Sill, R. Tangirala, T. Emrick, K. Littrell, P. Thiyagarajan, D. Cookson, A. Fery, Q. Wang, T. Russell, Self-Assembly and Cross-Linking of Bionanoparticles at Liquid-Liquid Interfaces. Angew. Chem. Int. Ed., 2005, 44(16): 2420-2426.
    [9] E. Glogowski, J. He, T. Russell, T. Emrick, Mixed monolayer coverage on gold nanoparticles for interfacial stabilization of immiscible fluids. Chem. Commun., 2005, (32): 4050-4052.
    [10] F. Reincke, S. Hickey, W. Kegel, D. Vanmaekelbergh, Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface. Angew. Chem. Int. Ed., 2004, 43(4): 458-462.
    [11] D. Wang, H. Duan, H. Mohwald, The water/oil interface: the emerging horizon for self-assembly of nanoparticles. Soft Matter, 2005, 1(6): 412-416.
    [12] H. Duan, D. A. Wang, D. Kurth, H. Mohwald, Directing Self-Assembly of Nanoparticles at Water/Oil Interfaces. Angew. Chem. Int. Ed., 2004, 43(42): 5639-5642.
    [13] H. Duan, D. Wang, N. Sobal, M. Giersig, D. Kurth, H. Mohwald, Magnetic Colloidosomes Derived from Nanoparticle Interfacial Self-Assembly. Nano Lett., 2005, 5,(5): 949-952.
    [14] F. Reincke, W. Kegel, H. Zhang, M. Nolte, D. Wang, D. Vanmaekelbergh, H. Mohwald, Understanding the self-assembly of charged nanoparticles at the water/oil interface. Phys. Chem. Chem. Phys. 2006, 8(33): 3828-3835.
    [15] W.H. Binder, Supramolecular Assembly of Nanoparticles at Liquid-Liquid Interfaces. Angew. Chem. Int. Ed., 2005, 44(33): 5172-5175.
    [16] J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev., 1998, 98(5): 1743-1754.
    [17] M. Rekharsky, Y. Inoue, Complexation Thermodynamics of Cyclodextrins. Chem. Rev., 1998, 98(5): 1875-1917.
    [18] Y. Wang, J. Wong, X. Teng, X. Lin, H. Yang, "Pulling" Nanoparticles into Water: Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin. Nano Lett. 2003, 3(11): 1555-1559.
    [19] N. Lala, S. Lalbegi, S. Adyanthaya, M. Sastry, Phase Transfer of Aqueous Gold Colloidal Particles Capped with Inclusion Complexes of Cyclodextrin and Alkanethiol Molecules into Chloroform. Langmuir, 2001, 17(12): 3766-3768.
    [20] R. Fort, P. Schleyer, Adamantane: Consequences of the Diamondoid Structure. Chem. Rev., 1964, 64(3): 277-300.
    [21] W. Cromwell, K. Bystrom, M. Eftink, Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J. Phy. Chem., 1985, 89(2): 326-332.
    [22] M. Eftink, M. Andy, K. Bystrom, H. Perlmutter, D. Kristol, Cyclodextrin inclusion complexes: studies of the variation in the size of alicyclic guests. J. Am. Chem. Soc., 1989, 111(17): 6765-6772.
    [23] O. Crespo-Biel, B. Dordi, D. Reinhoudt, J. Huskens, Supramolecular Layer-by-Layer Assembly: Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions. J. Am. Chem. Soc., 2005, 127(20): 7594-7600.
    [24] E. Shevchenko, D. Talapin, A. Rogach, A. Kornowski, M. Haase, H. Weller, Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. J. Am. Chem. Soc., 2002, 124(38): 11480-11485.
    [25] S. Sun, H. Zeng, D. Robinson, S. Raoux, P. Rice, S. Wang, G. Li, Monodisperse MFe_2O_4 (M = Fe, Co, Mn) Nanoparticles. J. Am. Chem. Soc., 2004, 126(1): 273-279.
    [26] Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature-Phys. Sci., 1973, 241: 20-22.
    [27] G. Nelles, M. Weisser, R. Back, P. Wohlfart, G. Wenz, S. MittlerNeher, Controlled Orientation of Cyclodextrin Derivatives Immobilized on Gold Surfaces. J. Am. Chem. Soc., 1996, 1180: 5039-5046.
    [28] R.C. Petter, J.S. Salek, C.T. Sikorski, H Kumaravel, F.T. Lin, Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins. J. Am. Chem. Soc., 1990, 112(10): 3860-3868.
    [29] X. Teng, H. Yang, Synthesis of Platinum Multipods: An Induced Anisotropic Growth Nano Lett., 2005, 5(5): 885-891.
    [30] S. Gould, R. Scott, 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): A toxicology review. Food Chem. Toxicol., 2005, 43(10): 1451-1459.
    [31] K. Connors, The Stability of Cyclodextrin Complexes in Solution. Chem. Rev., 1997, 97(5): 1325-1357.
    [32] A. Coleman, I. Nicolis, N. Keller, J. P. Dalbiez, Aggregation of cyclodextrins: An explanation of the abnormal solubility of β-cyclodextrin. J. Incl. Phenom. Macro., 1992, 13(2): 139-143
    [33] A. Buvari-Barcza, L. Barcza, Changes in the Solubility of β-Cyclodextrin on Complex Formation: Guest Enforced Solubility of β-Cyclodextrin Inclusion Complexes. J. Incl. Phenom. Macro., 2000, 36(3): 355-370.
    [34] M. Islam, Y. Xia, M. Steigerwald, M. Yin, Z. Liu, S. O'Brien, R. Levicky, I. Herman, Addition, Suppression, and Inhibition in the Electrophoretic Deposition of Nanocrystal Mixture Films for CdSe Nanocrystals with γ-Fe_2O_3 and Au Nanocrystals. Nano Lett., 2003, 3(11): 1603-1606.
    [35] M. Brust, C. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surfaces A, 2002, 202(2-3): 175-186.
    [36] B.P. Binks. J. A. Rodrigues, Inversion of Emulsions Stabilized Solely by Ionizable Nanoparticles. Angew. Chem. Int. Ed., 2005, 44(3): 441-444.
    [37] B.P. Binks, T. S. Horozov, Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem. Int. Ed., 2005, 44(24): 3722-3725.
    [38] B.P. Binks, R. Murakami, S. P. Armes, S. Fujii, Temperature-Induced Inversion of Nanoparticle-Stabilized Emulsions. Angew. Chem. Int. Ed., 2005, 44(30): 4795-4798.
    [1] M. Pineri, A. Eisenberg, Structure and Properieties of Ionomers, Reidel: 1987, Dordrecht, The Netherlands.
    [2] R.D. Lunderg, Encyclopedia of Polymer Science, 2nd ed., 1987, Vol. 8:393
    [3] C.W., Lantman, W. J. Macknight, D. G. Peiffer, S. K. Sinha, R. D. Lundbergrn, Light scattering studies of ionomer solutions. Macromolecules, 1987, 20(5): 1096-1101.
    [4] K.N. Bakevv, W. J. Macknight, Fluorescence as a probe for examining salt group association of sulfonated polystyrene ionomers in tetrahydrofuran. Macromolecules, 1991, 24(16): 4578-4582.
    [5] K.N. Bakevv, I. Teraoka, W. J. Macknight, F. E. Karasz, Single-coil to aggregate transition of sulfonated polystyrene ionomers in xylene studied by dynamic light scattering. MacromolecuIes, 1993, 26(8): 1972-1974.
    [6] M. Hara, J. L. Wu, Light scattering study of ionomers in solution. 2. Low-angle scattering from sulfonated polystyrene ionomers. Macromolecules, 1988, 21(2): 402-407.
    [7] C.W. Lantman, W. J. Macknight, J. S. Higgins, G. Peiffer, R. D. Lundberg, G. D. Wignall, Small-angle neutron scattering from sulfonate ionomer solutions. 2. Polyelectrolyte effects in polar solvents. Macromolecules, 1988, 21(5): 1344-1349
    [8] J.L. Wu, M. Hara, Light Scattering Study of Ionomer Solutions. 3. Dynamic Scattering from Sulfonated Polystyrene Ionomers in a Polar Solvent (Dimethylformamide). Macromolecules, 1994, 27(4): 923-929.
    [9] Z. Zhou, B. Chu, G. Wu, D. Peiffer, Block copolymer ionomers: solution behavior of lightly sulfonated polystyrene-b-poly(tert-butylstyrene) in polar solvent. Macromolecules, 1993, 26(11): 2968-2973.
    [10] R. Weiss, A. Sen, C. Willis, L. Pottick, Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer, 1991, 32(10): 1867-1874.
    [11] G.Z. Zhang, A .Z. Niu, S. F. Peng, M. Jiang, Y. F. Tu, M. Li, C. Wu, Formation of Novel Polymeric Nanoparticles. Acc. Chem. Res., 2001, 34(3): 249-256.
    [12] M. Li, L. Lu, M. Jiang, Fluorospectroscopy monitoring aggregation of block ionomers in aqueous media. Macromol. Rapid Commun., 1995, 16(11): 831-836.
    [13] M. Li, C. Wu, M. Jiang, Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers. J. Polym. Sci., Polym. Phys. Ed., 1997, 35(10): 1593-1599.
    [14] M. Li, M.Jiang, L.Zhu, C. Wu, Novel Surfactant-Free Stable Colloidal Nanoparticles Made of Randomly Carboxylated Polystyrene Ionomers. Macromolecules, 1997, 30(7): 2201-2203.
    [15] M. Li, Y. B. Zhang, M. Jiang, L.Zhu, C. Wu, Studies on Novel Surfactant-Free Polystyrene Nanoparticles Formed in Microphase Inversion. Macromolecules, 1998, 319(20): 6841-6844.
    [16] S. Y. Liu, T. J. Hu, H. J. Liang, M. Jiang, C. Wu, Self-Assembly of Narrowly Distributed Carboxy-Terminated Linear Polystyrene Chains in Water via Microphase Inversion. Macromolecules, 2000, 33(23): 8640-8643.
    [17] G. Z. Zhang, L. Liu, Y. Zhao, F.G. Ning, M. Jiang, C. Wu, Self-Assembly of Carboxylated Poly(styrene-b-ethylene-co-butylene-b-styrene) Triblock Copolymer Chains in Water via a Microphase Inversion. Macromolecules, 2000, 33(17): 6340-6343.
    [18] G. Z. Zhang, X. L. Li, M. Jiang, C. Wu, Model System for Surfactant-free Emulsion Copolymerization of Hydrophobic and Hydrophilic Monomers in Aqueous Solution. Langmuir, 2000,16(24): 9205-9207.
    [19] H.W. Shen, L. F. Zhang, A. Eisenberg, Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H_2O Mixtures. J. Am. Chem. Soc., 1999, 121(12): 2728-2740.
    [20] L. F. Zhang, A. Eisenberg, Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 1995, 268(5218): 1728-1731.
    [21] M. Moffitt, K. Khougaz, A. Eisenberg, Micellization of Ionic Block Copolymers. Acc. Chem. Res., 1996, 29(2): 95-102.
    [22] S.A. Jenekhe, X. L. Chen, Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science, 1998, 279(5358): 1903-1907.
    [23] H. W. Duan, D. Y. Chen, M. Jiang, W. Gan, S. Li, M. Wang, J. Gong, Self-Assembly of Unlike Homopolymers into Hollow Spheres in Nonselective Solvent. J. Am. Chem. Soc., 2001, 123 (48): 12097-12098.
    [24] M. Kuang, H. W. Duan, J. Wang, D. Y. Chen, M. Jiang, A novel approach to polymeric hollow nanospheres with stabilized structure. Chem Commun. 2003, (4): 496-497.
    [25] H.W. Duan, M.Kuang, J. Wang, D. Chen, M. Jiang, Self-Assembly of Rigid and Coil Polymers into Hollow Spheres in Their Common Solvent. J. Phys. Chem. B, 2004, 108(2): 550-555.
    [26] M. Kuang, H. W. Duan, J. Wang, M. Jiang, Structural Factors of Rigid-Coil Polymer Pairs Influencing Their Self-Assembly in Common Solvent. J. Phys. Chem. B, 2004, 108(41): 16023-16029.
    [27] J. F. Ding, G. J. Liu, Hairy, Semi-shaved, and Fully Shaved Hollow Nanospheres from Polyisoprene-block-poly(2-cinnamoylethyl methacrylate). Chem. Mater., 1999, 10(2): 537-542.
    [28] S. Steward, G. J. Liu, Hollow Nanospheres from Polyisoprene-block-poly(2-cirmamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem.Mater., 1999, 11(4): 1048-1054.
    [29] T. Sanji, Y. Nakatsuka, S. Ohnisli, H. Sakurai, Preparation of Nanometer-Sized Hollow Particles by Photochemical Degradation of Polysilane Shell Cross-Linked Micelles and Reversible Encapsulation of Guest Molecules. Macromolecules, 2000, 33(23): 8524-8526.
    [30] C. Nardin, T. Hirt, J. Leukel, W. Meier, Polymerized ABA Triblock Copolymer Vesicles. Langmuir, 2000, 16(3): 1035-1041.
    [31] W. Meier, Polymer nanocapsules. Chem. Soc. Rev., 2000, 29(5): 295-303.
    [32] H. Y. Huang, E. E. Remsen, T. Kowalewski, K. L. Wooley, Nanocages Derived from Shell Cross-Linked Micelle Templates. J. Am. Chem. Soc., 1999, 121(15): 3805-3806.
    [33] Q. Zhang, E. E. Remesen, K. L. Wooley, Shell Cross-Linked Nanoparticles Containing Hydrolytically Degradable, Crystalline Core Domains. J. Am. Chem. Soc., 122(15): 3642-3651.
    [34] K.L. Turner, K. L. Wooley, Nanoscale Cage-like Structures Derived from Polyisoprene-Containing Shell Cross-linked Nanoparticle Templates. Nano Lett., 2004, 4(4): 683-688.
    [35] F. Caruso, R.A. Caruso, H. Molhwald, Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science, 1998, 282(5391): 1111-1114.
    [36] F. Caruso, Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chem. Eur. J., 2000, 6(3): 413-419.
    [37] M. Wang, M. Jiang, F. L. Ning, D.Y.Chen, S.Y. Liu, H.W. Duan, Block-Copolymer-Free Strategy for Preparing Micelles and Hollow Spheres: Self-Assembly of Poly(4-vinylpyridine) and Modified Polystyrene. Macromolecules, 2002, 35(15): 5980-5989.
    [38] X.Y. Liu, M. Jiang, S.L. Yang, M. Q. Chen, D. Y. Chen, C. Yang, K. Wu, Micelles and Hollow Nanospheres Based on -Caprolactone-Containing Polymers in Aqueous Media. Angew. Chem. Int. Ed, 2002, 41(16): 2950-2953.
    [39] H. J. Dou, M. Jiang, H. S. Peng, D. Y. Chen, Y. Hong, pH-Dependent Self-Assembly: Micellization and Micelle-Hollow-Sphere Transition of Cellulose-Based Copolymers. Angew. Chem., Int. Ed., 2003, 42(13): 1516-1519.
    [40] Y.W. Zhang, M. Jiang, J. X. Zhao, J. Zhou, D. Y. Chen, Hollow Spheres from Shell Cross-Linked, Noncovalently Connected Micelles of Carboxyl-Terminated Polybutadiene and Poly(vinyl alcohol) in Water. Macromolecules, 2004, 37(4): 1537-1543.
    [41] I.C. Riegel, A. Eisenberg, Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene. Langmuir, 2002, 18(8): 3358-3363.
    [42] P.C. Hiemenz, Principle of Colloid and Surface Chemistry, Marcel Dekker, Inc, New York, Basel,1986:677-761.
    [43] C.S. Chem, C. K. Lee, C. C. Ho, Colloidal stability of chitosan-modified poly(methyl methacrylate) latex particles. Colloid Polym Sci., 1999, 277(6): 507-512.
    [1] 黄春辉,李富友,黄岩谊.光电功能超薄膜,北京:北京大学出版社,2001:238.
    [2] 黄华良,钟超凡,聚合物磷光电致发光材料的研究进展.化学通报,2006,69:1-7.
    [3] Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, Blue Electroluminescent Diodes Utilizing Poly(alkylfluorene) . Jpn. J. Appl. Phys: Part 2, 1991, 30(11b): L1941-L1943.
    [4] M. Fukuda, M. Sawada, K. Yoshino, Synthesis of fusible and soluble conducting polyfluorene derivatives and their characteristics J. Polym. Sci., Part A: Polym. Chem. 1993, 31: 2465-2471.
    [5] M. Bernius, M. Inbasekam, E. Woo. W. S. Wu, L. Wujkowski, J.. Mater Sci. Mater EL., 2000,111
    [6] X. Zhan, Y. Liu, D. Zhu, W. Huang, Q. Gong, Large Femtosecond Third-Order Nonlinear Optical Response in a Novel Donor-Acceptor Copolymer Consisting of Ethynylfluorene and Tetraphenyldiaminobiphenyl Units. Chem. Mater., 2001, 13(5): 1540-1544.
    [7] J. Ding, M. Day, G. Robertson, J. Roovers, Synthesis of Novel Fluorene-Based Poly(irninoarylene)s and Their .Application to Buffer Layer in Organic Light-Emitting Diodes. Macromolecules, 2002, 35(6): 2282-2287.
    [8] F. F. Uckert, S. Setayesh, K. Mullen, A Precursor Route to 2,7-Poly(9-fluorenone). Macromolecules, 1999, 32(14): 4519-4524.
    [9] 羌梁梁,新型聚芴类发光材料的合成与表征[D],上海:复旦大学,2005
    [10] G.Klaerner, R. D. Miller, Polyfluorene Derivatives: Effective Conjugation Lengths from Well-Defined Oligomers. Macromolecules, 1998, 31(6): 2007-2009.
    [11] P.R. Selvin, Fluorescence resonance energy transfer. Methods Enzymol., 1995, 246: 300-334.
    [12] M. A. Hossain, H. Mihara, A. Ueno, Novel Peptides Bearing Pyrene and Coumarin Units with or without -Cyclodextrin in Their Side Chains Exhibit Intramolecular Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc., 2003,125(37): 11178-11179.
    [13] Q.H. Xu, S. Wang, D. Korystov, A. Mikhailovsky, G. C. Bazan, D. Moses, A. J. Heeger, The fluorescence resonance energy transfer (FRET) gate: A time-resolved study. PNAS, 2005, 102(3): 530-535.
    [14] J. Lee, A. O. Govorov, N. A. Kotov, Bioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multistep Cascade Forster Resonance Energy Transfer and Energy Channeling. Nano Lett. 2005, 5(10): 2063-2069.
    [15] J. Kim, I. A. Levitsky, D. T. McQuade, T. M. Swager, Structural Control in Thin Layers of Poly(p- phenyleneethynylene)s: Photophysical Studies of Langrnuir and Langrnuir-Blodgett Films. J. Am. Chem. Soc., 2002, 124(26): 7710-7718.
    [16] K. Tajima, L. S. Li, S. I. Stupp,Nanostructured oligo(p-phenylene vinylene)/silicate hybrid films: One-step fabrication and energy transfer studies. J. Am. Chem. Soc., 2006, 128(16): 5488-5495.
    [17] S.A. Jenekhe, X. L. Chen, Supramolecular photophysics of self-assembled block copolymers containing luminescent conjugated polymers. J. Phys. Chem. B, 2000, 104(27): 6332-6335.
    [18] S.A. Jenekhe, X. L. Chen, Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes. Science, 1998, 279(5358): 1903-1907.
    [19] W. C. Cromwell, Cyclodextrin-adamantanecarboxylate inclusion complexes: studies of the variation in cavity size. J. Phys. Chem., 1985, 89(2): 326-332.
    [20] M. Ranger, D. Rondeau, M. Leclerc, New Well-Def'med Poly(2,7-fluorene) Derivatives: Photoluminescence and Base Doping. Macromolecules, 1997, 30(25): 7686-7691.
    [1] Savage D,Mattson G,Desai S,Nielander G W, Morgensen S,Conklin E J.Avidin-Biotin Chemistry:A Handbook.Rockford:Pierce Chemical Co,1992
    [2] B.K. Oh, J.M. Nam, S. W. Lee, C. A. Mirkin, A Fluorophore-Based Bio-Barcode Amplification Assay for Proteins. Small, 2006, 2(1): 103-108.
    [3] Demers LM, Ginger DS, Park SJ, et al. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography SCIENCE 296 (5574): 1836-1838 JUN 7 2002
    [4] J.M. Nam, A. R. Wise, J. T. Groves, Colorimetric Bio-Barcode Amplification Assay for Cytokines. Anal. Chem., 2005, 77(21): 6985-6988.
    [5] S.G. Penn, L. He, M.J. Natan, Nanoparticles for bioanalysis. Current Opinion in Chemical Biology 2003, 7(5): 609-615.
    [6] 黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社,2001:238.
    [7] 李善君,纪才圭等,高分子光化学原理及应用.上海:复旦大学出版社,1993:33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700