聚丙烯腈/四氧化三铁超滤膜的结构、性能及正交磁场的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了超滤的原理、超滤膜的分类与制备方法及影响超滤膜结构与性能的因素;综述了超滤的应用、存在的问题与发展趋势及有机/无机膜的研究进展。针对超滤膜中膜材分子取向不能根据膜微观结构需要进行人为控制的问题,首次选择磁性物质(Fe_3O_4)为无机填料,以聚丙烯腈为基材、二甲亚砜为溶剂、聚乙烯吡咯烷酮和聚乙二醇为致孔剂配制悬浮液,利用浸没沉淀相转化法在有磁场和无磁场作用下制备了PAN- Fe_3O_4超滤膜。采用DSC、DTG和DMA研究了膜的热稳定性,用浸泡法研究了膜的化学稳定性,用原子力显微镜(AFM)和电子显微镜(SEM,FESEM)观察了膜的微观结构,用错流超滤装置进行了纯水、牛血清蛋白水溶液、猪血溶液过滤实验评价了膜的分离性能。取得的主要成果与结论如下:
     膜材料的分子取向对超滤膜的微观结构有重要的影响。在正常的制膜条件下,用1500高斯正交磁场作用于膜的形成过程,可以控制膜材分子(Fe_3O_4)的取向,这为控制超滤膜的微观结构提供一种新的方法。
     对蛋白质溶液进行超滤时,超滤膜的相对渗透通量通常为20-30%。过滤猪血溶液的对比实验发现:在正交磁场作用下所制的PAN- Fe_3O_4超滤膜的渗透通量和相对渗透通量均高于相应无磁场作用下所制的PAN- Fe_3O_4超滤膜,而且,磁化膜的稳定相对渗透通量均在35%以上,个别能达到50%以上;磁化膜与非磁化对血液蛋白的截留率相近。同时,还阐明了该过程中膜的污染机理,该机理能很好地解释膜性能的变化规律。结果表明在PAN- Fe_3O_4超滤膜制备过程中使用外加磁场作用能有效提高膜的耐污染能力,这一结果为开发适用于血液处理的耐污染超滤膜提供了一种新途径;
     在PAN- Fe_3O_4超滤膜中,四氧化三铁与PAN在室温下没有形成化学键,也不存在官能团之间的相互作用;添加Fe_3O_4对膜的玻璃化温度没有影响,但能提高PAN环化脱氢反应的温度和分解温度;PAN- Fe_3O_4超滤膜的耐酸性强于耐碱性,在pH值为10以上的溶液中由于水解作用而溶解,使得膜失去使用价值,膜的耐酸性与酸的种类、浓度和氧化性有关。
     无外加磁场作用时所制得的PAN- Fe_3O_4超滤膜在结构与性能方面有以下规律:与不添加Fe_3O_4时相比,在铸膜液中添加1.1wt%的Fe_3O_4时,膜的平均孔径显著减小,表面粗糙度显著增大;随着Fe_3O_4添加量从1.1wt%增大到4.3wt%,膜的表面粗糙度逐渐减小,膜的平均孔径也基本呈现逐渐减小的趋势;随着Fe_3O_4添加量从0wt%增大到4.3wt%,膜的渗透通量和截留率呈现逐渐增大的趋势。
     Fe_3O_4微粒在PAN- Fe_3O_4超滤膜中的分布比较均匀,膜的矫顽力与Fe_3O_4添加量无关,均为114 Oe;膜的剩磁随着Fe_3O_4添加量增大而增大;膜样品进行饱和磁化所需的最小外加磁场强度为5400 Oe。
     在正交磁场作用下所制得的PAN- Fe_3O_4超滤膜在结构与性能方面有以下规律: Fe_3O_4的添加使膜的皮层厚度减小,并导致膜支撑层中的微孔由规则、整齐且垂直于膜平面的排列变为不规则、倾斜于膜平面的排列。膜的孔径、表面粗糙度随Fe_3O_4含量的增加先减小后增大;膜的纯水渗透通量、BSA溶液的渗透通量和相对抗污染性亦是随Fe_3O_4含量的增加先减小后增大。膜的截留率随Fe_3O_4含量的增加而逐渐减小,但变化范围在2%以内。与通常的结果不同,膜的渗透性能和抗污染性能与膜的表面粗糙度无关。
This dissertation introduces the principle of ultrafiltration, the classification and the manufacturing methods of ultrafiltration membrane, and, the facts influencing the microstructures and performance of ultrafiltration membrane. The reviews are also given for the applications of ultrafitration, the main problems existing in the application, the development trend of ultrafiltration, and, the research advance in the organo-mineral membranes. The orientation of material molecular in the ultrafiltration membrane has not been controlled at will according to the need of membrane microstructure. In order to solve this problem, novel PAN- Fe_3O_4 ogano-mineral ultrafiltration membranes were prepared under no magnetic field or an orthogonal magnetic field by the wet phase inversion process from suspentions. These suspentions consist of polyacrylonitrile (PAN), dimethyl sulfoxide (DMSO), ferrosoferric oxide (Fe_3O_4), polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG). The heat resistance and the solvent resistance of PAN-Fe_3O_4 ultrafiltration membrane were investigated by the analysis of TGA, DSC and DMA, and, the dissolving experiments, respectively. The microstructures of PAN- Fe_3O_4 ultrafiltration membrane were investigated by the Atomic Force Microscope (AFM) and the Scanning Electronic Microscope (SEM or FESEM). The performance of membranes was also examined by the filtration tests of pure water, BSA (Bovine Serum Albumin) aqueous solution and pig blood aqueous solution in a cross-flow ultrafiltration equipment. The main achievements and results are as follows:
     The arrangement orientation of material mocular has an important effect on the microstructure and the performance of ultrafiltration membrane. When an orthogonal magnetic filed of 1500Gs was applied in the manufacturing process of membrane, the result indicates that the arrangement orientations of material Fe_3O_4 are consistent with the magnetic field. This result may give a new method to control the microstructure of ultrafiltration membrane.
     In the ultrafiltration of protein solution, the relative flux of membrane is generally 20-30%. The contrast tests of pig blood solution indicates that the flux and the relative flux of a PAN- Fe_3O_4 membrane prepared under an orthogonal field are higher than that of a corresponding PAN- Fe_3O_4 membrane prepared under no field. In addition, the stable relative fluxes of magnetized membranes are above 35%, even over 50% for individual membrane. The difference between magnetized membranes and non-magnetized membranes is very small for the rejections to pig blood proteins. At the same time, the fouling mechanism of membranes given in this thesis can give a reasonable explanation on the change of membrane performance. Our results show that the magnetization of membranes can effectively improve the anti-fouling ability of the PAN- Fe_3O_4 membrane. The obtained result may give insight to the development of new membranes with a good anti-fouling performance in the filtration of blood solution.
     No chemical bond was found between PAN and Fe_3O_4 in the membrane at room temperature. The addition of Fe_3O_4 can improve the temperatures of dehydrogenated reaction and decomposition of PAN but dot change the glassy transition temperature. The resistance against acid is stronger than the resistance to base for a PAN- Fe_3O_4 membrane. This membrane will lose the value in a solution with pH value of over 10. The resistance against acid for this membrane depends on the concentration and the oxidation of an acid.
     For the PAN- Fe_3O_4 membranes, a 1.1wt% addition of Fe_3O_4 can obviously reduce the mean pore size and increase the surface roughness. But the addition of Fe_3O_4 change from 1.1wt% to 4.3wt%, the roughness and the pore size of membrane gradually become small. In addition, the water flux and the rejection of membranes basically become high with the change of Fe_3O_4 addition amount form 0wt% to 4.3wt%.
     The Fe_3O_4 particles are well-distributed in the PAN- Fe_3O_4 membrane. The magnetic coercivity of the PAN- Fe_3O_4 membrane is 114Oe and don not change with the Fe_3O_4 content in a membrane. The remanent magnetizations of membranes are improved with the increase of Fe_3O_4 content. Membrane samples can reach the saturation of the magnetization when the external fields reach above 5400Oe.
     For the PAN- Fe_3O_4 membranes prepared under an orthogonal magnetic field, the addition of Fe_3O_4 can reduce the thickness of membrane skinlayer and result in a change of macro pores in sublayer from regular, and perpendicular to the membrane plane to irregular and oblique to the membrane plane. The pore size, the surface roughness, the pure water fluxe, and the flux of BSA solution first reduce and then increase with the increase of Fe_3O_4 addition amount in the membranes. The rejections gradually decline with the increase of Fe_3O_4 addition amount and change within 2%. Contrary to the common results, the membrane permeability and the anti-fouling performance appear to have no direct correlation to the roughness of membrane surface in our results.
引文
[1] 朱长乐.膜科学技术(第二版).北京:高等教育出版社.2004.
    [2] Cheryan M.. Ultrafiltration Handbook. Pennsylvania: Technomic Publishing Company, Inc.. 1986.
    [3] 时钧,袁权,高从喈主编.膜技术书册.北京:化学工业出版社.2001.
    [4] Mulder M.. Basic Principles of Membrane Technology (Second Edition). Dordrecht: Kluwer Academic Publishers. 2003.
    [5] 范松春,鲍世耀.丙烯腈二元共聚物超滤膜的研制.环境化学,1993,1:1-7.
    [6] 吴开芬.高通量聚丙烯腈超滤膜的研究.膜科学与技术,1999,19(3):48-50.
    [7] 许其 军 , 王彬 黄 , 张 慰盛 . 聚 丙 烯 腈 超 滤 膜 成 膜 工 艺 的 研 究 . 化 学 世 界.1992,8:118-122.
    [8] 张胜兰, 沈新元, 李继平. 凝固条件对聚丙烯腈超滤膜结构与性能的影响. 中国纺织大学学报,2000,26(4):4-7.
    [9] 何 昌 生 , 朱 娜 姗 . 卷 式 PAN 超 滤 膜 制 作 工 艺 及 其 应 用 . 膜 科 学 与 技术,1990,10(1):8-22.
    [10] 施飞舟,王庆瑞,陈雪英. 纺丝工艺对医用PAN中空纤维超滤膜性能的影响. 中国纺织大学学报,1993,5:65-72.
    [11] Schamag N., Buschatz H.. Polyacrylonitrile (PAN) membranes for ultra- and microfiltration. Desalination, 2001, 139:191-198.
    [12] Kim I.C., Yun H.G., Lee K.H.. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. J. Membr. Sci., 2002, 199: 75–84.
    [13] Jung B.. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J. Membr. Sci., 2004, 229: 129–136.
    [14] Qin J.J., Cao Y.M., Li Y.Q., et al. Hollow fiber ultrafiltration membranes made from blends of PAN and PVP. Sep. Purif. Technol., 2004, 36 :149–155.
    [15] Matsuura T.. Synthetic Membranes and Membrane Separation Processes, CRC Press,Boca Raton, FL, 1994.
    [16] Nouzaki K., Nagata M., Araib J., et al. Preparation of polyacrylonitrile ultrafiltration membranes for wastewater treatment. Desalination, 2002,144 :53-59.
    [17] Jimenez D. B. M., Narbaitz R. M., Matsuura.T., et al. Influence of processing conditions on the properties of ultrafiltration membranes. J. Membr. Sci., 2004, 231:209–224.
    [18] 徐英, 李发永, 李阳初等. 用聚砜和磺化聚砜超滤膜处理含油污水的研究. 石油大学学报(自然科学版), 1997, 21 (2):67-69.
    [19] 邹小兵, 孟刚, 郑泽根等. 治理明胶生产废水污染研究进展. 明胶科学与技术, 2001, 21 (2):57-66.
    [20] 王静荣, 吴光夏, 吴开芬等. 中空纤维超滤膜处理油田含油污水的研究. 膜科学与技术, 1998, 18 (2):25-27.
    [21] 郑辉东,董声雄,赵素英等. 中空纤维超滤膜回收PVA废水研究. 福建化工, 2004, 1:1-3.
    [22] 钟璟. 中空纤维超滤膜处理染料废水的试验研究. 江苏石油化工学院学报, 2002, 14 (3):5-7.
    [23] 杜启云, 张玉忠, 韩素英等. 中空纤维超滤膜处理阴极电泳漆. 涂料工业, 1993 3:34-37.
    [24] Nicolaisen B.. Developments in membrane technology for water treatment. Desalination, 2002, 153: 355-360.
    [25] 钟璟. 中空纤维超滤膜处理染料废水的试验研究. 江苏石油化工学院学报, 2002, 14 (3):5-7.
    [26] 张捍民, 王宝贞. UF膜和MF膜技术在饮用水处理中应用现状的研究. 哈尔滨建筑大学学报, 2000, 33 (6):58-61.
    [27] 江成璋, 林一铮, 宋玉官等. BS 系列中空纤维超滤膜在生物技术中的应用. 水处理技术, 1991, 17 (5):283-288.
    [28] 李发永, 李阳初, 蒋成新. 超滤法处理低渗透油田回注污水的应用研究. 油气田环境保护, 1995, 5 (3):7-11.
    [29] Jiao B., A. Cassano A., Drioli E.. Recent advances on membrane processes for theconcentration of fruit juices: a review. J. Food Eng., 2004, 63: 303–324.
    [30] McIlvaine Co. of Northfield. Sales of membrane systems set to grow. Membr. Technol., 2005, 9, 4.
    [31] 陈历俊, 白云玲, 郭亚斌等. 超滤技术在果汁生产中的应用. 食品工业, 1996, 2:17-18.
    [32] Cuperus F.P.. Membrane processes in agro-food: State-of-the-art and new opportunities. Sep. Purif. Technol., 1998, 14: 233–239.
    [33] 赵峰, 余志荣, 陆晓千等. 超滤技术在处理乳化油废水中的应用. 辽宁城乡环境科技, 2000, 20 (1):56-58.
    [34] 赵玉华, 安鼎年, 葛永军. 超滤技术用于城市污水深度处理的试验研究. 沈阳建筑工程学院学报, 1996, 12 (4): 447-451.
    [35] 徐英, 李发永, 李阳初等. 超滤膜处理含油污水后污垢的清洗. 石油大学学报(自然科学版), 1997, 21 (4): 70-73.
    [36] 任冬伟, 王勇. 超滤膜法浓缩新型苏云金杆菌(Bt)杀虫剂. 水处理技术, 1998, 24 (4): 215-219.
    [37] 方忠海, 薛家慧, 仝志明等. 超滤膜分离技术在炼油废水深度处理中的应用. 工业水处理, 2003, 23 (7):76-78.
    [38] 王艳丽. 超滤法在热轧废乳液处理中的应用. 河南科技大学学报(自然科学版), 2004, 25 (5): 96-99.
    [39] Ocho N., Pagliero C., Marchese J., et al. Ultrafiltration of vegetable oils Degumming by polymeric membranes. Sep. Purif. Technol., 2001, 22-23: 417–422.
    [40] 赵文华. 超滤技术在工业水处理中的应用. 科技情报开发与经济, 2000, 10 (5): 86-87.
    [41] 尹沛松, 田丰. 中空纤维超滤膜在华药制备无菌除热原水中的应用. 膜科学与技术, 1999, 19 (3):54-56.
    [42] 方孝华. 中空纤维超滤膜在硫酸卡那霉素生产中的应用. 医药工程设计, 1998, 3: 11-13.
    [43] 朱卫兵, 龚方红. 中空纤维超滤膜在青霉素酰化酶浓缩中的应用. 江苏石油化工学院学报, 2000, 12 (3): 24-26.
    [44] 张赞红,施亚钓. 超滤膜分离技术的应用及膜污染问题. 化学世界, 1993, 34 (6):242-245.
    [45] 王静,张雨山. 超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势. 工业水处理, 2001, 21(3): 4-7.
    [46] 李存芝 , 李琳 , 郭祀远等 . 超滤膜改性技术及其应用 . 广东化工 . 2003, (3):161-165.
    [47] Lindau J., Jǒnsson A.S.. Adsorptive fouling of modified and unmodified commercial polymeric ultrafiltration membranes. J. Membr. Sci.,1999, 160 :65-76.
    [48] Huisman I.H., Williams K.. Autopsy and failure analysis of ultrafiltration membranes from a waste-water treatment system. Desalination, 2004,165:161-164.
    [49] 张国俊,刘忠洲. 膜过程中超滤膜污染机制的研究及其防治技术进展. 膜科学与技术, 2001, 21 (4):39-45.
    [50] 吕少丽,王红军,徐又一. 聚醚砜超滤膜的亲水化改性研究进展. 膜科学与技术, 2005, 25 (3):80-84.
    [51] Higuchia A., Shiranoa K., HarashimaaM., et al.Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials, 2002, 23: 2659–2666.
    [52] J?nsson C., J?nsson A.S. Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. J.Membr. Sci., 1995,108:79-87.
    [53] 戴海平,王龙兴,王铮. 中空纤维超滤膜污染行为的研究. 天津纺织工学院学报. 1998, 17 (1):35-38
    [54] 王磊,福士宪一. 影响超滤膜长期、稳定运行的因素分析. 中国给水排水, 2002,18 (4): 44-46.
    [55] 王磊,福士宪一. 运行条件对超滤膜污染的影响. 中国给水排水, 2002,17 (10):1-4.
    [56] Jimenez D.B.M., Narbaitz R.M., Matsuura T., et al. Influence of processing conditions on the properties of ultrafiltration membranes. J.Membr. Sci., 2004, 231: 209–224.
    [57] Kamrath M.A., Musale D.A.. Assessing ultrafiltration performance problems. Filtr. Sep., 2004, 12: 36-40.
    [58] Ahmad A.L., Ibrahim N., Bowen W.R.. Automated electrophoretic membrane cleaning for dead-end microfiltration and ultrafiltration. Sep. Purif. Technol., 2002, 29 :105–112.
    [59] Weis A., Bird M.R., Nystr?m M..The chemical cleaning of polymeric UF membranes fouled with spent sulphite liquor over multiple operational cycles. J. Membr. Sci., 2003, 216 : 67–79.
    [60] 陈虎,刘进荣, 马青山. 超滤膜分离过程强化方法综述. 水处理技术, 2003,29(2):70-72.
    [61] Kyll?nen H.M., Pirkonen P., Nystr?m M.. Membrane filtration enhanced by ultrasound: a review. Desalination, 2005, 181: 319-335.
    [62] Ahnet N., Gottsech D., Naran S.. Piezoelectrically assisted ultrafiltration.Sep. Sci. Techno1., 1993, 28(1-3): 895-908.
    [63] Kokugan T., Fujiwara S., Shimizu M.. Ultrasonic effect on ultrafitration properties of ceramic membrane. Membrane, 1995, 20(2):213-215.
    [64] Chai X.,Kobayashi T.,Fujii N..Ultrasound effect on crossflow filtration of polyacrylonitril ultrafiltration.J. Membr. Sci., 1998, 148(1): 129-135.
    [65] Kyll?nen H., Pirkonen P., Nystr?m M., et al. Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrason. Sonochem. , 2006, 13:295–302.
    [66] Ghosh R., Cui Z.F.. Fractionation of BSA and lysozyme using ultrafiltration: effect of pH and membrane pretreatment. J. Membr. Sci., 1998,139:17-28.
    [67] Ma H., Bowman C.N., Davis R.H.. Membrane fouling reduction by backpulsing and surface modification. J. Membr. Sci., 2000, 173 :191–200.
    [68] Pieracci J., Crivello J.V., Belfort G.. Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. J. Membr. Sci., 1999, 156: 223-240.
    [69] 张凤杰,朱岚. 超滤膜改性技术的研究发展. 大连民族学院学报, 2005, 7 (5):26-29.
    [70] Ismail A.F., Lai P.Y.. Effects of phase inversion and rheological factors on formation of defect-free and ultrathin-skinned asymmetric polysulfone membranes for gas separation. Sep.Purif. Technol., 2003, 33:127-143.
    [71] Capannelli G., Bottino A., Gekas T., et a1.Protein fouling behavior of ultrafiltration membranes prepared with varying degrees of hydrophilicity.Process Bichem. Lut.,1990, 25(6): 221-224.
    [72] Mariana D. D.,Carmina L., Tatiana P..Surface modifications of polyvinylidene fluoride(PVDF)under Ar plasma.Polymer Degradation and Stability,1998(61): 65-72.
    [73] Ulbricht M.,Matuschewski H.,Oechel A.,et a1.Photo-induced graft polymerization surface modification for the preparation of hydrophilic and low protein-adsorbing ultrafiltration membrane.Membr. Sci., 1996, 115: 31-47.
    [74] Yoon J.Y., YoonY.M. Modification of the polycarbonate/poly(vinylidene fluoride) interface by poly(methyl methacrylate)effect. Water research, 2003, 37(10): 2001-2012.
    [75] Ding X.P., Fan Y.Q., Xu N.P.. A new route for the fabrication of TiO2 ultrafiltration membranes with suspension derived from a wet chemical synthesis. J. Membr.Sci., 2006, 270:179–186.
    [76] Lin S.W., Gomez H.E.. Development of energy-saving spinning membrane system and negatively charged ultrafiltration membranes for recovering oil from waste machine cutting fluid. Desalination, 2005, 174:109-123.
    [77] Hamza A., Pham V.A., Matsuura. T., et al. Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications. J. Membr. Sci., 1997, 131: 217-227.
    [78] Shukl R., Cheryan M..Performance of ultrafiltration membranes in ethanol–water solutions: effect of membrane conditioning. J. Membr. Sci., 2002, 198: 75–85.
    [79] Nie F.Q., Xu Z.K., Yang Q., et al. Surface modification of poly (acrylonitrile-co-maleic acid) membranes by the immobilization of poly(ethylene glycol). J.Membr. Sci., 2004, 235:147–155.
    [80] Ulbricht M., Belfort G.. Surface modification of ultrafiltration membranes by low temperature plasma. II.Graft polymerization onto polyacrylonitrile and polysulfone. J.Membr. Sci., 1996, 111: 193-215.
    [81] Yang M.C., Liu T.Y.. The permeation performance of polyacrylonitrile /polyvinylidine fluoride blend membranes. J. Membr. Sci., 2003, 226: 119–130.
    [82] Goossens I., Haute A.V. The use of direct osmosis tests as complementary experiments to determine the water and salt permeabilities of reinforced cellulose acetate membranes. Desalination, 1978, 26: 299-308.
    [83] Goossens I., Haute A.V. The influence of mineral fillers on the membrane properties of high flux asymmetric cellulose acetate reverse osmosis membrane. Desalination, 1976, 18:203-214.
    [84] Finken H.. Bentonite-stabilized CDA/CTA membrane. I. Improved long-term transport properties. Desalination, 1983, 48: 207-221.
    [85] Morikawa A., Iyoku Y., Kakimoto M., et al. Preparation of a new class of polyimide–silica hybrid films by sol–gel process. Polymer, 1992, 24 (1):107–113.
    [86] Goldman M., Frankel D., Levin G.. A zeolite-polymer membrane for the separation of ethanol-water azeotrope. J. Appl. Polym. Sci., 1989, 37, 1791.
    [87] Hennepe H.J.C., Bargeman D., Mulder M.H.V., et al. Zeolite-filled silicone rubber membranes. Part 1. Membrane preparation and pervaporation results. J. Membr. Sci., 1987, 35:39–55.
    [88] Jia M., Peinemann K.V., Behling R.D.. Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas permeation. J. Membr. Sci., 1991, 57: 289–296.
    [89] Jia M., Peinemann K.V., Behling R.D.. Preparation and characterization of thin-film zeolite-PDMS composite membranes. J. Membr. Sci., 1992, 73: 119–128.
    [90] Ebert K., Fritsch D., Koll J. et al。Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes. J. Membr. Sci. 2004, 233:71–78。
    [91] Zhong S.H., Li C.F., Xiao X.F.. Preparation and characterization of polyimide–silica hybrid membranes on kieselguhr–mullite supports. J. Membr. Sci., 2002, 199: 53–58。
    [92] Shao Z.G., Joghee P., Hsing I.M. . Preparation and characterization of hybridNafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J. Membr. Sci., 2004, 229: 43–51.
    [93] Kusakabe K., Ichike K., Hayashi J.I., et al.. Preparation and characterization of silica–polyimide composite membranes coated on porous tubes for CO2 separation. J. Membr. Sci., 1996, 115 : 65–75.
    [94] Smaihi M., Schrotter J.C., Lesimple C., et al. Gas separation properties of hybrid imide–siloxane copolymers with various silica contents. J. Membr. Sci., 1999, 161: 157–170.
    [95] Vankelecom I.F.J., Depré D., Beukelaer S.D.,et al. Influence of zeolites in PDMS membranes: pervaporation of water/alcohol mixtures. J. Phys. Chem., 1995, 99: 13193–13197.
    [96] Okumus E. ? Gürkan T., Yilmaz L.。Effect of fabrication and process parameters on the morphology and performance of a PAN-based zeolite-filled pervaporation membrane. J. Membr.Sci., 2003, 223:23–38
    [97] Roda G.C.. Performances of filled and unfilled PTMSP membranes in pervaporation. Chem. Eng. Commun., 1998, 163:3–22.
    [98] Gao Z., Yue Y., Li W.. Application of zeolite-filled pervaporation membrane. Zeolites, 1996, 16:70–74.
    [99] Lu S.Y., Chiu C.P., Huang H.Y.. Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes. J. Membr. Sci., 2000, 176:159–167.
    [100] Huang J., Meagher M.M.. Pervaporative recovery of n-butanol from aqueous solution and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes. J.Membr. Sci., 2001, 192: 231–242.
    [101] Chen X., Ping Z.H., Long Y.C.. Separation properties of alcohol–water mixture through silicalite-filled silicone rubber membranes by pervaporation. J. Appl. Polym. Sci. 1998, 67: 629-636.
    [102] Vermeiren P., Adriansens W., Moreels J.P., et al. Evaluation of the Zirfon? separator for the use in alkaline water electrolysis and Ni–H2 batteries, Int. J. Hydrogen Energy , 1998, 23:321–324.
    [103] Nagarale R.K., Gohil G.S., Shahi V. K., et al.Preparation of organic–inorganiccomposite anion-exchange membranes via aqueous dispersion polymerization and their characterization. J. Coll. Interf. Sci., 2005, 287:198–206.
    [104] Nagarale R.K., Shahi V. K., Rangarajan R.. Preparation of polyvinyl alcohol–silica hybrid heterogeneous anion-exchange membranes by sol–gel method and their characterization. J. Membr. Sc., 2005, 248: 37–44.
    [105] Wu C.M., Xu T.W., Yang W.H.. Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations. J. Membr. Sci., 2003, 216: 269–278.
    [106] Fujiharaa K., Kotakib M., Ramakrishna S.. Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials, 2005, 26: 4139–4147.
    [107] 李先锋,肖长发.二氧化硅填充聚醚砜超滤膜.水处理技术,2004,30(6): 320-322.
    [108] 姜云鹏,王榕树. 纳米 SiO2/PVA 复合超滤膜的制备及性能研究. 高分子材料科学与工程,2002,18(5):177-180.
    [109] 姜云鹏,王榕树. 纳米 SiO2 一聚乙烯醇复合超滤膜的制备及应用, 工业水处理,2002, 22(5): 12-14.
    [110] Bottino A., Capannelli G., Dasti V., et al. Preparation and properties of novel organic–inorganic porous membranes. Sep. Purif. Technol., 2001, 22-23: 269–275.
    [111] Wara N.M., Francis L.F., Velamakanni B.V.. Addition of alumina to cellulose acetate membranes. J. Membr. Sci., 1995, 104: 43–49.
    [112] Genné I., Kuypers S., Leysen R.. Effect of the addition of ZrO2 to polysulfone based UF membranes. J. Membr. Sci., 1996, 113: 343–350.
    [113] Genne I., Doyen W., Adriansens W.et al. Organomineral ultrafiltration membranes. Filtr. Sep., 1997, 34: 964-973.
    [114] Doyen W., Adriansens W., Molenberghs B., et al. Acomparison between polysulfone, zirconia and organo-mineral membranes for use in ultrafiltration. J. Membr. Sci., 1996, 113: 247-258.
    [115] Aerts P., Hoof E.V., Leysen R.et al。Polysulfone–Aerosil composite membranes. Part 1. The influence of the addition of Aerosil on the formation process and membrane morphology. J. Membr. Sci., 2000, 176: 63–73。
    [116] Aerts P., Genne I., Kuypers S.,et al. Polysulfone–aerosil composite membranes. Part 2. The influence of the addition of aerosil on the skin characteristics and membrane properties. J. Membr. Sci., 2000, 178: 1-11.
    [117] Faibish R. S., Cohen Y.. Fouling-resistant ceramic-supported polymer membranes for ultrafiltration of oil-in-water microemulsions. J. Membr. Sci., 2001, 185: 129–143.
    [118] Baea T.H., Kimb I.C., Tak T.M.. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J.Membr. Sci., 2006, 275:1–5.
    [119] Liu Y., Wand A., Claus R.. Molecular self-assembly of TiO2/polymer nanocomposite films. J. Phys. Chem. B, 1997, 101:1385–1388.
    [120] Kwak S.Y., Kim S.H., Kim S.S.. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin film composite (TFC) membrane. Environ. Sci. Technol., 2001, 35, 2388–2394.
    [121] Bae T.H., Tak T.M.. Effects of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci., 2005, 249 : 1–8.
    [122] Bae T.H., Tak T.M.. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J. Membr. Sci., 2005, 266:1–5.
    [123] Lee S.A., Choo K.H., Lee C.H., et al. Use of ultrafiltration membranes for the separation of TiO2 photocatalysis in drinking water treatment. Ind. Eng. Chem. Res.,2001, 40:1712–1719.
    [124] 樊文玲, 陆晓峰. 原子力显微镜在聚合物膜研究中的应用. 核 技 术, 2003, 26(3): 233-238.
    [125] 钱 欣, 程 蓉. 原子力显微镜在合成膜表征中的应用. 膜科学与技术, 2004, 24(2): 62-67.
    [126] Bessières A., Meireles M., Coratger R., et al. Inverstigation of surface properties of polymeric membranes by near field microscopy. J. Membr. Sci., 1996, 109:271-284.
    [127] Barzin J., Feng C., Khulbe K.C., et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy. Membr. Sci.,2004, 237: 77-85.
    [128] Yang S., Liu Z.. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. J. Membr. Sci., 2003, 222:87-95.
    [129] 王兰娟,张才菁, 聚丙烯腈超滤膜铸膜液配方的优选试验.石油太学学报(自然科学版),1997,4:67-69.
    [130] 王保国,蒋维均. 聚丙烯腈中空纤维超滤膜.水处理技术,1995,1:11-14.
    [131] Yang S.,Liu Z.Z..Efect of additive on the formation of polyacrylonitrile membrane. J.Environ. Sci., 2004,16(2):191—193.
    [132] Musale D.A., Kulkarni S.S. Fouling reduction in poly(acrylonitile-co-acrylamide) ultrafiltration membranes. J.Membr. Sci., 1996, 111: 49-56.
    [133] Yang S., Zhongzhou Liu Z.Z., Chen H. Z.. A gas–liquid chemical reaction treatment and phase inversion technique for formation of high permeability PAN UF membranes. J. Membr. Sci., 2005, 246: 7–12.
    [134] 王静荣,刘福谅,丙烯腈共聚物超滤膜的研究,水处理技术,1993,6:443-447.
    [135] 王静荣,刘福谅.丙烯腈共聚物超滤膜的研究.环境化学,1993,12(6):444-448.
    [136] 鲁学仁,高从喈,王绠珍.丙烯酸-丙烯腈共聚物盐荷电膜的制备和性能研究.水处理技术,1997, 23(1):1-6.
    [137] 王英特,郭明远.聚丙烯腈超滤膜氩低温等离子体表面改性的研究.山西化工,2000,24(4):1-3.
    [138] 杨牛珍,王英特,郭晴远等.聚丙烯腈超滤膜低温氧等离子体表面改性.西北纺织工学院学报,2000,3:314-317.
    [139] 杨牛珍,蒋 莉,王英特等.CA与PAN超滤膜低温氧等离子体表面改性结果的比较研究.纺织高校基础科学学报,2005,2:175-177.
    [140] 张丹霞, 陈翠仙,李继定等.聚丙烯腈超滤膜的等离子体接枝改性(I)膜材料的表面结构与性能. 膜科学与技术,2003,5:15-18.
    [141] 刘永建,沈新元,王庆瑞等.PAN/CA铸膜液与膜结构和性能的关系.水处理技术,1998,4:195-199.
    [142] 凌 爱 莲.CA/PAN共混超滤膜的研制.北京工业大学学报,1993,19(3):1110-114.
    [143] Bumsuk J.. Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration. J. Membr. Sci., 2004, 229: 129–136.
    [144] 王保国,孙洪亮 蒋维钧,王淑霞.PS/PAN共混中空纤维超滤膜的研究.水处理技术,1996,22(2):85-88.
    [145] 丁马太,余乃梅,何旭敏等. PVC/PAN共混超滤膜的研究.I.PVC与PAN相容性对共混超滤膜结构与性能的影响.水处理技术,1991,17(4):211-216.
    [146] 丁马太,余乃梅,何旭敏等.PVC/PAN共混超滤膜的研究. Ⅱ .铸膜液组成对膜结构与性能的影响.水处理技术,1991,17(5):295-299.
    [147] 方少明,王明花,周立明等. 聚丙烯腈共混超滤膜的研究. 郑州轻工业学院学报(自然科学版),2005,20(1):28-30.
    [148] 于志辉,钱英,付丽等. 聚偏氟乙烯/聚丙烯腈共混超滤膜的研究. 膜科学与技术,2000,20(5):10-15.
    [149] Arajs S., Amin N.,Anderson E.E.. Magnetic coercivity of Fe3O4 particle systems. J. Appl. Phys., 1991, 69 (8): 5122-5123.
    [150] 邓国宏,余立新,郝继华等. 聚乙烯醇/二氧化硅共混膜的制备及耐温、耐溶剂性能研究.高分子材料科学与工程,2001,17(6):122-125.
    [151] 凌爱莲,王树森,王志忠等.丙烯腈二元共聚物超滤膜的物化稳定性.环境化学,1993,12(1):8-12.
    [152] 张介立,杨华,林德明等.磁场作用下Fe3O4磁性液体薄膜形貌和热效应.中山大学学报(自然科学版),2000,39(6):117-119.
    [153] 邓建国,彭宇行,丁小斌等.磁性聚苯胺纳米微球的合成与表征.化学物理学报,2002,15(2):149-152.
    [154] 王雁冰,黄志雄,张联盟.DMA在高分子材料研究中的应用. 国外建材科技,2004,25(2):25-27.
    [155] Khulbe K. C., Feng C. Y., Hamad F., et al. Structural and performance study of micro porous polyetherimide hollow fiber membranes prepared at different air-gap. J. Membr. Sci., 2004, 245: 191.
    [156] Kapantaidakis G. C., Koops G. H., Wessling M.. Effect of conditions on the structure and gas permeation properties of high flux polyethersulfone-polyimide blend hollow fibers. Desalination. 2002, 144:121.
    [157] Qin J. J., Gu J., Chung T. S.. Effect of wet and dry-jet wet spinning on the shear-induced orientation during the formation of ultrafiltration hollow fiber membranes. J. Membr. Sci. 2001, 182:57.
    [158] Khayet M.. The effects of air gap length on the internal and external morphology of hollow fiber membranes. Chem. Eng. Sci. 2003, 58:3091.
    [159] Chung T. S., Qin J. J., Huan A., et al. Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. J. Membr. Sci. 2002, 196: 251.
    [160] Sousa M. H., Rubin J. C., Sobrinho P. G.. Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Mater. 2001, 225(1-2):67-72.
    [161] Bowen W.R., Jenner F.. Theoretical descriptions of membrane filtration of colloids and fine particles: an assements and review. Adv. Coll. Inter. Sci.., 1995, 56: 141-200.
    [162] Prádanos P., Hernández A., Calvo J.I., et al. Mechanisms of protein fouling in cross-flow UF through an asymmetric inorganic membrane. J. Membr. Sci. 1996, 114:115-126.
    [163] Singh S., Khulbe K. C., Matsuura T., et al. Membrane characterization by solute transport and atomic force microscopy. J. Membr. Sci. 1998, 142,111.
    [164] Khayet M., Feng C. Y., Matsuura T.. Morphological study of fluorinated asymmetric polyetherimide ultrafiltration membranes by surface modifying macromolecules. J. Membr. Sci. 2003, 213:159.
    [165] Fritzche A. K., Arevalo A. R., Connolly A. F., et al. The structure and morphology of skin of polyethersulfone ultrafiltration membrames: A comparative atomic force microscope and scanning electron microscope study. J. Appl. Polym.Sci. 1992, 45:1945.
    [166] Bowen W. R., Hilal N., Lovitt R. W., et al. Atomic Force Microscope Studies of Membranes: Surface pore structures of Diaflo ultrafiltration membranes. J. Coll. Inter.Sci. 1996, 180:350.
    [167] Tong P. S., Barbano D. M., Rudan M. A.. Characterisation of proteinaceous membrane foulants and flux decline durin the early stags of whole milk filtration. J.Dairy Sci. 1988, 71: 604-612.
    [168] Jaffrin M. Y., Ding L. H., Defossez M., et al. Interpretation of transient ultrafiltration and microfiltration of blood and protein solutions. Chem. Eng. Sci. 1995, 6: 907-915.
    [169] Elimelech M., Zhu X, Childress A. E.. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 1997, 127:101.
    [170] Huisman I. H., Prádanos P., Hernández A.. The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J. Membr. Sci. 2000, 179:79-90.
    [171] Babu P. R., Gaikar V. G.. Membrane characteristics as determinant in fouling of UF membranes. Sep. Purif. Technol. 2001, 24:23-34.
    [172] Sattelee L. D., Free B., Leven B.. Utilization of high protein tissue powders as binder/extender in meat emulsion. J. Food Sci.. 1973, 38:306-309.
    [173] Fernando T.. Concentration of animal blood by ultrafiltration. Biotechnol. Bioengin., 1981, 23:19-27.
    [174] Moure F., Rendueles M., Díaz M.. Bovine plasma protein fractionation by ion exchange chromatography. Bioprocess Biosyst. Eng., 2004, 27:17-24.
    [175] Meireles M., Lavoute E., Bacchin P.. Filtration of a bacterial fermentation broth: harvest conditions effects on cake hydraulic resistence. Bioprocess Biosyst. Eng. 2003, 25:309-314.
    [176] Thomas O. M., Jaouen P., Legentilhomme P.. The role of exopolysaccharids in fouling phenomenon during ultrafiltration of microalgae. Bioprocess Biosyst. Eng., 2002, 25:35-42.
    [177] Grigorov V., Markov E., Rusev J.. Studies on the optimum parameters of concentrating blood plasma by ultrafiltration. Proc. Eur. Meat Res. workers. 1986, 32:375-377.
    [178] Rendueles M., Moure F., Fernández A., et al. Preliminary studies on the processing of slaughter-house blood for protein recovery. Resour. Environ. Biotechnol., 1996, 1:193-206.
    [179] Juárez C. G., Castellanos R., Noyola T. P., et al. Protein recovery from slaughterhouse wastes. Bioresour. Technol., 1999, 70:129-133.
    [180] Belhocine D., Grib H., Abdessmed D., et al. Optimization of plasma proteins concentration by ultrafiltration. J. Membr Sci., 1998, 142:159-171.
    [181] Torres M. R., Marín F. R., Ramos A. J., et al. Study of operating conditions in concentration of chicken blood plasma proteins by ultrafiltration. J. Food Engin., 2002, 54: 215-219.
    [182] Noordman T. R., Jonge A. D., Wesselingh J. A., et al. Application of fluidised particles as turbulence promoters in ultrafiltration:Improvement of flux and rejection. J. Membr. Sci., 2002, 208:157-169.
    [183] Lo Y. M., Cao D. H., Soysal S. A., et al. Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Bioresour. Technol.. 2005, 96: 687-698.
    [184] Taniguchi M., Belfort G.. Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type. J. Membr. Sci. 2004, 231: 147-157.
    [185] Nie F. Q., Xu Z. K., Ye P., et al. Acrylonitrile –based copolymer membranes containing reactives groups: effects of surface-immobilized poly(ethylene glycol)s on anti-fouling properties and blood compatibilty. Polymer, 2004, 45: 399-407.
    [186] Mueller J., Davis R. H.. Protein fouling of surface-modified polymeric microfiltration membranes. J. Membr. Sci., 1996, 116:47-60.
    [187] Musale D. A., Kulkarni S. S.. Fouling reduction in poly(acrylonitrile-co-acrylamide) ultrafiltration membranes. J. Membr. Sci., 1996, 111:49-56.
    [188] Torres M. R., Ramos A. J., Soriano E.. Ultrafiltration of blood proteins by experimental polyamide membranes. Bioprocess Engin., 1998, 19:213-215.
    [189] Ye S. H., Watanabe J., Iwasaki Y., et al. Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials, 2003, 24:4143-4152.
    [190] Qin J. J., Cao Y. M., Li Y. Q., et al. Hollow fiber ultrafiltration membranes made from blends of PAN and PVP. Sep. Purif. Technol., 2004, 36:149-155.
    [191] Higashi T., Yamagishi A., Takeuchi T., et al. Effects of static magnetic field on erythrocyte rheology. Bioelectrochem. Bioenerg., 1995, 36:101-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700