可生物降解的注射植入型rac-KET控释给药系统体内外立体选择性释放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为延长药物在体内的作用时间,采用新颖的药物释放系统(drug deliverysystems,DDS)不失为一种理想方法,而可生物降解的可注射植入剂(injectableimplants)是其中一种具有良好发展前景的释放系统。注射植入剂以可生物降解的辅料如乳酸—乙醇酸共聚物(DL-PLGA)等为制剂骨架,药物溶解或混悬于PLGA溶液中得到的一种可供注射的溶液或混悬液。这种可注射溶液的粘度相对较低,能通过常用注射针头,经皮下注射给药后,制剂与体内水性环境接触,即可形成凝胶状骨架,药物通过骨架向外缓慢释放。骨架PLGA在体内最终可被降解成乳酸和乙醇酸单体。注射植入剂可通过控制辅料PLGA的用量等,到达控制药物持续释放时间的目的。
     酮洛芬(ketoprofen,KET)的半衰期比较短,普通口服制剂需一天给药三次,市售的口服缓释制剂也至少需一天给药一次,其它如透皮制剂的给药一般为每3天一次。由于关节炎等慢性病的治疗要求病人长期用药,制备一次给药可维持药效4周以上的长效制剂显得十分重要。
     在缓控释制剂的研究中,药物释放行为往往作为制剂学特性的主要评价指标,但针对手性药物制剂,大多以非立体选择性的观点,即只评价外消旋体的递释行为,而不考察单个对映体的释放行为。因此,以非立体选择性的观点研制的长效制剂不但可能无法真实反应药效,有时甚至产生误导作用。如果从制剂学的角度仍将外消旋体药物当作单一化合物来处理,那么类似沙利度胺(thalidomide)的悲剧可能会重演。本项研究以外消旋体酮洛芬(rac-KET)为模型药物,首先采用常规的非立体选择性检测方法,进行rac-KET可注射植入剂制剂研究,然后以立体选择性拆分方法考察给药系统体外立体选择性释放特点,进一步,采用生物样品中的对映体的拆分方法评价植入剂在生物体内的对映体释放特性。通过上述研究,即首先从非立体选择性释放评价,到对映体专属性的体外释放研究最后到生物体内立体选择性考察,从三个层次评价KET释放系统的释药特性,为最终的创新制剂研究提供依据。本项目的研究成功可为科学设计生物降解型长效手性药物制剂的处方,加强有效对映体的控制释放,增加有效对映体生物利用度和降低毒性,提供理论与实验依据。
     一、可生物降解的注射植入型rac-KET控释给药系统的制剂学研究
     在已有生物降解PLGA微球研究的基础上,通过对PLGA中LA与LG不同比例的筛选,不同PLGA浓度对药物释放速率的评价,以及PEG400对药物突释的影响等的考察,认为PLGA可以作为新颖控释给药系统——rac-KET注射植入型控释给药系统的骨架。该生物降解型植入剂为溶液制剂,具有在水性介质中形成骨架型凝胶的特点。通过系统研究,成功制备了该长效控释制剂;建立了专属性强的rac-KET控释给药系统的含量测定方法。含量测定的方法学考察结果显示:空白辅料不干扰制剂的测定;在2.0μg/ml~12.0μg/ml的浓度范围内,符合线性要求;高中低三个浓度的回收率试验结果为99.0~100.8%。表明所建立的经回流提取步骤的测定方法适用于植入剂的含量测定。同时,由于植入剂的药物释放要求维持比较长的时间,针对制剂在水性介质中形成凝胶的特点,建立了体外释放度试验模型和释放度的测定方法。
     rac-KET控释给药系统的体外释放研究表明,不同药物浓度的植入剂和添加不同量的PEG400能使药物到达缓慢释放的目的,即T_(80)%均大于30天,其中KET浓度为10%的植入剂,其T_(80)%大于60天。以首日释放量(以考察突释效应)和维持药物释放时间对植入剂进行评价,5%药物浓度制剂中适量添加PEG400,可以减小植入剂的突释效应,但对延长药物释放时间基本无作用。5%和10%PEG400添加的植入剂,其T_(80)分别为50天和44.2天,而对照(不添加PEG400,药物浓度为5%)则为46.5天。总体而言,5%KET(添加5%PEG400)植入剂基本可到达降低首日突释效应的目的。从不同药物浓度对植入剂的首日释放量和维持药物释放时间的考察结果观察,10%药物浓度要优于5%和15%药物浓度的制剂;同时,与5%KET(添加5%PEG400)植入剂比较,10%KET不但突释效应比较小,而且维持的时间更持久。因此,我们认为10%KET植入剂具有比较显著的延缓药物释放的作用。
     对目标制剂的数学模型研究结果显示,rac-KET从植入剂中释放更符合Cubic方程(Mt/M_∞=18.5259+2.0079t-0.0238t~2+0.001t~3,方程的相关系数为R~2=0.994;F=473.23,p<0.001)。
     二、注射植入型rac-KET控释给药系统体外对映体选择性释放研究
     采用手性流动相添加剂万古霉素,以常规的C_(18)ODS为色谱柱,建立了可用于分离测定植入剂体外释放液中两个KET对映体的RP-HPLC方法。同时对所建立的方法进行了灵敏度、准确度、精密度、线性和专属性等的评价,认为该方法完全适用于体外释放液中KET对映体的分离测定。
     通过考察不同KET浓度植入剂以及不同释放介质pH值对植入剂的立体选择性释放影响,认为(1)不同浓度的rac-KET PLGA植入剂(4%、7%和10%)在pH 7.4的释放介质中均存在显著的立体选择性释放现象,其中7%制剂更显著。(2)不同pH值的释放介质对制剂的立体选择性也有比较大的影响,当释放介质pH为7.4时,7%rac-KET植入剂释放的立体选择性大于其在pH 10.0的介质中释放。对映体的这种立体选择性释放特性可能与辅料PLGA的可生物降解性有关。
     从数学模型研究的角度考察,7%rac-KET植入剂的S-对映体体外释放更符合Higuchi方程(M_t/M_∞=0.134+0.07736t~(1/2)),而R-对映体的释放则符合一级方程(ln(1-Mt/M∞)=-0.0145t-0.23)。由于植入剂中对映体释放速率的差异最终导致两者释放数学模型的差异。
     三、可生物降解的注射植入型rac-KET控释给药系统在大鼠体内的立体选择性释放研究
     建立了柱前衍生化的RP-HPLC方法分离测定大鼠血浆中的R-KET和S-KET。结果表明:在0.03-10.0μg/ml对映体浓度范围内呈良好的线性关系;绝对回收率大于77%;日内日间精密度小于13%;对映体的LOQ(定量限)均为0.03μg/ml。
     Rac-KET注射植入剂经单次大鼠皮下给药后,可维持有效浓度约8周。与普通注射剂比较,KET植入剂的有效对映体(S-(+)-KET)峰浓度显著降低[C_(maxl)25.20μg/ml;111.13μg/ml(普通注射剂;用纯溶剂配制,不含辅料)]];MRT显著延长[10.60天:0.49天(普通注射剂)];AUC为77.79day.μg/ml,与普通注射剂相当(73.54 day.μg/ml)。
     Rac-KET implants经大鼠皮下给药后,具有S-KET始终显著高于R-KET的特点(给药后至释放结束),首个C_(maxl)为25.20±7.45μg/ml(S-KET)和8.96±2.80μg/ml(R-KET)。R-KET血浓度不但比S-对映体低,而且在较多时间点无法被检出。表明该rac-KET注射植入剂在大鼠体内的对映体浓度存在显著的差异。
     Rac-KET implants组的S/R对映体比例明显小于普通注射剂组(纯溶剂配制),尤其在5,12和24小时(第24小时后solution组无法检测),显示在大鼠体内的对映体浓度差异,除了KET的手性转化因素外,植入剂中的KET对映体与生物降解过程中的PLGA存在某种作用可能是另外一个原因。
In connection with aim of prolonging the duration of action of conventional drugs in vivo,new drug delivery systems(DDS)continue to attract much attention.The controlled or sustained release of drugs represents one such approach.And in this regard report,DDS using biodegradable polymers which includes copolymer of lactic and glycolic acid(DL-PLGA)was studied.The biodegradable injectable implant using PLGA as matrix is one kind of DDS.The injectable implants is a solution with low viscosity and has a liquid consistency which facilitates injection through a needle.It can turn to a gel matrix immediately once contact with aqueous fluids and the release of the drug takes place slowly through this formed matrix.The matrix will be biodegraded by hydrolyzing into lactic and glycolic acid ultimately.In implant preparation, PLGA is used in diffusion controlled,swelling controlled and chemically controlled delivery system.This kind of DDS is able to provide pre-programmed durations of action and offer several advantages over the conventional dosage forms.A biodegradable injectable implant of Ketoprofen(KET)we developed was one kind of such DDS described above.It is expected to release slowly and maintain drug concentration within the therapeutic range for a long time.For KET is one of the most common pain relievers for Rheumatoid arthritis and t_(1/2)of KET is very short,to develop controlled and sustained DDS of KET is necessary.Meanwhile,although there are differences between two KET enantiomers' actions in the clinical effect,a limited number of literatures about enantioselective release of KET oral DDS have been reported.Moreover, evaluations of the enantiomer release are mainly limited to studies in vitro and little attention has been paid to the in vivo release difference between the two KET enantiomers.Onishi et al.have prepared biodegradable KET implant tablets which could keep the effective release in vivo for 4 days(administrated by inserting subcutaneously by surgical procedures in rats)using PLGA as matrix,however no attention was paid to the possible enantioselectity of the enantiomers in vivo.
     In order to investigate the enantioselective release,the biodegradable injectable implants containing racemaic KET(rac-KET)were elaborated with PLGA,and the enantioselective release in vitro and in vivo were observed by the special reversed-phase HPLC method developed
     1.Incorporation of ketprofen injectalbe implants
     In this study Poly(DL-lactide-co-glycolide)(PLGA)were used in a formulation(injectable implants)which forms a gel matrix immediatedly on contact with aqueous fluids.The biodegradable injectable implants containing a non-sterodial anti-inflammatory durg,racemic ketoprofen(rac-KET)were prepared by dissolving KET in DL-PLGA solution.To evaluate the initial fast release(initial burst)and the release profile of the formulation,the implants were prepared using the PLGA with the different lactide/glycolide ratio,PEG 400 used as additive in implants and the different drug loadings of KET,respectively.The results show that PLGA(7:3) was an ideal excipent for implants to sustain release of KET
     The UV spectrophotometer method was applied to determine the drug loading of rac-KET injectable implants at 255nm,drug was extracted with the solvent,alcohol,by refluxing at 70℃. The analytical method afforded recovery ranged from 99.0~100.8%,the assay was linear from 2.0μg/ml~12.0μg/ml.The similar UV spectrophotometer method with the detected wavelength of 260nm was employed to determine the KET released from the injectable implants in vitro release,theassay was also special,accurate and simple.
     The different drug loadings of implants and the different amount of PEG 400 added to the implants,the formulation could provide sustained release of the drug lasting about 2 months in vitro release.The 10%drug loading of rac-KET implants,it's T80%was longer than 60 days. The initial fast release(burst effect)declined with the addition of 5%PEG400 to 5%KET implants.Compared with other KET preparations,10%rac-KET implants was a promising drug deliver system with weaker initial burst effect and the longer release period.
     In order to understand the drug release mode from 10%drug loading of rac-KET biodegradable injectable implants,the in vitro release data were fitted to5 power law equations,the cubic mathematical equation appeared to describe rac-KET release from the implants much better than other equations,The cubic equation(Mt/M_∞=18.5259+2.0079t-0.0238t~2+0.001t~3,R~2=0.994; F=473.23,p<0.O01),can only simulate the release pattern but does not describe the underlying physical drug releasing mechanism.
     2.The in vitro stereoselective release from rac-KET injectable implants
     A stereoselective reversed-phase HPLC assay was developed that could simultaneously quantify S-(+)and R-(-)enantiomers of ketoprofen in release samples.Racemic ketoprofen(rac-KET) and its S-(+)enantiomer(S-(+)-KET)were dissolved in an injectable viscous polymer solution consisting of the biodegradable poly(D,L-lactide-co-glycolide,70:30)(D,L-PLG)and a solvent, N-methyl-2-pyrrolidone(NMP).Once injected into an aqueous environment,the polymeric mixture solidified into a solid implant due to the leaching of NMP.In vitro release studies show that such implants with ketoprofen can provide sustained release of the drug lasting about three months in a pH 7.4 release medium.Moreover,a preferential faster S-(+)-KET release over R-(-)-KET was observed for the implants containing 4%,7%,and 10%of racemic ketoprofen in the neutral pH 7.4 release medium.Stereoselective release was minimal in the first 42 days in vitro but became very pronounced at later time points.When S-(+)-KET was incorporated into the polymeric mixture,its release was also faster than that of the racemic ketoprofen,confirming the stereoselective release of ketoprofen from the D,L-PLG implants.The observed stereoselective release of KET at pH 7.4 was most likely produced by chiral interactions between KET enantiomers and transiently produced D-lactic acid or L-lactic acid rich domains within the implants during D,L-PLG degradation.However,such stereoselective release was not observed in pH 10.0 release medium,probably due to a much faster and homogeneous polymer degradation.The study suggests possible stereoselective release of racemic drugs from D,L-PLG microspheres and implants in vivo.
     In addition,to understand the enantiomer release mode from 7%rac-KET injectable implants, the in vitro release data were fitted to some power law equations.Higuchi equation appeared to describe S-KET release from the implants(M_t/M_∞=0.134+0.07736t~(1/2))much better than other equations;and first order equation could only simulate the release pattern of R-KET(ln(1-Mt/M∞)=-0.0145t-0.23).The difference of enantiomer release between R-KET and S-KET probably causes the different release pattern.
     3.The Stereoselective release from KET injectable implants in rats
     A stereoselective reversed-phase HPLC method has been developed and validated to separate and quantify the S-(+)and R-(-)enantiomers of ketoprofen(KET)as their diastereoisomeric amides with(S)-(-)-alpha-(1-Naphthyl)ethylamine(S-NEA)from a novel biodegradable injectable implant for the in vivo release in rats.The method involved liquid-liquid extraction of S-(+)and R-(-)enantiomers from rat plasma,using R-(-)-flurbiprofen(FBF)as the internal standard,and employed S-NEA as a pre-column chiral derivatization reagent.The derivatized products were separated on a 5μm reversed-phase C_(18)column with a mixture of methanol and 0.01 mol·L~(-1)KH_2PO_4(pH4.5)with a volume ratio of 71:29 as mobile phase.The detection of ketoprofen derivatives was made atλ=244 nm with UV detector.The assay was linear from 0.03 to 10.0μg/ml for each enantiomer.The absolute recoveries for each enantiomer were greater than 77%.The intra-day and inter-day variations' were less than 13%.For each enantiomer,the limit of quantification(LOQ)was 0.03μg/ml with RSD of 15.0%(n=5)for R-(-)-KET and 13.5%(n=5)for S-(+)-KET.The reproducibility of the assay was satisfactory.The enantioselective release of the biodegradable injectable implant containing racemic KET(rac-KET)elaborated with PLGA in SD rats was investigated using pre-column chiral derivatization RP-HPLC.The rac-KET injectable implant,once injected subcutaneously in rats, produced long lasting the plasma S-enantiomer level and the plasma S-(+)-KET level was always higher than that of R-(-)-KET in rats.The difference of enantiomer concentration was related with the chiral inversion of R-(-)-KET to S-(+)-KET in rats and the biodegardable properties of the achiral excipient of Poly(D,L-lactide-co-glycolide(DL-PLGA)degraded in biological system.The rac-KET injectable implant also provided the sustained release of S-KET, the duration above the effective plasma level was about 8 weeks after a single injection.
引文
1.曾苏,手性识别和手性作用,见:曾苏主编;手性药物与手性药理学;浙江大学出版社,杭州,2002:2002:6-13。
    2.Duddu SP,Vakilynejad M,Jamali F.Stereoselective dissolution of propranolol hydrochloride from hydroxypropylmethylcellulose matrices.Phram Res.1993,10:1648-1653.
    3.Alvarez C,Torrado JJ,Cadomiga R.Stereoselective drug release from ketoprofen and ricobendazole matrix tablets.Chirality.1999,11:611-615.
    4.Folrenc AT,Attwood D.Physicochemical principles of pharmacy.London:MacMillan,Ltd.1981.
    5.Vakily M,Jamali F.Human pharmacokinetics of tiaprofenic acid after regular and sustained release formulations:lack of chiral inversion and stereoselective release:J Pharm Sci.1994,83:495-498.
    6.Vakily M,Jamali F.Inclusion complexation of heptakis(2,6-di-ethyl)-β-cyclodextrin with tiaprofenic acid:pharmacokinetic consequences of a pH-dependent release and stereoselective dissolution.J.Pharm.Sci.1995,84:1014-1019.
    7.Tice TR,Gilley RM.Preparation of injectable controlled release microcapsules by solvent evaporation proecss.J Control Release.1985,2:343-352.
    8.Yamaguchi K,Anderson JM.In vivo biocompatibility studies of medisorb 65/35 lactide/glycolide copolymer microspheres.J.Control Release.1993,24:81-93.
    9.Ramirez L,Pastoriza P,Herrero-Vanreli R.Biodegradable poly(DL-lactic-co-glycolic acid)microspheres containing tetracaine hydrochloride.In-vitro release profile.J Microencapsul.1999,16:5-15.
    10.王胜浩,韩锦文,林芳,沈文照;左炔诺孕酮微球的制剂学及表观特性的研究;中国医药工业杂志,1994,25:109-112。
    11.王胜浩,林芳,沈文照;生物降解型左炔诺孕酮微球的体内外释药特性研究;中国药 学杂志,2001,36:170-172。
    12.沈正荣;鉴定材料《生物降解聚合物PLA和PLGA的合成、表征及其药物控释系统的研究》;1998年。
    13.Makino K,Arakawa M,Kondo T.Preparation and in vitro degradation properties of poly(lactide)microcapsules.Chem Pharm Bull.1985,33:1195-1201.
    14.Shah NH,Railkar AS,Chen FC,Tarantino R,Kumar S,Murjani M,Palmer D,Inteld MH,Malick AW.A biodegradable injectable implant for delivering micro and macromolecules using poly(lactic-co-glycolic acid)(PLGA)copolymer.J Control Release.1993,27:139-147.
    15.Wang SH,Zhang LC,Lin F,Sa XY,Zuo JB,Shao QX,Chen GS,Zeng S.Controlled Release of Levonorgestrel from Biodegradable Poly(D,L-lactide-co-glycolide)Microspheres:In Vitro and In Vivo Studies:In Vitro and In Vivo Studies.Int J Pharm.2005,301:217-225
    16.Wang SH,Zeng S.Stereorelease of enantiomers from chiral formulation.Chin Pharm J.2005,40:10-12.
    17.Simo C,Gallardo A,Parejo C,Sanoman J,Barbas C,Cifuentes A.Monitoring ibuprofen enantiomers released from polymeric systems.Eur J Pharm Sci.2002,16:75-82.
    18.Barbanoj MJ,Antonijoan RM,Gich I.Clinical pharmacokinetics of dexketoprofen.Clin.Pharmacokinet.2001,40:245-62.
    19.Suedee R,Srichana T,Chotivatesin R.Enantioselective release of controlled delivery granules based on molecularly imprinted polymers.Drug deliv.2002,9:19-24.
    20.Suedee R,Srichana T,Chotivatesin R.Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of beta-blockers.J Control Release.2000,66:135-146
    21.Sun,Q,Olesik SV.Chiral separation by simultaneous use of vancomycin as stationary phase chiral selector and chiral mobile phase additive.J Chromatogr B Biomed Sci Appl.2000,745:159-166.
    22. Armstrong DW, Tang YB, Chen SS. Macrocylic antiobiotics as a new class of chiral selectors for liquid chromatography. Anal Chem. 1994,66:1473-1478.
    
    23. Pehourcq F, Jarry C, Bannwarth B. Chiral resolution of flurbiprofen and ketoprofen enantiomers by HPLC on a glycopeptide-type column chiral stationary phase. Biomed Chromatogr. 2001,15:217-222.
    
    24.Solinis MA, de la Cruz Y, Hernandez RM. Release of ketoprofen enantiomers from HPMC_(K100M) matrices. Diffusion Studies. Int J Pharm. 2002,239:61-68.
    25.Chen CC, Ghueh JY, Tseng H, Huang (?)M, Lee SY. Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials. 2003,24:1167-1173.
    
    26. Rom EE, David W, Joseph K. Delivery of soluble tumor necrosis factor receptor from in-site forming PLGA implant: In-vivo. Pharm Res. 2000,17:546-550.
    
    27. Hyon SH. Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med. J.2000,41:720-734.
    
    28. Mauleon D, Artigas R, Garcia ML, Carganico G. Preclinical and clinical development of dexketoprofen. Drugs. 1996,52 Suppl5: 21-40.
    
    29. Solinis MA, Lugara S, Cakvi B. Release of salbutamol sulfate enantiomers from hydroxypropylmethylcellulose matrices. Int J Pharm. 1998, 161:37-43.
    
    30.Solinis MA , Cruz Y, Calvo B, Hernandez RM, Gascon AR, Goni I, Gurruchaga MD, Pedraz JL. Release of salbutanmol sulphate and ketoprofen enantiomers from matrices containing HPMC and cellulose derivatives . Chirality, 2002,14:806-813.
    31.Qiu Y, Hui HW, Cheskin H. Formulation development of sustained-release hydrophilic matrix tablets of zileuton. Pharm Dev Technol. 1997,2:197-204.
    32.Janjikhel, P K. Stereospecific formulation and characterization of sustained release ibuprofen microspheres J Microencapsul. 1997,14: 409-426.
    33.Janjikhel, RK, Adeyeye CM. Dissolution of ibuprofen enantiomers from coprecipitates and suspensions containing chiral excipients.Pharm Dev Technol. 1999,4:9-17.
    34.Onishi H, Takahashi M, Machida Y. PLGA implant tablet of ketoprofen:comparison of in vitro and in vivo releases. Biol Pharm Bull. 2005,28: 2011-2015.
    35.Hutt AJ,Fournel S,Caldwell J.Application of a radial compression column to the high-performance liquid chromatographic separation of the enantiomers of some 2-arylpropionic acids as their diastereoisomeric s-(-)-1-(naphthen-1-yl)ethylamines.J Chromatogr.1986,378:409-418.
    36.Populaire P,Terlain B,Pascal S,Decouvelaere B,Renard A,Thanas JP.Biological behavior:serum levels,excretion and biotransformation of(3-beuzoylphenyl)-2-propionic acid,or ketoprofen,in animals and men.Ann Pharm Fr.1979,31:735.
    37.Iwakawa,S,He X,Hashimoto S,Volland C,Benet(?)Z,Lin E T.Stereoselective disposition of ketoprofen in rats.Drug Metab Dispos.1991,19:717-18.
    38.Yasui H,Yamaoka K,Dote N,Nakagawa T.Moment analysis of stereoselective biliary excretion and chiral inversion of ketoprofen enantiomers in perfused rat liver.J Pharm Sci.1995,84:1327-31.
    39.Zhu JH,Shen ZR,Wu LT,Yang SL.In vitro degradable of polylactide and poly(lactide-co-glycolide)microspheres.J Appl polym Sci.1991,43:2099-2106.
    40.Park,T.G.Degradation of poly(lactic-co-glycolic acid)microspheres:effect of copolymer composition.Biomaterials.1995,16:1123-1130.
    1.曾苏,手性识别和手性作用,见:曾苏主编;手性药物与手性药理学;浙江大学出版社,杭州,2002:2002:6-13。
    2.Duddu SP,Vakilynejad M,Jamali F.Stereoselective dissolution of propranolol hydrochloride from hydroxypropylmethylcellulose matrices.Phram Res.1993,10:1648-1653.
    3周全,骨架型制剂成型技术,见:陆彬主编.药物新制剂与新技术;人民卫生出版社,北京,1998.306-322。
    4.Alvarez C,Torrado JJ,Cadomiga R.Stereoselective drug release from ketoprofen and ricobendazole matrix tablets.Chirality.1999,11(8):611-615.
    5.Mackay KM,Williams AC,Barry BW.Effect of melting of chiral terpeneson human stratum corneum uptake.Int J Pharm.2001,228(1-2):89-97.
    6.Wearley L,Antonacci B,Cacciapuoti A.Relationship among physicochemical properties,skin permeability,and topical activity of the racemic compound and pure enantiomers of a new antifungal Pharm Res.1993,10(11):136-140.
    7.Janjikhel RK,Adeyeye CM.Dissolution of ibuprofen enantiomers from coprecipitates and suspensions containing chiral excipients.Pharm Dev Technol.1999,4(1):9-17.
    8.Vakily M,Jamali F.Inclusion complexation of heptakis(2,6-di-ethyl)-β-cyclodextrin with tiaprofenic acid:pharmacokinetic consequences of a pH-dependent release and stereoselective dissolution.J Pharm Sci.1995,84(8):1014-1019.
    9.Solinis MA,Lugara S,Cakvi B,et al.Release of salbutamol sulfate enantiomers from hydroxypropylmethylcellulose matrices.Int J Pharm.1998,161:37-43.
    10.Solinis MA,de la Cruz Y,Hernandez RM.Release of ketoprofen enantiomers from HPMC_(K100M)matrices-Diffusion Studies.Int J Pharm.2002,239:61-68.
    11.Solinis MA,Cruz Y,Hemandez RM,et al.Release of salbutanmol sulphate and ketoprofen enantiomers from matrices containing HPMC and cellulose derivatives.Chirality. 2002,14:806-813.
    12.Kommuru TR,Khan MA,Reddy IK.Effect of chiral enhancers on the permeability of optically active and racemic metoprolol across hairless mouse skin.Chirality.1999,11(7):536-540.
    13.陈国神,龚赛君,周蓉蓉;十八甲基炔诺酮左旋体与外消旋体人离体皮肤体外渗透速率;中国药理学报,1991.12(5):437-440.
    14.雷建都,谭天伟;酮洛芬分子分子印迹拆分及分离过程的热力学研究;化学学报,2002,60(7):1279-1283.
    15.Suedee R,Srichana T,Chotivatesin R.Stereoselective release behaviors of imprinted bead matrices.Drug Dev Ind Pharm.2002,28(5):545-554.
    16.Qiu Y,Hui HW,Cheskin H.Formulation development of sustained-release hydrophilic matrix tablets of zileuton.Pharm Dev Technol.1997,2(3):197-204.
    17.Suedee R,Srichana T,Chotivatesin R.Enantioselective release of controlled delivery granules based on molecularly imprinted polymers.Drug deliv.2002,9(1):19-24.
    18.Suedee R,Srichana T,Chotivatesin R.Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of beta-blockers.J Control Release.2000,66(2-3):135-146.
    19.Vakily M,Jamali F.Human pharmacokinetics of tiaprofenic acid after regular and sustained release formulations:lack of chiral inversion and stereoselective release.J Pharm Sci.1994,83(4):495-498.
    20.Janjikhel RK,Adeyeye CM.Dissolution of ibuprofen enantiomers from coprecipitates and suspensions containing chiral excipients.Pharm Dev Technol.1999,4:9-17.
    21.Janjikhel PK.Stereospecific formulation and characterization of sustained release ibuprofen microspheres.J Microencapsul,1997,14:409-426
    22.唐意红,手性药物代谢,见:曾苏 主编:药物代谢学;浙江大学出版社,杭州,2004 年:195-220。
    23.Ariens EJ,Wuis EW,Veringa EJ.Stereoseleetivity of bioactive xenobiotics A pre-pasteur attitude in medicinal chemistry,pharmacokinetics and clinical pharmacology.Biochem Phamacol.1988,37(1):9-18.
    24.Edmund.JDL;手性药物的临床药动学和药效学;国外医药-合成药、生化药、制剂分册,1991,12(2):80-84.
    25.蔡卫民;药物对映体的人体药动学;国外医学药学分册,1993.20(4),212-216.
    26.Echizen H,Vogelgesang B,Eichelbaum M.Effect of d,l-verapamil on atrioventricular conduction in relation to its stereoselective first pass metabolism.Clin Pharmacol Ther.1985;38:71-76.
    27.Ariens EJ.Stereochemistry:a source of problems in medicinal chemistry.Med Res Rev.1986,6(4):451-466.
    28.Nation RL.Chirality in New Drug Development-Clinical Pharmacokinetic Considerations.Clin Pharmacokinet.1994,27(4):249-255.
    29.Caldwell J.The importance of stereochemistry in drug action and disposition.J Clin Pharmacol.1992,32:925-929
    30.王似菊,沈向忠,曾苏;心血管药物的立体选择性活性及临床意义;中国医院药学杂志,1995,15(6):284-287
    31.Williams K,Lee E.Importance of drug enantiomers in clinical pharmacology.Drug.1985,30:333-354.
    32.Naito S,Nishimura M.Enantioselective uptake of BOF-4272,a xanthine oxidase inhibitor with a chiral sulfoxide by isolated rat hepatocytes.Yakugaku Zasshi.2001,121:989-994.
    33.Jamali F,Mehvar R,Russell AS.Human pharmacokinetics of ibuprofen enantiomers following different doses and formulations:intestinal chiral inversion.J Pharmaceu Sci.1992,81(3):221-225
    34.Simmonds RC,Woodage TJ,Duff SM.Stereospecific inversion of.(R)-(-)-benoxaprofen in rat and man .Eur J Drug Metab Pharmacokinet 1980,5:169-172
    
    35.Foster RT, Jamali F. Stereoselective pharmacokinetics of ketoprofen in the rat. Influence of route of administration. Drug Metab Dispos. 1988; 16:623-626
    
    36.Berry BW, Jamali F. Presystemic and systemic chiral inversion of R-(-)-Fenoprofen in the rat. J Pharmacol Exp Ther. 1991,258:695-701
    
    37. Simonyi M, Fitos 1, V(?)sy J. Chirality of bioactive agents in protein binding storage and transport processes. Treads Pharmacol Sci. 1986,7:112-116
    
    38. Peyrin E, Guillaume Y C, Guinchard C. Characterization of solute binding at human serum albumin site II and its geometry using a biochromatographic approach. Biophysical Soc.1999,77:1206-1212
    
    39. Hitoshi I, Takafumi K, Ahmed I, Ayaka S, Masaid O. Stereoselective protein binding of alprenolol in the renal disease state. Chirality. 2002,14:599-603.
    
    40. Visy J, Fitos I, Mady G, Urge L, kraajcsi P, Simony M. Enantioselective plasma protein binding of bimoclomol.Chirality.2002,14:638-642.
    
    41.Hanada K, Ohta T, Hirai M, Arai M, OgaIa H. Enantioselective binding of propranclol,disopyramide, and verapamil to human α_1-acid human glycoprotein. J Pharm Sci. 2000,89:751-757.
    
    42. Echizen H, Brexht T, Niedergesa S. The effect of dextro-,levo- and racemic verapamil on atrioventricu(?)ar conduction in humans. Am Heart J.1985,109:210-217.
    
    43. Gross AS, Heuer B, Eichelbaum M. Stereoselective protein binding of. verapamil enantiomers. Clin Pharmacol. 1988,37:4623-4627.
    
    44.PaJiwal JK, Smith DE, Cox SR. Stereoselective, competitive, and nonlinear plasma protein binding of ibuprofen enantiomers as determined in vivo in healthy subjects. J Pharmacokinet Biopharm.l993,21:145-161
    45.Fitos I, Visy L, Simonyi M. Species-dependency in chiral-drug recognition of serum albumin studied by chromatographic methods. J Biochem Biophys Methods.2002,54:71-84.
    46.Peng S X, Henon C, Wilson L J. Simultaneous determination of enantioselective plasma protein binding of aminohydantoins by ultrafiltration and chiral high-performance liquid chromatography.J Chromatogr B.1999,73:31-37.
    47.Endo H,Ypshida H,Hasegawa M,Ohmi N,Horiuchi N,Hamada Y,Higuchi S.Stereoselectivity and species difference in plasma protein binding of KE-298 and its metabolites.Biol Pharm Bull.2001,24:800-805.
    48.Christine F,Francois G,Alain T,Robert F.Stereoselective binding of zopiclone to human plasma proteins.Chirality.1999,11:129-132.
    49.Brooks D R,Wasan M K,The influence of lipids on stereoselective pharmacokinetics of halofantrine:Important implications in food-effect studies involving drugs that bind to lipoproteins.J Pharm Sci.2002,91:1817-1826.
    50.Jamali F,Mehvar R,Pasutto FM.Enantioselective aspects of drug action and disposition:therapeutic pitfalls.J Pharm Sci.1989,78(9):695-714.
    51.Drayer DE.Problemsin therapeutic drug monitoring:the dilemma of enantiomeric drugs in man.Ther Drug Monitoring.1988,10(1):1-7.
    52.Zeng S,Zhang L,Liu ZQ.Stereoselective metabolism of ofloxacin in human.Chin J Pharmcol Toxicol.1995,9(2):87-89.
    53.曾苏,李艳;手性新药的开发及临床药物动力学因素;中国医药工业杂志,1996,27(9):430-432.
    54.Nicklasson M,Bjorkman S,Roth B,Jonsson M and Hoglund P.Stereoselective Metabolism of phentoxifylline in vitro and in vivo in humans.Chirality.2002,14:643-652.
    55.Cristofol C,Virkel G,Alvarez L,Arboix M,Lanusse CE.Comparative disposition of ricobendazole enantiomers after intravenous and subcutaneous administration of a racemic formulation to calves.Biopharm Drug Dispos.2000,21:303-311.
    56.Szotakova B,Skalova L,Jilek P,Buchta V,Wsol V,Stereospecific reduction of the original anticancer drug oracin in rat extrahepatic tissues.J Pharm Pharmacol.2003,55:1003-1011.
    57.Wsol V,Szotakova B,Skalova L,Maser E.Stereochemical aspects of carbonyl reduction of original anticancer drug oracin by mouse liver microsomes and purified 11 beta-hydroxysteroid dehydrogenase type 1.Chem Biol Interact.2003,143-144:459-468.
    58.Narimatsu S, Takemi C, Kuramoto S, Suzuki D, Hichiya H, Tamagake k , Yamamoto S. Stereoselectivity in the oxidation of bufiiralol, a chiral substrate, by human cytochrome P450s. Chirality,2003,15:333-339.
    
    59.Meyring M, Muhlenbrock C, Blaschle G Investigation of the stereoselective in vitro biotransformation of thalidomide using a dual cyclodetrin system in capillary electrophoresis. Electrophoresis.2000,21:3270-3279
    
    60.Breadmore M C, Thorman W. Capillary electrophoresis evidence for the stereoselective etabolism of itra(?)onzole in man. Electrophoresis.2003,24:2588-2598.
    
    61.Mehvar R, Brocks DR, Vakily M. Impact of stereoselectivity on the pharmacokinetics and pharmacodynamics of antiarrhythmic drugs. Clin. Pharmacokinet.2002, 41: 533-558.
    
    62.Wsol V, Skalova L, Szotakova B. Chiral inversion of drugs: coincidence or principle? Curr Drug Metab.2004,5(6):517-33
    
    63. Jamali F, Lovlin R, Aberg G. Bi-directional chiral inversion of ketoprofen in CD-1 mice. Chirality.1997,9(1):29-31.
    
    64.Takasaki W, Yamamura M, Nozaki A, Nitanai T, Sasahara K, Itoh K, Tanaka Y. Stereoselective pharmacokinetics of RS-8359, a selective and reversible MAO-A inhibitor, by species-dependent drug-metabolizing enzymes. Chirality.2005,17(3):135-41.
    
    65.Soraci AL, Tapia O, Garcia J. Pharmacokinetics and synovial fluid concentrations of flurbiprofen enantiomers in horses: chiral inversion. J Vet Pharmacol Ther.2005,28(1):65-70.
    
    66.Wsol V, Kral R, SKalova L, Szotakova B, Trejtnar F , Flieger M. Stereospeciflcity and stereoselectivity of flobufen metabolic profile in male rats in vitro and in vivo: phase I of biotransformation. Chirality. 2001,13:754-759.
    67.Hong Z , Fan G, Chai Y, Yin X, Wu Y. Stereoselective pharmacokinetics of tetrahydropalmatine after oral administration of (-)-enantiomer and the racemate. Chirality. 2005,15, 17(5): 293-296.
    68.Xie ZY, Yang BH, Zhang YF, Zhong'DF. Studies on chiral inversion of dextropantoprazole in human. Yao Xue Xue Bao.2004,39(5):370-373.
    69.Mikus G,Eichelbaum M,Fischer C,Gumulka S,Klotz U,Kroemer HK.Interaction of verapamil and cimetidine:stereochemical aspects of drug metabolism,drug disposition and drug action.J Pharmacol Exp Ther.1990,253:1042-1048.
    70.Nerurkar SG,Dighe SV,Williams RL.Bioequivalence of racemic drugs.J Clin Pharmacol.1992,32(10):935-943.
    71.Notterman DA,Drayer DE,Metakis L,Reidenberg MM.Stereoselective renal tubular secretion of quinidine and guinine.Clin Pharmacol Ther.1986,40:511-517.
    72.陈鹰,付小琴;手性药物药效及药代动力学的立体选择性;Military Pharma.1999,9(1):46-52。
    73.Williams K,Lee E.Importance of drug enantiomers in clinical pharmacology.Drug.1985,30:333-354.
    74.Coulet M,Cox P,Lohuis J.Pharmacodynamics of ibafloxacin in micro-organisms isolated from cats.J Vet Phannacol Ther.2005,28(1):29-36.
    75.Stoschitzky K,Klein W,Stark G,Stark U,Zernig G,Graziadei I,Lindner W.Different stereoselective effects of(R)- and(S)-propafenone:clinical pharmacologic,electrophysiologic,and radioligand binding studies.Clin Pharmacol Ther.1990,47:740-764.
    76.Bumett DM,Zahniser NR.Propafenone interacts stereoselectivity with β_1and β_2-adrenergic receptors.Cardiovasc Pharmacol.1988,12:615-619.
    77.Zimmerman DM,S(?)SE,Hynes MD,Cantrell BE,Leander JD,Mendelsohn LC,Nickander R.Picenadol.Drug Alcohol Depend.1985,14:381-401.
    78.Middlefell VS,Price TL.5-HT3 r(?)eptor agonism may be responsible for the emetic effect of zacopride in the ferret.Br J Pharmacol.1991,103:1011-1012.
    79.Goodwin SD,Gallis HA,Chow AT,Wong FA,Flor SC,Bartlett JA.Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection.Antimicrob Agents Chemother.1994,38(4):799-804.
    80.Kolluri SK,Corr M,James SY,Bernasconi M,Lu D,Liu W,Cottam HB,Leoni LM,carson DA,Zhang XK.The R-enantiomer of the nonsteroidal antiinflammatory drug etodolac binds retinoid X receptor and induces tumor-selective apoptosis.Proc Natl Acad Sci U S A.2005,102(7):2525-2530.
    81.Lalonde RL,O'Rear TL,Wainer IW,Drda KD,Herring VL,Bottorff MB.Labetalol pharmacokinetics and pharmacodynamics:evidence of stereoselective disposition.Clin Pharmaeol Ther.1990,48(5):509-519
    82.Li XQ,Weidolf L,Simonsson R.Andersson TB.Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazoie in human cytochrome P450 enzymes:major role of CYP2C 19 and CYP3A4.J Pharmacol Exp Ther.2005.102-108.
    83.余细勇,林曙光:手性药物对映体的药动学与药效学立体选择性差异研究进展;广州医药,1997,28(3):89-93。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700