固体脂质微颗粒载药体系结构与性能关系的探索和介观模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对药物传输系统(Drug delivery system, DDS)的合理设计能够实现对药物的控释和缓释,从而提高药物的疗效、降低其毒副作用。固体脂质微颗粒(Solid Lipid Microparticles, SLM)以熔点较高的脂质材料为载体,是生物相容性好、能有效控制药物释放的一种微尺寸药物传输系统。SLM是结构复杂的多相体系,其配方组成以及制备工艺过程决定了SLM的微观结构进而影响着它的最终性能。本研究考察SLM配方组成和制备工艺条件对体系微观结构的影响,通过改变配方组成和制备工艺条件来调控SLM的微观结构,达到对SLM性能的优化设计。在研究过程中综合应用了实验表征、理论分析以及计算机模拟的手段对SLM不同层次的微、介观结构进行表征和分析。
     以非甾类抗炎药物布洛芬为模型药物,采用高剪应力乳均法制备了SLM。考察了制备工艺条件对SLM平均粒径、粒度分布和药物包封率的影响趋势,以及在此过程中SLM微观结构的变化,并优化了SLM的制备工艺条件。针对布洛芬在不同载体SLM中的包封效果不同,从药物和载体的相容性以及载体晶体构型两方面分析了原因。考察了不同稳定剂对SLM的稳定效果,分析了稳定剂的稳定机理。探讨了稳定剂的用量和布洛芬初始含量对SLM平均粒径及药物包封率的影响,并得到了布洛芬SLM的优化配方。最后考察了布洛芬SLM在模拟胃肠道环境中的释放性能,并分析了载体材料和稳定剂种类以及SLM粒径对其释放性能的影响。
     利用DPD介观模拟方法进一步探讨了SLM的微观结构并与其性能关联。模拟了布洛芬在不同载体SLM中的分布状况,并和SLM的缓释性能相关联。对稳定剂在SLM表面的分布状况进行了模拟,并分析其对SLM稳定性的影响。DPD介观模拟结果能够直观地展现通过实验难以观察到的现象和过程,可以根据模拟结果定性地预测SLM的性能。是研究微颗粒载药体系微观结构的有效手段。
     根据实验研究、介观模拟以及理论分析的结果,提出了SLM载药体系的配方设计规则,阐述了在进行载体材料和稳定剂选择时所要考虑的因素和遵循的原则。利用提出的设计规则,以氯氮平为另一种模型药物进行SLM的配方设计和制备。根据介观模拟和理论分析,预测了不同载体对氯氮平的包载效果以及不同稳定剂对SLM的稳定效果,并进行了相关实验,实验结果较好地吻合了理论预测。利用提出的SLM载药体系的配方设计规则辅助进行SLM的设计和制备,能够减少研究过程中盲目的实验探索,加快SLM的研究和开发进程。
     本文通过理论分析、实验探索和计算机介观模拟三者相结合的研究手段,运用“结构-性能”关系模型和分析方法,以固体脂质微颗粒载药体系为研究案例,尝试和开辟了对复杂配方结构化产品进行优化设计的系统化方法。
With proper drug delivery system (DDS), sustained and controlled drug release could be realized, which improves drug efficiency and reduces its side effect. Solid lipid microparticles (SLM) are micro-size DDS made from lipids with high melting point as matrixes. They are characteristic of good biocompatibility and controlling drug release effectively. SLM are complex multi-phase system. The operation conditions and their composition impose effect on their properties by means of altering their microstructures. In this thesis, the relationship between SLM microstructures and their properties is investigated, and influences of composition and operation conditions on their microstructures are analyzed. SLM microstrucure and properties could be optimized by controlling operation conditions and composition. During the process, Experimental characterization, theoretical analysis, and mesoscale simulation are integratively used to study the microstructures-property relationship of SLM.
     A nonsteroidal anti-inflammatory drug, ibuprofen, is chosen as the model drug. Ibuprofen-loaded SLM are prepared with high shear homogenization technique. Effects of operation conditions on SLM mean diameter, volume distribution, drug entrapment efficiency, as well as SLM microstructures are investigated, and optimized operation conditions are obtained. The entrapment efficiency of ibuprofen in SLM varies with different carrier materials. The reasons lie in two aspects, the compatibility between drug and carrier materials, and the crystal modification of SLM. The stability of SLM with different stabilizers is investigated and the stabilization mechanism is also analyzed. The optimized formulation of ibuprofen-loaded SLM is obtained by further investigating the effect of stabilizer content and initial drug content on the performance of SLM. The release performance of ibuprofen-loaded SLM is investigated in simulated gastrointestinal medium without enzymes. The influences of carrier materials, stabilizers, and particle sizes on SLM release performance are also studied.
     The microstructures of SLM are further investigated with Dissipative Particle Dynamics (DPD) simulation, and are related with their properties. Drug distributions in SLM matrixes of different carrier materials are simulated and their effect on SLM release performance are studied. Stabilizer distribution on SLM surface is also simulated, and the corresponding SLM stability is investigated. SLM properties can be predicted with DPD simulation results. DPD simulations show clear microscopic pictures which are difficult to be displayed by experiments, and is proved to be very useful in investigating the microstructures of micro-size DDS.
     Based on the experimental preparation, DPD simulations as well as the theoretical analysis, heuristics for SLM formulation design and factors that should be considered in carrier material and stabilizer selection are proposed. Afterwards, clozapine is chosen as another model drug. Clozapine-loaded SLM are designed and produced according to the proposed heuristics. Clozapine entrapment efficiency in SLM of different carrier materials and SLM stability with different stabilizers are qualitatively predicted from the simulated results and theoretic analysis. The corresponding experiments are carried out and the results agree well with those of the prediction. SLM are developed with the proposed heuristics, which can significantly reduce the trial-and-error experiments, and speed up the development of DDS.
     In this thesis, theoretical analysis, experimental preparation & characterization and mesoscale simulation are integratively used to investigate the structure-property relationship of SLM as a case study. A systematic approach for the rational design of structured products is proposed and practised.
引文
[1] Cussler E.L., Wei J. Chemical product engineering. AIChE J. 2003,49(5): 1072-1075
    [2] Charpentier J.C., Trambouze P. Process engineering and problems encountered by chemical and related industries in the near future. Revolution or continuity? Chem. Eng. Pro. 1998, 37: 559-565
    [3] Wintermantel K. Process and product engineering-achievements, present and future challenges. Chem. Eng. Sci. 1999, 54: 1601-1620
    [4] Cussler E.L., Moggridge G.D. Chemical product design. Second Edition. Cambridge University Press, 2001: 10-19
    [5] Charpentier J. C. The triplet molecular process-product-process engineering: the future of chemical engineering. Chem. Eng. Sci. 2002, 57(2)P: 4667-4690
    [6] Favre E. and Kind M. Chemical product engineering: research and educational challenges Trans. I. Chem E., Part A. 2002, 1: 65-74
    [7] Fermeglia M. Molecular modeling and process simulation: Real possibilities and challenges. Chem. Biochem. Eng. 2003, 17(1): 19-29
    [8] Grossman I. E. Challenges in the new millennium: product discovery and design, enterprise and supply chain optimization, global life cycle assessment. the Proc. Int. Symp. Proc. Sys. Eng. Elsevier, 2004, 28-48
    [9] 刘铮, 金涌, 魏飞,李有润, 骆广生, 袁乃驹. 化学工程科学发展的回顾与思考. 化工进展. 2002, 21(2): 87-91
    [10] 杨友麒,成思危. 过程系统工程面临的挑战和发展趋势. 化工进展. 2002, 21(8): 527-535
    [11] 钱宇,潘吉铮,江燕斌,章莉娟,纪红兵. 化学产品工程的理论和技术. 化工进展. 2003, 22(3): 217-223
    [12] 袁渭康. 我们的化学工程:关于目标尺度微细化的讨论. 化工进展. 2004, 23(1): 9-11
    [13] 李伯耿,罗英武. 产品工程学—化学反应工程的新拓展. 化工进展. 2005, 24(4): 337-340
    [14] Wibowo C., Ng K.M. Product-oriented process synthesis and development: creams and pastes. AIChE J. 2001, 47(12): 2746-2767
    [15] Wibowo C., Ng K.M. Product-centered processing: manufacture of chemical-based consumer products. AIChE J. 2002, 48(6): 1212-1230
    [16] Fung K.Y., Ng K.M. Product-centered processing: pharmaceutical tablets and capsules. AIChE J. 2003, 49(5): 1193-1215
    [17] Hill M. Product and process design for structured products. AIChE J. 2004, 50(8): 1656-1661
    [18] Leach A.R. Molecular modelling principles and applications, second edition, Longman Press, 2001: 402-404
    [19] 李有勇,郭森立,王凯旋,徐筱杰. 介观层次上的计算机模拟和应用. 化学进展. 2000, 12(4): 361-375
    [20] Mehnert W., M?der K. Solid lipid nanoparticles production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47: 165-196
    [21] 朱盛山. 药物新剂型. 第 1 版. 化学工业出版社,2003: 73-158
    [22] 贾伟,高文远. 药物控释新剂型. 第 1 版. 化学工业出版社,2005: 168-194
    [23] 罗毅. 药物控制释放方法. 高分子通报. 1996,3: 18-27
    [24] 吴礼光,刘茉娥,朱长乐等. 控制释放技术. 应用化学. 1994,11(3): 1-10
    [25] 陆彬. 药物新剂型与新技术. 第 1 版. 人民卫生出版社,1998: 168-251
    [26] Brannon-Peppas L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery. Int. J. Pharm. 1995, 116: 1-9
    [27] Thompson W.W., Anderson D.B., Heiman M.L. Biodegradable microspheres as a delivery system for rismorelin porcine, a porcine growth hormone releasing hormone. J. Controlled. Rel. 1997, 43(1): 9-22
    [28] Reithmeier H., Herrmann J., G?perich A. Lipid microparticles as a parenteral controlled release device for peptides. J. Controlled Rel. 2001, 73: 339-350
    [29] Six K., Verreck G., Peeters J., Brewster M., Mooter G.V.D. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J. Pharm. Sci. 2004, 93: 124-131
    [30] Perumal D. Microencapsulation of ibuprofen and Eudragit? RS 100 by the emulsion solvent diffusion technique. Int. J. Pharm. 2001, 218: 1–11
    [31] Smith A., Hunneyball I.M. Evaluation of poly (lactic acid) as a biodegradable drug delivery system for parenteral administration. Int. J. Pharm. 1986, 30: 215-220
    [32] Senior J.H. Fate and behaviour of liposomes in vivo. A review of controlling factors. Crit. Rev. Ther. Drug Carrier Sys. 1987, 3: 123-193
    [33] Janknecht R., Marie D.S., Bakker-Woudenberg I.A.J.M., Crommelin D.J.A. Liposomal and lipid formulations of amphotericin B. Clin. Pharmacokinet. 1992, 23: 279-291
    [34] Eldem T., Speiser P., Hincal A. Optimization of spray-dried and congealed lipid micropellets and characterization of their surface morphology by scanning electron microscopy. Pharm. Res. 1991, 8: 47-54
    [35] Domb A.J., Baltimore M. Lipsopheres for controlled delivery of substances. US Pat. 1993, 5188837
    [36] Müller R.H., M?der K., Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of art. Eur. J. Pharm. Biopharm. 2000, 50: 161-177
    [37] Gasco M.R. Method for producing solid lipid microspheres having a marrow size distribution. US Pat. 1993, 5250236
    [38] Souto E.B., Wissing S.A., Barbosa C.M., Müller R.H. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Intern. J. Pharm. 2004, 278: 71-77
    [39] Jenning V., M?der K., Gohla S.H. Solid lipid nanoparticles (SLNTM) based on binary mixtures of liquid and solid lipids: a H-NMR study. Int. J. Pharm. 2000, 205: 15-21
    [40] Jenning V., Lippacher A., Gohla S.H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J. Microencapsulation. 2002, 19(1): 1-10
    [41] Dingler A., Gohla S. Production of solid lipid nanoparticles (SLN): scale up feasibilities. J. Microencapsulation. 2002, 19(1): 11-16
    [42] Mühlen A.Z., Schwarz C., Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 1998, 45: 149–155
    [43] Siekmann B., Westesen K. Melt-homogenized solid lipid nanoparticles stabilized by the nonionic surfactant tyloxapol. Ⅰ. Preparation and particle size determination. Pharm. Pharmacol. Letter. 1994, 3: 194-197
    [44] Hou D.Z., Xie C.S., Huang K.J., Zhu C.H. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003, 24: 1781-1785
    [45] Siekmann B., Westesen K. Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions. Eur. J. Pharm. Biopharm. 1996, 43: 104-109
    [46] Quintanar-Guerrero D., Tamayo-Esquivel D., Ganem-Quintanar A., Allémann E., Doelker E. Adaptation and optimization of the emulsification –diffusion technique to prepare lipid nanospheres. Eur. J. Pharm. 2005, 26: 211-218
    [47] Trotta M., Debernadi F., Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm. 2003, 257: 153-160
    [48] 苏德森,王思玲. 物理药剂学. 第 1 版. 化学工业出版社,2004: 198-224
    [49] Siekmann B., Westesen K. Submicro-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett. 1992, 1: 123-126
    [50] Ahlin P., ?mid-Kobar J. Optimization of procedure parameters and physical stability of solid lipid nanoparticles in dispersions. Acta Pharm. 1998, 48: 257-267
    [51] Müller R.H., Mehnert W., Lucks J.S., Schwarz C., Mühlen A.Z., Weyhers H., Freitas C., Rühl D. Solid lipid nanoparticles (SLN) — An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 1995, 41: 62–69
    [52] Cavalli R., Caputo O., Marengo E., Pattarino F., Gasco M.R. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie. 1998, 53: 392–396
    [53] 毛世瑞,毕殿州. 固体脂纳米粒(SLN)药物释放体系的研究进展. 沈阳药科大学学报. 2002, 19(6): 455-461
    [54] Morel S., Ugazio E., Cavalli R., Gasco M.R. Thymopentin in solid lipid nanoparticles. Int. J. Pharm. 1996, 132: 259-261
    [55] Westesen K., Bunjes H., Koch M.H.J. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Controlled Rel. 1997, 48: 223-236
    [56] Müller R.H., Ratke M., Wissing S.A. Nanostructure lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002, 242: 121-128
    [57] Cavalli R., Marengo E., Rodriguez L., Gasco M.R. Effect of some experimental factors on the production process of solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 1996, 43: 110-115
    [58] Lim S.J., Kim C.K. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 2002, 243: 135-146
    [59] Zimmermann E., Müller R.H. Electrolyte-and pH-stabilities of aqueous solid lipid nanoparticle (SLNTM) dispersion in artificial gastrointestinal media. Eur. J. Pharm. Biopharm. 2001, 52: 203-210
    [60] Schuhmann R., Mehnert W., Müller R.H. Coulter counter based coalescence assay forthe determination of emulsion stability after addition of electrolyte. Pharm. Ind. 1993, 55: 701-704
    [61] Mollet H., Grubenmann A. 乳液、悬浮液、固体配合技术与应用. 杨光 译. 第 1 版. 化学工业出版社,材料科学与工程出版中心,2004: 163-175
    [62] Siekmann B., Westesen K. Thermoanalysis of the recrystallization of melt-homogenized glyceride nanoparticles. Colloids and surfaces B: Biointerfaces. 1994, 3: 159–175
    [63] Westesen K., Siekmann B. Investigation of the gel formation of phospholipid –stabilized solid lipid nanoparticles. Int. J. Pharm. 1997, 151: 35-45
    [64] Freitas C., Müller R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions. Int. J. Pharm. 1998, 168: 221–229
    [65] Lukowski G., Pflegel P. Electron diffraction of solid lipid nanoparticles loaded with acyclovir. Pharmazie. 1997, 52: 642–643
    [66] Wissing S.A., Müller R.H., Manthei L., Mayer C. Structure characterization of Q10-loaded solid lipid nanoparticles by NMR spectroscopy. Pharm. Res. 2004, 21(3): 400–405
    [67] Müller R.H., Radtke M., Wissing S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Del. Rev. 2002, 54 (Suppl. 1): S131-S155
    [68] Mühlen A.Z., Mehnert W. Drug release and release mechanism of prednisolone loaded solid lipid nanoparticles. Pharmazie. 1998, 53: 552-561
    [69] Jenning V., Gohla S.V. Encapsulation of retinoids in solid lipid nanoparticles. J. Microencapsulation. 2001, 18(2): 149-158
    [70] Schwarz C., Freitas C., Mehnert W., Müller R.H. Sterilization and physical stability of drug-free and etomidate-loaded solid lipid nanoparticles. Proc. Intern. Symp. Control. Rel. Bioct. Mater. 1995, 22: 766–767
    [71] Schwarz C., Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm. 1997, 157: 171-179
    [72] Cavalli R., Caputo Q., Carlotti M.E., Trotta M., Scarnecchia C., Gasco M.R. Sterilization and freeze-drying of drug-free and drug loaded solid lipid nanoparticles. Int. J. Pharm. 1997, 148: 47-54
    [73] Freitas C., Müller R.H. Spray-drying of solid lipid nanoparticles (SLNTM). Eur. J.Pharm. Biopharm. 1998, 46: 145-151
    [74] 杨时成,朱家壁,梁秉文, 杨昌正. 喜树碱固体脂质纳米粒的研究. 药学学报. 1999, 34(2): 46-150
    [75] 程坤,朱家壁,杨时成. 尼莫地平固体脂质毫微粒的制备工艺研究. 中国医药工业杂志. 1999, 80(10): 441-444
    [76] 毛世瑞, 王燕芝, 纪宏宇, 毕殿洲. 微乳化技术制备固体脂质纳米粒. 药学学报. 2003, 38(8): 624-626
    [77] 陈大兵, 杨天智, 吕万良, 张强. 紫杉醇长循环固态脂质纳米粒的制备和体内外研究. 药学学报. 2002, 37(1): 54-58
    [78] 何林,余继英,张丽,李素华,蒋学华. 阿克拉霉素 A 固体脂质纳米粒冻干针剂体外释药规律研究. 中国药房. 2004, 15(9): 533-535
    [79] 应晓英,胡富强,袁弘. 卡马西平硬脂酸固体脂质纳米粒的制备与理化性质研究. 中国医药工业杂志. 2002, 33(11): 543-546
    [80] 翁婷,陈华兵,常雪灵,杨亚江,杨祥良. 雷公藤提取物固体脂质纳米粒水分散体的制备及体外透皮吸收. 中国医药工业杂志. 2004, 35(2): 87-89
    [81] 侯冬枝,谢长生, 朱长虹. 米非司酮固体脂质纳米粒的性状研究. 中国医药工业杂志. 2004, 35(10): 602-605
    [82] 段磊,夏强,马全红,顾宁. 维甲酸固体脂质纳米粒的制备及其药物稳定性研究. 东南大学学报(医学版). 2004, 23(4): 225-227, 238
    [83] 国家药典委员会.中华人民共和国药典(第二部). 2000版. 化学工业出版社,2000: 附录 75-78
    [84] 叶金朝. 布洛芬的毒副作用及其处理. 药物流行病学杂志. 1994, 3(3): 143-145
    [85] 李荣誉, 吕万良, 张强. 布洛芬β-环糊精包合物的制备及其药剂学性质的研究. 中国兽医科技. 2001, 31(11): 3-5
    [86] 孙礼林,孙玉,汪凌云,沈良骏. 布洛芬高分子前体药物及纳米微球的合成和表征. 功能高分子学报. 2004, 17(1): 97-101,108
    [87] Didier M.L. Rationale and applications of lipids as prodrug carriers. Eur. J. Pharm. Sci., 11 Suppl. 2000, 2: S15–S27
    [88] Fernández-Carballido A., Herrero-Vanrell R., Molina-Martínez I.T., Pastoriza P. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration Effect of Labrafil addition on release in vitro. Int. J. Pharm. 2004, 279: 33–41, 2004
    [89] Pignatello R., Bucolo C., Ferrara P., Maltese A., Puleo A., Puglisi G. Eudragit RS100? nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur. J. Pharm. Sci. 2002, 16: 53–61
    [90] Gallardo A., Eguiburu J.L., Berridi M.J. F., Román J.S. Preparation and in vitro release studies of ibuprofen-loaded films and microspheres made from graft copolymers of poly(L-lactic acid) on acrylic backbones. J. Controlled Rel. 1998, 55: 171–179
    [91] 陈华兵,翁婷,常雪灵,杨亚江,杨祥良. 布洛芬微乳的制备及其透皮吸收研究. 中国药学杂志. 2004, 39(1): 43-45
    [92] Lamprecht A., Saumet J.L., Roux J., Benoit J.P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm. 2004, 278:407–414
    [93] Mohammed A.R., Weston N., Coombes A.G.A., Fitzgerald M., Perrie Y. Liposome formulation of poorly water soluble drugs: optimisation of drug loading and ESEM analysis of stability. Int. J. Pharm. 2004, 285, 23–34, 2004
    [94] Christianah M.A., James C.P. Development and evaluation of sustained-release Ibuprofen-wax microsheres in vitro dissolution studies. Pharm. Res. 1994, 2(4): 852-861
    [95] Adeyeye C.M., Price J.C. Development and evaluation of sustained-release ibuprofen wax microspheres. Ⅰ. Effect of formulation variables on physical characteristics. Pharm. Res. 1991, 8: 1377-1383
    [96] Bodmeier R., Wang J., Bhagwatwar H. Process and formulation variables in the preparation of wax microparticles by melt dispersion technique for water-insoluble drugs. J. Microencapsul. 1992, 9(1): 89-98
    [97] Maheshwari M., Ketkar A.R., Chauhan B., Patil V.B., Paradkar A.R. Preparation and characterization of ibuprofen–cetyl alcohol beads by melt solidification technique: effect of variables. Int. J. Pharm. 2003, 261: 57–67
    [98] Sato K. Crystallization behaviour of fats and lipids – a review. Chem. Eng. Sci. 2001, 56: 2255-2265
    [99] Demirel M., Yazan Y., Muller R.H., Kilic F., Bozan B. Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro- and nanoparticles. J. Microencapsul. 2001, 18(3): 347-357
    [100] Hagemann J.W. Crystallization and polymorphism of fats and fatty acids. Second Edition. Marcel Dekker Inc. 1988: 23-31
    [101] Freitas C., Müller R.H. Correlation between long-term stability of solid lipidnanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 1999, 47: 125-132
    [102] Freitas C., Müller R.H. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J. Microencapsul. 1999, 16(1): 59-71
    [103] Jenning V., Gohla S. Comparison of wax and glyceride solid lipid nanoparticles. Int. J. Pharm. 2000, 196: 219-222
    [104] Liu J., Xiao Y., Allen C. Polymer-Drug Compatibility: A guide to the development of delivery systems for the anticancer agent. Ellipticine. J. Pharm. Sc. 2004, 93: 132-143
    [105] Castelli F., Conti B., Maccarrone D.E., Conte U., Puglisi G. Comparative study of ‘in vitro’ release of anti-inflammatory drugs from polylactide-co-glycolide microspheres. Int. J. Pharm. 1998, 176: 85-98
    [106] Nair R., Nyamweya N., Gonen S., Martinez-Miranda L.J., Hoag S.W. Influence of various drugs on the glass transition temperature of poly(vinylpyrrolidone): a thermodynamic and spectroscopic investigation. Int. J. Pharm. 2001, 225: 83-96
    [107] Wu C., McGinity J.W. Non-traditional plasticization of polymeric films. Int. J. Pharm. 1999, 177: 15-27
    [108] Puttipipatkhachorn S., Nunthanid J., Yamamoto K., Peck G.E. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. J. Controlled Rel. 2001, 75: 143-153
    [109] Lin S.Y., Lee C.J., Lin Y.Y. Drug-polymer interaction affecting the mechanical properties, adhesion strength and release kinetics of piroxicam-loaded Eudragit E films plasticized with different plasticizers. J. Controlled Rel. 1995, 33: 375-381
    [110] Rowe R.C. Adhesion of film coatings to tablet surfaces ? a theoretical approach based on solubility parameters. Int. J. Pharm. 1988, 41: 219-222
    [111] Rowe R.C. Polar/nonpolar interactions in the granulation of organic substrates with polymer binding agents. Int. J. Pharm. 1989, 56: 117-124
    [112] Lin S., Lee C., Lin Y. The effect of plasticizers on compatibility, mechanical properties, and adhesion strength of drug Eudragit E film. Pharm. Res. 1991, 8: 1137-1143
    [113] 夏正斌,涂伟萍,杨卓如,陈焕钦. 溶解度参数在研制高性能丙烯酸聚氨酯涂料中的应用. 高校化学工程学报. 2001, 15: 88-92
    [114] Greenhalgh D.J., Williams A.C., Timmins P., York P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88(11): 1182-1190
    [115] Suzuki H., Sunada H. Influence of water – soluble polymers on the dissolution ofnifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. 1997, 45: 1688-1693
    [116] Van Krevelen D.W. Properties of polymers. Third Edition. Elsevier, 1990: 201-219
    [117] Hancock B.C., York R., Rowe R.C. The use of solubility parameters in pharmaceutical dosage from d+esign. Int. J. Pharm. 1997, 148: 1-21
    [118] Barra J., Bustamante P., Doelker E. Use of the solubility parameter and surface energy concepts in the formulation of solid dosage forms. S.T.P. Pharm. Sci. 1999, 9: 293-305
    [119] Khalil S.A., Moustafa M.A., Abdallah O.Y. The use of the solubility parameter as an index of drug activity. Can. J. Pharm. Sci. 1976, 11: 121-125
    [120] Vaughan C.D., Wright F.J. Solubility parameter and anti-microbial. Pharm. Acta Helv. 1986, 61: 95-96
    [121] Groning R., Braun F.J. Three dimensional solubility parameters and their use in characterising the permeation of drug through the skin. Pharmazie. 1996, 51: 337-341
    [122] Martini L.G., Avontuur P., Goerge A., Willson R.J., Crowley P.J. Solubility and oral adsorption. Eur J. Pharm. Biopharm. 1999, 48: 259-263
    [123] Rowe R.C. Interactions in coloured powders and tablet formulations: a theoretical approsch based on solubility parameters. Int. J. Pharm. 1989, 53: 47-51
    [124] Sakellariou P., Rowe R.C. Interactions in cellulose derivative films for oral drug delivery. Prog. Polymer Sci. 1996, 20: 889-942, 1996
    [125] Verheyen S., Augustijins P.R., Kinget G., Mooter V. Determination of partial solubility parameters of five benzodiazepines in individual solvents. Int. J. Pharm. 2001, 228: 199-207
    [126] Forster A., Hempenstall J., Tucker I., Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int. J. Pharm. 2001, 226: 147-161
    [127] Hildebrand J.H., Scott R.L. The solubility of nonelectrolytes. Third Edition. New York, Reinhold, 1950: 89-93
    [128] Hansen C.M. The three dimensional solubility parameter – Key to paint component affinities, 1: Solvents, plasticizers, polymers and resins. J. Paint Tech. 1967, 39: 104-117
    [129] Vicente M.S., Gottifredi J.C. Estimation of solvent activities in polymers solutions using a group-contribution method. Sep. Purif. Technol. 2001, 22-23: 671–679
    [130] Marrero J., Gani R. Group-contribution based estimation of pure component properties. Fluid Phase Equilibr. 2001, 183–208
    [131] Lamprecht A., Bouligand Y., Benoit J.P. New lipid nanocapsules exhibit sustained release properties for amiodarone. J. Controlled Rel. 2002, 84: 59-68
    [132] Cortesi R., Esposito E., Luca G., Nastruzzi C. Production of lipospheres as carriers for bioactive compounds. Biomaterials. 2002, 23: 2283-2294
    [133] Venkateswarlu V., Manjunath K. Preparation characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Controlled Rel. 2004, 95: 627-638
    [134] Frederiken H.K., Kristensen H.G., Pedersen M. Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J. Controlled Rel. 2003, 86: 243-252
    [135] Sato T., Ruch R.J. 聚合物吸附对胶态分散体稳定性的影响. 江龙 译. 第 1 版.科学出版社,1988: 31-38
    [136] Tadros T.F., Vandamme A., Levecke B., Booten K., Stevens C.V. Stabilization of emulsions using polymeric surfactants based on inulin. Adv. Colloid and Interface Sci. 2004, 108-109:207-226
    [137] Long C.X, Zhang L.J, Qian Y. Mesoscale simulation of drug molecules distribution in the matrix of solid lipid microparticles (SLM). Chem. Eng. J. 2006, 119: 99-106
    [138] Yamamoto S., Hyodo S. Budding and fission dynamics of two-component vesicles. Journal of Chemical Physics. 2003, 118(17): 7937-7943
    [139] Dzwinel W., Yuen D.A. A two-level, discrete-particle approach for simulating ordered colloidal structures. J. Colloid Interface Sci. 2000, 225: 179–190
    [140] Lam Y.M., Goldbeck-Wood G. Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology. Polymer 2003, 44: 3593–3605
    [141] Yamamotoa S., Hyodo S. Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles. J. Chem. Phy. 2005,122: 204907
    [142] Vliet R.E., Dreischor M.W., Hoefsloot H.C.J., Iedema P.D. Dynamics of liquid–liquid demixing: mesoscopic simulations of polymer solutions. Fluid Phase Equilibr. 2002, 201: 67–78
    [143] Qian H.J., Lu Z.Y., Chen L.J., Li Z.S., Sun C.C. Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers. J. Chem. Phy. 2005, 122: 184907
    [144] Hoogerbrugge P.J., Koelman J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992, 19(3): 155-160
    [145] Espaňol P., Warren P. Statistic mechanics of dissipative particle dynamics. Europhys. Lett. 1995, 30: 191-196
    [146] Groot R.D., Madden T.J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998, 108(20): 8713-8724
    [147] Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107(11): 4423-4435
    [148] Rekvig L., Kranenburg M., Vreede J., Hafskjold B., Smit B. Investigation of surfactant efficiency using dissipative particle dynamics. Langmuir. 2003, 19(20): 8195-8205
    [149] Rekvig L., Hafskjold B. Simulating the effect of surfactant structure on bending moduli of monolayers. J. Chem. Phys. 2004, 120(10): 4897-4905
    [150] Kranenburg M., Venturoli M., Smit B. Molecular simulation of mesoscopic bilayer phases. Phys. Rev., E 67. 2003: 060901-060903 (R)
    [151] Kranenburg M., Smit B. Phase behaviour of model lipid bilayers. J. Phys. Chem., B. 2006, 109(14): 6553 -6563
    [152] Lllya G., Lipowsky R., Shillcock J.C. Effect of chain length and asymmetry on material properties of bilayer membranes. J. Chem. Phys. 2005, 122(24): 244901
    [153] Maiti A., McGrother S. Bead–bead interaction parameters in dissipative particle dynamics: Relation to bead-size, solubility parameter, and surface tension. J. Chem. Phys. 2004, 102(3): 1594-1601
    [154] Groot R.D. Mesoscopic simulation of polymer-surfactant aggregation. Langmuir. 2000, 16(19): 7493-7502
    [155] Yuan S., Xu G., Luan Y., Liu C. The interaction between polymer and ATO or NaDEHP in aqueous solution: mesoscopic simulation study and surface tension measurement. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 256: 43-50
    [156] Accelrys Software Inc. Material Studio online help[EB/CD]. USA. 2005
    [157] 赵国玺,朱歩瑶. 表面活性剂作用原理. 第 1 版. 中国轻工业出版社,2003: 297-300
    [158] Leo E., Forni F., Bernabei M.T. Surface drug removal from ibuprofen-loaded PLA microspheres. Int. J. Pharm. 2000, 196: 1-9
    [159] Fernández-Carballido A., Herrero-Vanrell R., Molina-Martinez I.T., Pastoríza P. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration Effect of Labrafil addition on release in intro. Int. J. Pharm. 2004, 279: 33-41
    [160] Gaszner P., Makkos Z. Clozapine maintenance therapy in schizophrenia. Prog. Neuro-Psychopharm. Biological Psychiatry. 2004, 28: 465– 469
    [161] 彭星星,钟潇琦,郑洪波. 氯氮平治疗精神分裂症临床疗效与血浓度研究. 神经疾病与精神卫生. 2004, 4(3):196-197
    [162] Jann M.W. Clozapine. Pharmacotherapy. 1991, 11(3): 179-195
    [163] 张娜,徐彦先,黄桂华,赵焰,邓树海. 氯氮平缓释片的制备及释药特性的研究. 中国现代应用药学杂志. 2000, 17(3): 202-204
    [164] 张娜, 邓树海, 王方, 黄桂华, 李义明. 氯氮平胃内漂浮片的研制. 中国医药工业杂志. 2001, 32(4): 155-157
    [165] Agnihotri S.A., Aminabhavi T.M. Controlled release of clozapine through chitosan microparticles prepared by a novel method. J. Controlled Rel. 2004, 96: 245– 259
    [166] Manjunath K., Venkateswarlu V. Pharmacokinetics tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Controlled Rel. 2005, 107: 215-228
    [167] Francesco C., Bice C., Davide E.M., Ubaldo C. Comparative study of ‘in vitro’ release of anti-inflammatory drugs from polyactide-co-glycolide microspheres. Int. J. Pharm. 1998, 176: 85-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700