石门揭煤围岩体塑性区形成的特征及瓦斯抽采布孔参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以南桐煤矿6号煤层采掘工作面煤岩为研究对象,通过现场取样进行室内试验,研究了有效应力和吸附效应对煤岩渗透率的影响规律;同时通过理论分析和数值模拟,对石门揭煤断裂破坏区域进行了预测;建立了有限变形下的煤岩固气动态耦合模型,通过分析穿层钻孔瓦斯抽采的特点及瓦斯流动规律,结合石门揭煤断裂破坏区域的预测,对穿层预抽瓦斯的布孔参数进行了优化,得到了较好的结果。根据上述研究,得到主要结论如下:
     ①通过现场取样和型煤试件的加工,进行了室内试验,获得了煤岩渗透率随着有效应力和吸附效应的变化规律。煤岩的渗透率是随着有效应力增大而减小,这是由于有效应力的增大压缩了煤岩裂隙,导致渗流通道的减小。煤岩吸附气体后煤基质将发生膨胀,煤岩裂缝开度减小,使得煤岩的渗透率会减小。
     ②根据岩石失稳的强度准则,以及应用于煤岩试件上的验证,得到了煤岩的断裂破坏准则。给出了岩体断裂破坏区域的划分方法,引入了岩体稳定系数R,得出R≥1时,岩体未破坏,反之则岩体被破坏。通过对石门揭煤断裂破坏区的数值模拟得出:石门揭煤断裂破坏区的形成是一个动态演化的过程,随着石门巷道工作面离煤层越近,断裂破坏区的面积越大,当石门巷道工作面距离煤层一定距离时,工作面也开始出现破坏的痕迹。
     ③建立了考虑煤岩孔隙率与渗透率的动态变化的固气动态耦合模型;通过模型分析,获得了石门揭煤预抽瓦斯钻孔周围的瓦斯压力、孔隙率和渗透率的变化规律.结合石门揭煤弹塑性区域的形成特点通过计算得出了穿层瓦斯钻孔抽采的最优设计参数。
Taking the uncovering coal in crosscut of nan tong No. 6 as the experiment specimen,through laboratory experiments by field sampling, the rules how the effective stress and different gas adsorption influenced the coal permeability were found out. At the same time through the numerical analysis and theoretical analysis,fracture of uncovering coal in crosscut regions were predicted, and established the finite deformation of the coal rock of solid -gas coupling model. Through careful analysis of drilling drainage characteristics and the law of gas flow, and some laboratory experiments ,the change law of the parameters of methane extraction were educed。To sum up, the main research results and conclusions of this paper are as follows:
     ①Through laboratory experiments by field sampling ,the rules how the effective stress and different gas adsorption influenced the coal permeability were found out. The coal permeability and effective stress has a negative correlation. The reason is that the effective stress increasing compresses the coal rock crack so that the seepage channels are reduced. The coal matrix will swell by adsorbing gases so as the openings of fracture become small, and then the coal permeability is lowered.
     ②Giving the rock failure criterion, and applying to the coal rock specimen validation, obtaining the fracture failure criterion of coal. Introducing the rock mass stability coefficient R, when R≥1, rock is not destroyed,through numerical simulation of uncovering coal in crosscut, research results are as follows: the region of fracture of uncovering coal seam in cross-cut on the Formation is a dynamic evolution process,when the distance between working face of rock tunnel and coal seams becomes closer and closer, the fracture area becomes larger and larger. The working face will have the sign of destruction when the distance between the rock tunnel and working face coal seam become very closer.
     ③Established coal in gas-solid coupling model which reflects the change of porosity and permeability, by analyzing the model to educe an effect regularity of gas pressure, porosity and permeability in the gas extraction surroundings, obtained optimal design parameters of gas extraction.
引文
[1]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [2]于不凡.煤与瓦斯突出机理[M].北京:煤炭工业出版社, 1985, 255-256.
    [3]马丕梁,范启炜.我国煤矿抽放瓦斯现状及展望.中国煤炭,2004,30(2).
    [4]朱光辉,韩建光,韩臻.浅谈瓦斯防治与瓦斯抽放技术.煤矿安全,2009,18(1).
    [5]潘德祥,梁国利.煤矿瓦斯抽放现状及其展望.河北煤炭,1998,3.
    [6]陈芳,彭小亚,卢小燕.我国煤矿瓦斯的回收与综合利用.山西焦煤科技,2008,1l
    [7]谈庆明,俞善炳,朱环球等.含瓦斯煤在突然卸压下的开裂破坏[J]:煤炭学报,1997(22):514-518.
    [8]蒋承林,俞启香.石门揭穿含瓦斯煤层时动力现象的地壳失稳机理研究[D].徐州:中国矿业大学,1994.
    [9]蒋承林,俞启香.煤与瓦斯突出的球壳失稳假说[J].煤矿安全,1995(2): 17-25.
    [10]蒋承林,俞启香.煤与瓦斯突出的球壳失稳机理及防治技术[M].徐州:中国矿业大学出版社,1998.
    [11]郑敏哲.从数量级和量纲分析看煤与瓦斯突出机理[J].煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集,1983:3-11.
    [12]煤炭科学研究院重庆分院.瓦斯突出强度与瓦斯能量关系的研究[R].科学技术报告,1997.
    [13]胡千庭.我国防治煤与瓦斯突出技术和设备的新发展[R].科学技术报告,1997.
    [14]周世宁,何学秋.煤与瓦斯突出机理的流变假说[J].中国矿业大学学报,1990(2).
    [15]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [16]鲜学福,辜敏,李晓红,等. ,煤与瓦斯突出的激发和发生条件[J].岩土力学,2009,30(3):577-581.
    [17]鲜学福.煤与瓦斯突出的形成、发展、发生条件与自组织临界特性[R].重庆:重庆大学, 2006.
    [18]鲜学福,辜敏,姜永东,李晓红.煤矿地下开采煤岩体中断裂破坏的分布与煤层气开采[R].重庆大学,2009.
    [19]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [20]罗利锐,刘志刚.煤与瓦斯突出的地质理论分析[J].环境科学,2009.
    [21]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理的研究[J].煤炭学报,2008,33(2):131-135.
    [22]曹树刚.煤岩的蠕变损伤、瓦斯渗流和煤与瓦斯突出关系的研究[[D].重庆:重庆大学,2000.
    [23]曹树刚,鲜学福.煤岩固-气耦合的流变力学分析[J].中国矿业大学学报,2001,30(4):362-365.
    [24]曹树刚,刘延保,张立强,等.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(增1):2794-2799.
    [25]曹树刚,刘延保,张立强,等.突出煤体单轴压缩和蠕变状态下的声发射对比试验[J].煤炭学报,2007,32(12):1264-1268.
    [26] Sommerton W J,Soylemezoglu I M,Dudley R C. Effect of stress onpermeability of coal[J]. Int. J. Rock Mech. Min. Sci. and Geomech.Abstr.,1975,12(2):129–145.
    [27] Brace W F. A note on permeability changes in geologic material due tostress[J]. Pageoph,1978,116(4/5):627–632.
    [28] McKee C R,Bumb A C,Koenig R A. Stress-dependent permeabilityand porosity of coal[A]. In : Fassett J E ed. Geology and Coal-bedMethane Resources of the Northern San JuanBasin[C]. Colorado , USA : Rocky Mountain Association of Geologists Guidebook ,1988.143–153.
    [29] Enever J R E,Henning A. the relationship between permeability andeffective stress for Australian coal and its implications with respect tocoalbed methane exploration and reservoir model[A]. In : Proceedingsof the 1997 International Coalbed Methane Symposium[C]. Tuscaloosa,AL,USA:University of Alabama,1997. 13–22.
    [30] MCKEE C R,BUMB A C,KOENIG R A. Stress dependentpermeability and porisity of coal[M]. [S.l.]:Rocky Mountain Association of Geologist,1998:143–153.
    [31] Harpalani S, MophersonM J. The effect of gas evacuation on coal permeability test specimens [J]. Rock Mech. Min. Sci. and Geomech.Abstr.,1975,12(2):141–169.
    [32]肖晓春,潘一山.地渗煤储层气体滑落效应试验研究[J]. 2008,27(增2):3509-3515.
    [33]陶云奇,许江,李树春,等.煤层瓦斯渗流特性研究进展[J].煤田地质与勘察,2009,37(2):1-5.
    [34] Bear, J. and Corapcioglu, M. Y.: 1981, A mathematical model for consolidation in a theroelastic aquifer due to hot water injection or pumping, Water Resour. Res. 17, 723–736.
    [35] SHI J Q, DURUCAN S. Drawdown induced changes in permeability of coalbeds: A new interpretation of the reservoir response to primary recovery[J]. Transport in Porous Media, 2004, 56(1): 1-16.
    [36] PALMER I, MANSOORI J. How permeability depends on stress and pore pressure in coalbeds: A new model[J].SPE Reservoir Evaluation & Engineering, 1998, 12,539-44.
    [37]鲜学福,辜敏等.地球物理场中煤层气的富集与运移研究[R].2007,5. (Xian Xuefu,Gu Min,et.al. Coal-bed methane enrichment and migration in geophysical field . [R]. 2007,5.(in Chinese)).
    [38]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.(ZHAO Yangsheng. Rock fluid mechanics in mine[M]. Beijing:China Coal Industry Publishing House,1994.(in Chinese)).
    [39]田利楠.纯气体_混合气体及液体粘度的计算[J].化学工程,1997,35(6):9-13.
    [40]ВТ.Ялушко, B. B. BинoградовРазрушeниeΓорныxПородиΠрогнозированиeΠроявлeнийΓорногoДавленияМосква<<недра>>,1982.
    [41]И.АТурчаниов, M.А.Иофис,Э. B.Каспарьян,Основы, MеханикиΓорныхПород,Ленинград<> ,ЛенинградскоеОтделение1989.
    [42]张国民,傅正祥,桂燮泰等.地震预报引论[M].科学出版社,2001.
    [43]许江等.煤与瓦斯突出潜在危险区域预测的研究[M].重庆大学出版社,2004.
    [44]山口梅太郎,西松裕一著,黄世衡译.岩石力学基础[M].冶金出版社,1982.
    [45]鲜学福,许江,王宏图.煤与瓦斯突出潜在危险区(带)预测[J].中国工程科学,2001,3(2):39~46.
    [46] D. C. Drucker, et al, soil mechanics and plasticity analysis of limit design, Q. Appl. Math, 10,1952.
    [47] D. C. Drucker, on the role of experiment in the development of theory, Proc, Fourth U. S. National cong. of Appl, Mech.1962.
    [48]钱寿易.岩石介质模量帽盖模型的弹塑性本构关系[M].应用数学和力学,1983,4(3).
    [49] K. H. Roseco, et al, on the generalized stress-strain beharviour of wet clay, Engineering plasticity, Cambridge university, 1968.
    [50] F. L. Dimaggie, et al, Material model for granul soils, poc, ASCE.FMD.Vol, 97, 1971.
    [51] R. D. Swift, Modeling of static and dynamic response of a dry kayeute sandstone, 17th U. S. Symposium on Rock Mech, 1976.
    [52]许江,煤与瓦斯突出潜在危险区预测的研究[D].重庆大学博士论文,1991.
    [53] Langmuir I. The adsorption of gases on plane surface of glass,mica and platinum[J]. Journal ofAmerican Chemical Society,1918,40(1):361-403.
    [54] SaghafiA,FaizM,RobertsD.CO2 storage and gas diffusivity properties of coals from Sydney Basin,Australia [J]. International Journal of Coal Geology, 2007, 70: 240–254
    [55]冯增朝.地渗透率煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [56] Hao YangSheng, Huyaoqing. The experimental approach to effective stressLaw of coal Mass by Effect of Methane [J]. Transport in Porous Media,2003,53: 235–244,.
    [57] Jaeger J. C., Cook N. G. W.岩石力学基础[M].中国科学院工程力学所译.北京:科学出版社, 1981.
    [58]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗透性表征与试验研究[J].中国科学技术大学学报.
    [59]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [60]卢平,沈兆武,朱贵旺,等.岩样应力应变全过程中的渗流表征与试验研究[J].中国科技大学学报,2002,32(6):678-684.
    [61]陶云奇.含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究[D].重庆,重庆大学出版社,2009.
    [62]杨天鸿,徐涛,刘建新,应力–损伤–渗流耦合模型及在深部煤层瓦斯卸压实践中的应用[J].岩石力学与工程学报,2005,24(16):2900~2905.
    [63]唐世斌,杨天鸿,徐涛,远程卸压瓦斯抽放数值模拟[J].煤田地质与勘探,2004,10(4):1-4
    [64]郭玉森,林柏泉,吴传始.围岩裂隙演化与采动卸压瓦斯储运的耦合关系[J].采矿与安全工程学报2007,24(4):414-417.
    [65]赵阳升.煤体-瓦斯耦合数学模型与数值解法[J].岩石力学与工程学报,1994,(3):229-239.
    [66] ZHOUY,RAJAPAKSE R,GRAHAM J.a coupled thermo poroelastic model with thermo-osmosis and thermal-filtration[J]. Infernational Journal of Solids and Structure , 1998, 35:18-23.
    [67]孙培德,杨东全,陈奕柏.多物理场耦合模型及数值模拟导论[M].北京:中国科学技术出版社,2007.
    [68]但汉成,李亮,赵炼恒,等.变形多孔介质流固耦合非线性渗流模型及解析[J].长江科学院院报,2009,26(6):32-36.
    [69]王茜,张烈辉、钱治家,等.考虑科林贝尔效应的低渗、特低渗气藏数学模型[J].天然气工业,2003,23(6):100-102.
    [70]汪有刚,刘建军,杨景贺,等.煤层瓦斯流固耦合渗流的数值模拟[J].煤炭学报,2001,26(3):285-298.
    [71]肖晓春,潘一山.考虑滑脱效应的煤层气渗流数学模型及数值模拟[J].岩石力学与工程学报,2005,24(16):2966-2970.
    [72]李志强;王兆丰.井下注气强化煤层气抽采效果的工程试验与数值模拟[J].重庆大学学报,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700