基于仿生学的复杂机电产品装配方案与运动控制设计技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统产品方案设计的抽象性、复杂性和不完整性,提出了基于仿生学的复杂机电产品装配方案与运动控制设计技术,对装配方案建模、运动方案变异和控制方案耦合等关键技术进行了深入研究,并结合实际项目将以上各项技术应用于实际的产品开发中,取得良好效果,证明作者所提设计技术的有效性。
     第1章,指出了复杂机电产品方案设计的重要性和有待突破的瓶颈,阐述了复杂机电产品方案设计的国内外研究现状,分析了将仿生学应用于复杂机电产品方案设计的研究现状和不足之处,在此基础上提出了基于仿生学的复杂机电产品装配方案与运动控制设计技术,并给出了论文的主要研究内容及结构框架。
     第2章,为了从宏观上把握产品装配系统中各个零件的功能及其之间的约束关系,进而根据需求对产品装配系统进行设计或变异,通过分析生物组织系统与产品装配系统的相似性,借鉴生物学知识,将产品装配系统表达为产品功能基因、产品约束基因、产品功能蛋白质、产品约束蛋白质和产品细胞等。建立由产品功能基因团和约束基因组成的产品染色体模型并提出基于产品染色体模型的设计方法。
     第3章,分析了生物基因遗传和变异的机理与机构变异的相似性,提出了基于遗传学特征模型和原理模型的两种基因变异方法。总结出构件、运动副基因表达式和机构基因表达式,建立机构遗传学特征模型。归纳出基于遗传学特征的机构基因变异3条法则,根据变异法则规定了6种对机构遗传学特征模型的变异运算。分析了在运动输入不变的前提下控制机构运动输出的影响因子并将其分别表达为运动副染色体序号、运动副特性基因和距离关系矢量基因,建立由机构染色体关系图和机构染色体矩阵组成的机构遗传学原理模型,借鉴遗传学减数分裂和染色体变异等原理提出了三种对机构遗传学原理模型的运动副染色体基因重组运算——显性、易位和转移。
     第4章,模仿自然界群居生物在协作劳动过程中如何系统性地控制个体进行协同劳动,将在设计复杂机电产品控制方案时需要考虑的各种耦合进行系统性的分类,提出了作用耦合、内部耦合和同步耦合等三类控制系统的仿生耦合,分析了各类仿生耦合的控制方法及其对应的误差类型,将同步耦合的误差按控制对象为执行元件的运动轨迹和各个轴的运动参数两种情况进行分类并建立相应的误差模型。
     第5章,介绍了复杂宝石加工专用装备的研发背景,将复杂机电产品装配方案的染色体建模、复杂机电产品运动方案的基因变异和复杂机电产品控制方案的仿生耦合等复杂机电产品方案设计技术分别应用于复杂宝石加工专用装备机械手建模、进料机构变异和控制系统设计中,证明了论文提出的基于仿生学的复杂机电产品装配方案与运动控制设计技术的实用价值和研究意义。
     第6章,总结了本课题的研究成果,展望了今后的研究方向。
This paper presents assembly scheme and motion control design technologies for complex electromechanical products based on Bionics, considering the defects of traditional product scheme design, such as abstractness, complexity and incomplete. The in-depth studies conducted in the paper are the key technologies in assembly scheme modeling, motion scheme variation and control scheme coupling. And the successful application in a practical project has proved the utility of the above technologies.
     Chapter 1, the significance and defect of scheme design for complex electromechanical products are pointed out. The current study status at home and abroad of scheme design for complex electromechanical products is demonstrated. The study status and defect of bionics' uses in scheme design for complex electromechanical products are analyzed, and on the basis of which, the technologies of scheme design for complex electromechanical products based on Bionics are proposed, and the primary research contents and the structure of this paper were given.
     Chapter 2, In order to grasp the functions of each part and the constraint relation between two parts in product assembly system in macroscopic view, furthermore, to design and vary the product assembly system according to requirements, the product assembly system was expressed as product function gene, product constraint gene, product function protein, product constraint protein and product cell by analyzing the similarity between biology system and product system and using biology knowledge for reference. The product chromosome model composed of product function gene groups and constraint genes was established and the design method based on it was proposed.
     Chapter 3, two gene variation methods based on genetic features model and principle model are proposed by analyzing the comparability between the principle of biotic genetic inheritance and variation and mechanism variation. A mechanism genetic features model was created according to the genetic expressions of components, kinematic pairs and mechanism summarized. Three rules of mechanism gene variation were summarized based on genetic features model, according to which six variation operations on the mechanism genetic features model including voluntary variation, extreme variation, interchanged variation, reversed variation, recombinant variation and hybrid variation were proposed. Influencing factors which control mechanism motion output are analyzed on the premise that motion input keeps constant. They are represented as kinematic pair chromosome number, kinematic pair feature gene and distance relationship vector gene. Mechanism genetic principles model is established, constituted by mechanism chromosome relationship graph and mechanism chromosome matrix. Three kinematic pair chromosome gene recombination operations on mechanism genetic principles model (dominance, translocation and metastasis), are proposed by using meiosis and chromosome variance in genetics for reference.
     Chapter 4, the couplings that have to be considered in designing the control scheme for complex electromechanical products are classified systemically into three kinds of bionics couplings including effective coupling, internal coupling and synchronous coupling by imitating the systemic control of collaborative work of organism in nature. The control methods of the three bionics couplings and their respective error models are analyzed. The error of synchronous coupling are classified according to the two situations of that the control object is actuator's trajectory or synchronous shafts' motion parameters.
     Chapter 5, the development background of complex diamond manufacturing special equipment is introduced. The technologies of assembly scheme chromosome modeling, motion scheme gene variation and control scheme bionics coupling of the scheme design of complex electromechanical products are applied in manipulator's modeling, feeding mechanism's variation and control system's design of complex diamond manufacturing special equipment, which proves the practical value and the research significance of assembly scheme and motion control design technologies for complex electromechanical products based on Bionics.
     Chapter 6, the research results of this subject were summarized, and the future research direction are expected.
引文
[1]HyeonHJ,ParsaeiHR,WongJP.Concurrent engineering:The manufacturing philosophy for the 90'[J].Computer Industry Engineering,1991,21(1-4):34-39.
    [2]Pahl G.,Beitz W..Engineering Design[M],London:Design Council,1984.
    [3]王正初.基于可拓学理论的产品方案设计若干关键技术研究[D].杭州:浙江工业大学,2005.
    [4]纪杨建.面向产品方案的形式化设计关键技术研究[D].杭州:浙江大学,2003.
    [5]Roy U.Design of an automated assembly environment[J].Computer Aided Design,1998,21(9):561-569.
    [6]Miller J M and Hoffman R L.Automatic assembly planning with fasterners[A].Proc,1989 IEEE Int.Conf.Robotics & Automation[C],1989:69-74.
    [7]Marefat M,et al.Object-orient intelligent computer integrated design[J].Process Planning and Inspection.IEEE Computer,NJ,1993:54-65.
    [8]冯毅雄,谭建荣,伊国栋等.基于符号的装配建模方法研究[J].计算机辅助设计与图形学学报,2003,15(6):673-679.
    [9]冯毅雄,谭建荣,郑兵等.基于语义关联与驱动的产品概念装配模型研究[J].机械工程学报,2004.40(4):114-118.
    [10]江伟光,武建伟,潘双夏.支持变型设计的可配置产品结构模型[J].计算机集成制造系统,2008,14(5):849-854.
    [11]吴庆鸣,宗驰,张强等.复杂产品变型设计及其参数传递方法研究[J].中国机械工程,2008,19(24):2955-2960.
    [12]鲁玉军,余军合,祁国宁等.基于事物特性表的产品变型设计[J].计算机集成制造系统,2003,9(10):840-844.
    [13]Iivonen H,Silakoski S and Riitahuhta A.Case-based Reasoning and Hypermedia in Conceptual Design[J].ICED95,Parha,1995.
    [14]Kummaras R.T and Kammarthi S V.Application of Adaptive Reasoning Networks for Conceptual Design[J].Annal of the CIRP.1992,41:213-216.
    [15]Arpaia P.Expert System for the Optimum Design of Measurement System.IEEE Proceedings on Science,Measurement and Technology,1995,142:330-336
    [16]Kurumatani K.,et al.Qualitatlive Representation of Machine Behaviors for Intelligent CAD System[J].Mechanical Machine Theory,1990,41:213-216
    [17]谢清,谭建荣,冯毅雄.基于自动机的可配置产品功构映射过程研究[J].计算机集成制造系统,2007,13(9):1722-1731.
    [18]Lieberman L.I.,Wesley M.A..AUTOPASS:an Automaitic Programming System for Computer Controlled Mechanical Assembly.IBM J.RES.DEVELOP.1977,July,pp,321-333.
    [19]刘勇,雍俊海,王斌.一类闭环约束的装配约束问题求解[J].计算机辅助设计与图形学学报,2008,20(9):1171-1175.
    [20]刘晓敏,檀润华,姚立纲.产品创新概念设计集成过程模型应用研究[J].机械工程学报,2008,44(9):154-162.
    [21]Rocheleau D.N.,Lee K..System for Interactive Assembly Modeling[J].Computer Aided Design.1987,19:65-72.
    [22]高瞻,张树有,顾嘉胤等.虚拟现实环境下产品装配定位导航技术研究[J].中国机械工程,2002,13(11):901-904.
    [23]石志良,陈立平.装配位置约束建模及求解[J].计算机辅助设计与图形学学报,2007,19(5):553-557.
    [24]Li C.L.,Tan S.T.,Chen K.W..A Qualitative and Heuristic Approach to the Conceptual Design of Mechanisms[J].Engineering Application of Artificial Intelligence,1996,9(1):17-31.
    [25]邹慧君,汪利,王石刚等.计算机辅助的机构运行行为知识表示及推理[J].机械设计,1999,16(1):9-11.
    [26]Qian L.and Gero J.S..Function-behavior-structure paths and their role in analogy-based design[J].AIEDAM,1996,10(4):289-312.
    [27]金熙哲,郭为忠,高峰等.机构系统概念设计中功能到行为的映射方法[J].上海交通大学学报,2009,43(1):157-160.
    [28]刘会英,杨志强,张明勤.机械原理[M].北京:机械工业出版社,2007.
    [29]颜鸿森.颜氏创造性机构设计:(一)设计方法[J].机械设计,1995,(10):39-41.
    [30]颜鸿森.颜氏创造性机构设计:(二)机构一般化[J].机械设计,1995,(11):44-47.
    [31]颜鸿森.颜氏创造性机构设计:(三)运动链的数综合[J].机械设计,1995,(12):30-33.
    [32]颜鸿森.颜氏创造性机构设计:(四)机构的特定化[J].机械设计,1996,(4):37-40.
    [33]颜鸿森.颜氏创造性机构设计:(五)应用实例[J].机械设计,1996,(5):38-41.
    [34]程锦,冯毅雄,谭建荣等.机构运动的变换式进化设计[J].浙江大学学报(工学版),2007,41(6):891-895.
    [35]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向[J].计算机集成制造系统,2003,9(8):613-620.
    [36]邹慧君,顾明敏.机械系统运动方案设计专家系统初探(一)——知识库管理系统的建立[J].机械设计,1996,(5):26-28.
    [37]邹慧君,顾明敏.机械系统运动方案设计专家系统初探(二)——推理系统的建立和应用[J].机械设计,1996,(6):12-14.
    [38]王国亮.基于模糊PID补偿器的多电机同步控制策略研究[D].沈阳:东北大学,2006.
    [39]刘福才,刘学莲,刘立伟.多级电机传动系统同步控制理论与应用研究[J].控制工程,2002,9(4):78-82.
    [40]Tomizuka M.,Hu J.,Chiu,et al.Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control,ASME Journal of Dynamic Systems.Measurement and Control,1992,114:3234-3245.
    [41]Koren Y..Cross-coupled Biaxial Computer Control for Manufacturing System[J].ASME Journal of Dynamic Systems.Measurement and Control,1980,102(12):1324-1330.
    [42]Anderson R.G.,Lorenz R..Web Machine Coordinated Motion Control via Electronic Line-Shafting[J].IEEE,IAS Annual Tech.Conf.,1999,(10):3-7.
    [43]Valenzuela A.,Lorenz R..Electronic Line-Shafting Control for Paper Machine Drives[J].IEEE,Transaction on Industry Applications,2001,137(1):15-19.
    [44]Perez-Pinal F.,Ciro Nunez.Ricardo Alvarez,Comparison of Multi-motor Synchronization Techniques[A],The 30~(th) Annual Conference of the IEEE Industrial Electronics Society[C],Busan,Korea.2004,(10):2-6.
    [45]Perez-Pinal F.,Caladeron G.,Araujo I..Relative Coupling Strategy[J].IEEE,IEMDC 03,Madison Wisconsin USA.2003,2(6):1162-1166.
    [46]路甬祥.仿生学的意义和发展[J].科学中国人,2004,(4):24.
    [47]Yongxiang Lu.Significance and Progress of Bionics[J].Journal of Bionics Engineering.2004,1(1):1-3.
    [48]王爱虎,鄂明成,习中革.敏捷制造环境下装配产品变形设计方法[J].计算机集成制造系统,2004,10(10):1177-1183.
    [49]Gupta S,Okudan GE.Assembly and variety considerations during conceptual design[C]//.ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference.New York:NY,2009:83-91.
    [50]Gupta S,Okudan GE.Computer-aided generation of modularised conceptual designs with assembly and variety considerations[J].Journal of Engineering Design,2008,19(6):533-551.
    [51]冯培恩,陈泳,张帅等.基于产品基因的概念设计[J].机械工程学报,2002,38(10):1-6.
    [52]何斌,冯培恩,潘双夏.基于产品生态学的概念设计研究[J].计算机集成制造系统,2007,13(7):1249-1267.
    [53]李洪杰,肖人彬.基于功能构造的复杂产品进化设计基因模型[J].机械工程学报,2003,39(5):41-48.
    [54]Simionescu P.A.,Smith M.R..Application of Watt Ⅱ function generator cognates[J].Mech.& Mach.Theory,2000,35(11):1535-1549.
    [55]Simionescu P.A.,Smith M.R..Four-and six-function cognates and over-constrained mechanisms[J].Mech.& Mach.Theory,2001,36(8):913-924.
    [56]魏东,翁海珊,陈立周.基于遗传机理的机构构型设计系统的研究——机构创 新设计系统研究之四[J].机械设计,2003.20(6):9-11.
    [57]顾德兴.普通生物学[M].北京:高等教育出版社,2000.
    [58]戴灼华,王亚馥,粟翼玟.遗传学[M].北京:高等教育出版社,2008.
    [59]徐晋麟,徐沁,陈淳.现代遗传学原理[M].北京:科学出版社,2001.
    [60]Drlica K..Understanding DNA and gene clonig.A Guide for the CURIOUS[M].New York:John Wiley and Sons,1992.
    [61]Walker M.R.,Rapley R..Route Maps in Gene Technology[M].Oxford:Blackwell Science,1997.
    [62]赵希梅,郭庆鼎.数控机床多轴联动伺服电机的零相位自适应鲁棒交叉耦合控制[J].中国电机工程学报,2008,28(12):129-133.
    [63]曹洋,徐心和.一种基于交叉耦合的速度控制器[J].东北大学学报(自然科学版),2003,24(5):420-423.
    [64]曹玲芝,王红卫,李春文等.基于偏差耦合的起重机起升机构同步控制[J].计算机工程与应用,2008,44(25):233-235.
    [65]蔡家斌.两轴运动平台交叉耦合控制系统研究与分析[J].煤矿机械,2008,29(9):50-52.
    [66]丛爽,刘宜.多轴协调运动中的交叉耦合控制[J].机械设计与制造,2006,(10):166-168.
    [67]孙文焕,程善美,王晓翔.多电机协调控制的发展[J].电气传动,1999,(6):3-6.
    [68]张秋菊.多轴CNC机床耦合轮廓误差补偿方法[J].组合机床与自动化加工技术,2001,(12):19-22.
    [69]王宝仁.网络化运动控制系统多轴协同关键技术研究[D].济南:山东大学,2008.
    [70]郝赫.复杂宝石加工专用装备方案设计技术及其应用研究[D].杭州:浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700