极近距离煤层开采围岩控制理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于成煤条件的不同,煤层的赋存条件各异。煤层厚度从零点几米到上百米,可采层数从一层到数十层,层间距离大小不等,有时还出现煤层局部合并或分岔现象。煤层层间距离不同,相互问开采的影响程度各异。当煤层层间距离较大时,上部煤层开采后对下部煤层的开采影响程度很小,其矿压显现规律,开采方法不受上部煤层开采影响。但是,随着煤层间距离减小,上下煤层间开采的相互影响程度会逐渐增大,特别是当煤层间距很近时,下部煤层开采前顶板的完整程度已受上部煤层开采损伤影响,其上又为上部煤层开采垮落的矸石,且上部煤层开采后残留的区段煤柱在底板形成的集中压力,导致下部煤层开采区域的顶板结构和应力环境发生变化。从而使下部煤层开采与单一煤层开采相比出现了许多新的矿山压力现象。主要表现在下部煤层开采时,极易发生顶板冒漏,严重时造成支架压埋;当与上部煤层采空区沟通,造成工作面漏风,易形成火灾隐患;巷道布置和支护方式盲目性较大,巷道的矿山压力显现十分明显,巷道支护困难。而现有单一煤层开采顶板岩层控制理论和经验,不能很好地解释这种矿压现象及机理。在极近距离煤层开采的过程中,存在许多技术难题。
     在我国近距离煤层赋存和开采所占比重很大,大多矿区都存在近距离煤层群开采的问题。目前,单一煤层开采围岩活动规律和控制的理论和实践研究已经有了很大进展,然而对近距离煤层开采研究相对较少,特别是极近距离煤层的开采技术的系统研究更少,有关极近距离煤层开采研究主要是实践性和经验性的定性总结。
     论文以大同矿区下组煤层群开采为主要研究对象,采用现场实测、理论分析、数值模拟计算和工业性试验等方法,对极近距离煤层的定义、极近距离煤层顶板分类、下部煤层开采矿山压力显现规律、工作面顶板控制,合理巷道位置及开采技术保障体系等几方面做了探索性研究。主要研究成果如下:
     (1)针对长壁工作面开采,运用弹塑性理论、滑移线场理论,结合上部煤层开采顶板垮落特点及应力分布规律推导出上部煤层底板损伤深度,给出了极近距离煤层的定义和判距。并结合大同矿区下组煤层群赋存和开采条件,进行极近距离煤层实例判别。
     (2)确定了以屈服比作为极近距离下部煤层顶板分类主要指标,对极近距离煤层顶板进行了分类(夹石假顶、碎裂顶板、块裂顶板)。
     (3)以大同矿区为例,通过现场实测和数值模拟分析的方法,揭示了极近距离下部煤层开采工作面矿压显现的基本特征和规律,为探讨极近距离下部煤层开采覆岩结构形式及采场围岩控制提供可靠的现实和理论基础。
     (4)针对极近距离煤层开采时顶板的结构特点,构建了下部煤层开采为散体边界条件的“块体—散体”顶板结构模型,运用块体和散体理论,对极近距离下部煤层开采顶板岩层结构稳定性进行分析。揭示了极近距离下部煤层开采顶板易于冒落的机理,并从理论上研究了极近距离下部煤层工作面支架载荷的确定方法。为下部煤层开采采场围岩控制提供了理论基础。
     (5)运用理论和数值模拟分析的方法,研究了极近距离煤层开采煤柱稳定性和煤柱载荷在底板煤(岩)层中的非均匀应力分布规律;理论分析了巷道在非均匀应力场中,支护体结构更易出现局部过载,产生局部破坏,最终可能导致支护体结构失稳的原因;提出了极近距离下部煤层回采巷道的合理位置确定方法。并通过现场实践进行验证。
     (6)针对极近距离下部煤层顶板受上部煤层采动损伤影响,顶板破碎,易漏冒顶,严重时造成支架压埋,漏风严重,易形成火灾等不安全隐患问题。采用现场实践的方法确定了顶板加固及漏顶充填技术、巷道合理断面形状与支护参数、工作面初末采空间控制及工艺、工作面超前支护方式以及泄压通风系统、汽雾阻化防火等安全保障体系。形成了一套较为完善的极近距下部煤层开采辅助技术,为实现极近距下部煤层安全回采提供可靠的技术保障。
     总之,本文通过深入、系统的研究了极近距离煤层开采围岩控制理论与技术,解决了极近距离煤层在煤矿开采中存在的实际问题,为今后极近距离煤层的开采、设计提供科学依据。
The coal seams defer significantly in their occurrence: the thickness of coal seams varies from less than one meter to hundreds of meters; the number of useful coal seams ranges from one to tens; the is uneven; and sometimes such changes occur as merging and splitting because of the close spacing between lower and upper seams. Difference in interlamellar spacing between seams, especially extremely small distances affects the mining of adjacent coal seams heavily, and causes side effect on safety and highly efficient production.
     When the intelamellar spacing between seams is relatively big, the influence of the upper seam after being mined on the lower seam to be mined is actually little; its rule of coal mine pressure and mining method are free from the effect from the upper seam mined. But mining practice shows that with the narrowing of the spacing between two coal seams, especially when the distance between them is ultra close, the interaction between them will increase, and the continuity of the roof of the lower seam will be interrupted and its integral degree will be affected by the upper coal seam mining; on the lower seam is the gangue caved from the upper coal seam extraction, with the remaining pillar in the mining face forming a strong pressure on the underplate. The two factors will lead to changes in roof structure and stress on the part to be extracted in the lower seam. They will further give rise to many new phenomena in mine pressure when the lower seam is mined as is measured against single coal seam mining. The new phenomena are mainly manifested by the following. "When extraction is in process in the lower seam, roof falling and leakage, which at sever level may cause supports to be buried, is very likely to occur; air leakage in the working face, a firetrap, is hard to avoid when connected to the upper seam goaf; the scientific layout of roadway and supporting pattern is out of reach, thus rock pressure appearance becomes obvious and roadway supporting tends to be difficult to proceed. However, the existing theories and experiences on the control of roof strata in single coal seam mining cannot well explain this kind of rock pressure appearance and mechanism. Therefore in extra close seam mining exist many technological puzzles.
     In China, close seam occurrence and mining takes up great percentage and in almost every mine camp exists problems in mining of close coal seam group. So far, theory and practice research on the acting law and control of surrounding rocks in single coal seam mining has achieved great progress, while research on close seam mining, especially systematic research on ultra-close seam mining technology, is relatively few and far between. Most of the research on ultra-close seam mining is a practical and empirical qualitative summary.
     This thesis, taking coal seam group occurrence and mining condition in the lower groups of seams in Datong mining area as its object and adopting such methods as field investigation, theoretical analysis, numerical stimulation and industrial test, does some explorative research and comes up with the definition of ultra-close multiple coal seams, engineering classification of ultra-close multiple-seam roofs, law of strata pressure behaviors in lower seam mining, the control of roofs in working face, the rational roadway arrangement and the guarantee system for mining technology. The research achievements are as follows.
     (1) According to long wall face mining, with the elastic-plastic theory and slip-line field theory, combining roof falling characteristics in mining in the upper seam and stress distribution law, the roof destruction depth in the lower seam is worked out and the definition and estimated criterion of ultra-close multiple seams is obtained. At the same time, the ultra-close multiple seam spacing in the lower groups of seams in Datong mining area is determined with the coal seam group occurrence and mining conditions in the lower groups of seams in Datong mining area.
     (2) The roofs of ultra-close multiple-seam are divided into 3 types (false roofs, completetely broken roofs and fractured roofs) according to yield depth ratio, the leading parameter to classify the roofs of ultra-close multiple-seam.
     (3) In the example of Datong mining area, through on-site observation and numerical simulation analysis, the basic features and law of strata pressure behaviors in the working face of the lower seam mining in the ultra-close multiple seams is further disclosed. All these will lay a reliable practical as well as theoretical foundation for further research on the structure of overlying strata and strata control around longwall face in the lower seam mining in the ultra-close multiple seams.
     (4) In accordance with the roof structure characteristic in the ultra-close multiple seams mining, the "blocky-loosen" roof structure model is constructed with the lower seam mining as the loosen boundary condition; the roof strata structure stability is analyzed in the lower seam mining in the ultra-close multiple seams with the blocky and loosen theory; the roof falling mechanism is expounded in the lower seam mining in the ultra-close multiple seams; determination of the support in working face loading in the lower seam in the ultra-close multiple seams is researched theoretically. All the above provides a theoretical basis for the strata control around longwall face in the lower seam mining.
     (5) With theoretical analysis and numerical simulation computation, the coal pillar stability and the uneven stress distribution of coal pillar load in the floor seam in the ultra-close multiple seams mining is studied. Theoretical analysis is carried out about the tendency of the support structure to be locally overloaded in the gateway in nonuniform stress field. Local overloading causes local damage, and further leads to support structure destabilization. The method is proposed to determine the rational position of the mining gateway in the ultra-close lower seam. This method is confirmed through on-site observation.
     (6) Faced with the damaging influence of the upper seam mining on the roof of the ultra-close lower seam with the roof crushing and given to leakage and falling which at severe level may cause supports to be buried, and sever air leakage and become a flretrap, reinforcing technology of fractured roof, sealing and filling technology, parameters for shape and support of the rational section in the gateway, spatial control and techniques in beginning and ending mining, such safety assurance systems as end of mining face, fore support pattern, decompression ventilation and mistretarder fire prevention are determined through on-site observation. A set of perfect aid technology for ultra-close lower seam mining is achieved and provides reliable technical support for safe extraction in the ultra-close lower seam.
     In short, the thesis researches deeply and systematically into the theory and technology of surrounding rock control in ultra-close seams mining, solves the practical problems existing in ultra-close seams mining, and has scientific reference value to the future ultra-close seams mining, designing, planning.
引文
[1]韩可琦,王玉浚,中国能源消费的发展趋势与前景展望,中国矿业大学学报,2004,33(1),1-5
    [2]申宝宏,我国煤炭开采技术发展现状及展望,见,中国煤炭工业可持续发展的新型工业化之路-高效、安全、洁净、结构化,中国煤炭学会岩石力学与支护专业委员会,北京,煤炭工业出版社,2004,9,55-58
    [3]中国石油和化学工业协会,中国石油和化工经济数据快报,2005,16,258
    [4]Britton,Scott G.,Mining multiple Seams,Coal Mining & Processing,1980,17(12),64-66,68,70
    [5]Su,Wen H.,Peng,Syd S.,Hsiung,S.M.,Interactions in multiple-seam mining,Soc of Mining Engineers,1986,31-44
    [6]Dunham,R K,State,R L,Interaction problems in multiseam mining,19th US Symposium on Rock Mechanics,Stateline,Nevada,1978,174-179.
    [7]Khare,Saurabh,Rao,Y.V.,Murthy,Ch.S.N.,etc,Multiple seam mining:a critical review Journal of mines,Metals and Fuels,2006,54(12),327-329
    [8]Kripakov,Nicholas P.,Beckett,Les A.,Donato,Douglas A.,Loading on underground mining structures influenced by multiple seam interaction,Soc of Mining Engineers of A IME,1986,225-236
    [9]Peng,S.S.,Hsiung,S.M.,Problems and solutions for multiple seam mining,Colliery Guardian,236(10),1988,371-372
    [10]Pixler,R,Mining Multiple-seam steeply dipping coal in the Nanna Basin,Society of Mining Engineers of AIME,1986,9
    [11]Chekan,Gregory J.,Matetic,Rudy J.,Galek,James A.,Multiple seam mining problems in the eastern united states information circular-United States,Bureau of Mines,1986,27-43
    [12]Chekan,Gregory J.,Matetic,Rudy J.,Dwyer,David L.,Effects of abandoned multiple seam workings on a longwall in Virginia,Report of Investigations-United States,Bureau of Mines,9247,1989,19
    [13]Hladysz,Z,Analysis of risk in multiple seam mining,Preprint-Society of Mining Engineers of AIME,1985,12
    [14]Chekan,Gregory J.,Matetic,Rudy J.,Galek,James A.,Strata interaction in multiple seam mining-two studies in Pennsylvania,Report of Investigations-United States,Bureau of Mines,1986,20
    [15]Hill RW,Multiseam mining in South African Collieries,In,Peng SS,Proceedings of the 14th International Conference on Ground Control in Mining,Morgantown,WV,West Virginia University,1995,305-311
    [16]朱银昌,陈庆禄,张铁岗,复杂难采煤层的开采,北京,世界图书出版社,1998,1
    [17]Т·ф·葛尔巴节夫,А·П·札柏,库兹巴斯煤层群上行顺序开采法,北京,煤炭工业出版社,1958
    [18]Zipf RK Jr.,Failure mechanics of multiple-seam mining interactions,In,Peng SS,Mark C,Tadolini SC,Finfinger GL,Khair AW,Heasley KA,eds,Proceedings of the 24th International Conference on Ground Control in Mining,Morgantown,WV,West Virginia University,2005,93-106
    [19]Haycocks Chris,Wu Wei,Zhou Yingxin,Integrated design for stability in multiple seam mining,information circular-United States,Bureau of Mines,1986,44-56
    [20]汪理全,煤层(群)上行开采技术,北京,煤炭工业出版社,1995
    [21]Newman,D.,Zipf,R.K,Analysis of highwall mining stability-the effect of multiple seams and prior auger mining on design,In,Peng SS,The 24th International Conference on Ground Control in Mining,ORGANTOWN W V,2005,208-217
    [22]Heasley,K.A.,Akinkugbe,O.,Simple program for estimating multiple-seam interactions,Mining Engineering,2005,57(4),61-66
    [23]Listak,Jeffrey M.,Chekan,Gregory J.,Multiple-seam longwall gate road pillar design using,modeling techniques,New Technol Mine Health Saf,1992,249-261
    [24]Chanda,E.C.K.,Evaluation of success probability in multiple seam room-and-pillar mining,Mining Science & Technology,1989,9(1),57-73
    [25]Su,Wen H.,Hsiung,S.M.,Peng S.S.,Optimum mining plan for multiple seam mining Proceedings-Symposium on Rock Mechanics,1984,591-602
    [26]黄庆享,近距煤层上行开采底板稳定性分析,西安矿业学院学报,1996,16(4),291-294
    [27]杜计平,汪理全;煤矿特殊开采方法,徐州,中国矿业大学出版社,2003
    [28]张百胜,杨劲松,廉建军,东山煤矿上行开采实践,中国煤炭,2007,33(2),38-40
    [29]陈炎光,陆士良,中国煤矿巷道围岩控制,徐州,中国矿业大学出版社,1994
    [30]Chekan,Gregory J.,Listak,Jeffrey M.,Design practices for multiple-seam longwall mines,Information Circular-United States,Bureau of Mines,9360,1993,1-35
    [31]H.Yavuz,An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines,International Journal of Rock Mechanics and Mining Sciences,2004,41(2),193-205
    [32]K.B.Singh,T.N.Singh,Ground movements over longwall workings in the Kamptee coalfield,India,Engineering Geology,1998,50(1-2),125-139
    [33]陆士良,姜耀东,孙永联,巷道与上部煤层间垂距z的选择,中国矿业大学学报,1993,22(1),1-7
    [34]陆士良,巷道与上部煤柱边缘间水平距离X的选择,中国矿业大学学报,1993,22(2),1-7
    [35]钱鸣高,石平五,矿山压力与岩层控制,徐州,中国矿业大学出版社,2003
    [36]史元伟,郭潘强,康立军等,矿井多煤层开采围岩应力分析与设计优化,北京,煤炭工业出版社,1995
    [37]任德惠,井工开采矿山压力与控制,重庆,重庆大学出版社,1990
    [38]林衍,谭学术,胡耀华,对缓倾近距离煤层群同采合理错距的探讨,贵州工学院学报,1994,23 (2),33-38
    [39]ZhangBaisheng,KangLixun,ZhaiYingda,Definition of ultra-close multiple-seams and its ground pressure behavior,In,Peng SS,The 24th International Conference on Ground Control in Mining,ORGANTOWN W V,2005,110-113
    [40]张百胜,杨双锁,翟英达,康立勋,极近距离煤层回采巷道合理位置确定方法的探讨,岩石力学与工程学报,2008,27(1),97-101
    [41]陈炎光,钱鸣高,中国煤矿采场围岩控制,徐州,中国矿业大学出版社,1994
    [42]翟英达,采场上覆岩层中的面接触块体结构及其稳定性力学机理,北京,煤炭工业出版社,2006
    [43]史红,姜福兴,采场上覆岩层结构理论及其新进展,山东科技大学学报(自然科学版),2005,24(1).21-25
    [44]Chien(Qian)Minggao,A study of the behavior of overlying strata in longwall mining and its application to strata control,Proceedings of the Symposium on Strata Mechanics,Elsevier Scientific Publishing Company,1982,13-17
    [45]钱鸣高,缪协兴,采场上覆岩层结构的形态与受力分析,岩石力学与工程学报,1995,2,97-106
    [46]缪协兴,钱鸣高,采场围岩整体结构与砌体梁力学模型,矿山压力与顶板管理,1995,3-4,3-12
    [47]宋振骐,采场上覆岩层运动的基本规律,山东矿院学报,1979,1,22-41
    [48]宋振骐,实用矿山压力控制,徐州,中国矿业大学出版社,1992
    [49]贾喜荣,坚硬顶板垮落机理及其工作面几何参数的确定,第三届采场矿压理论与实践讨论会论文集,1986
    [50]钱鸣高,赵国景,老顶断裂前后的矿山压力变化,中国矿院学报,1986,4,21-24
    [51]朱德仁,长壁工作面老顶的断裂规律及应用[学位论文],徐州,中国矿业大学,1987
    [52]QianMinggao,HeFulian,The behavior of the main roof in longwall mining,Weighting Span,Fracture and Disturbance,Jou of Mine,Metals & Fuels,June-July,1989,240-246
    [53]姜福兴,薄板力学解在坚硬顶板采场的适用范围,西安矿业学院学报,1991,11(2),40-50
    [54]钱鸣高,砌体梁的“s-R”稳定及其应用,矿山压力与顶板管理,1994,3,6-10
    [55]钱鸣高,何富连,王作棠等,再论采场矿山压力理论,中国矿业大学学报,1994,3,1-12
    [56]缪协兴,钱鸣高,采矿工程存在的力学问题,力学与实践,1995,5,70-71
    [57]钱鸣高,缪协兴,采场上覆岩层结构的形态与受力分析,岩石力学与工程学报,1995,14(2),97-106
    [58]缪协兴,采场老顶初次来压时的稳定性分析,中国矿业大学学报,1989,18(3),88-92
    [59]侯忠杰,老顶断裂岩块回转端角接触面尺寸,矿山压力与顶板管理,1999,3-4,29-31
    [60]侯忠杰,采场老顶断裂岩块失稳类型判断曲线讨论,矿山压力与顶板管理,2002,2,1-3
    [61]黄庆享,钱鸣高,石平五,浅埋煤层采场老顶周期来压的结构分析,煤炭学报,1999,6,581-585
    [62]黄庆享,浅埋煤层长壁开采顶板控制研究[学位论文],徐州,中国矿业大学,1998,
    [63]黄庆享,石平五,钱鸣高,老顶岩块端角摩擦系数和挤压系数实验研究,岩土力学,2000,1,60-63
    [64]钟新谷,长壁工作面项板变形失稳的突变模式,湘潭矿业学院学报,1994,2,1-6
    [65]钟新谷,采场坚硬顶板的弹性稳定性分析,煤,1995,4,15-17
    [66]钟新谷,顶板岩梁结构的稳定性与支护系统刚度,煤炭学报,1995,6,601-606
    [67]闫少宏,贾光胜,刘贤龙,放顶煤开采上覆岩层结构向高位转移机理分析,矿山压力与项板管理,1996,3,3-5
    [68]JiangFuxing,JiangGuoan,Theory and technology for hard roof control of longwall face in chinese collieries,Journal of Coal Science & Engineering,1998,4(2),1-6
    [69]姜福兴,宋振骐,宋扬,老顶的基本结构形式,岩石力学与工程学报,1993,3,366-379
    [70]姜福兴,岩层质量指数及其应用,岩石力学与工程学报,1994,3,270-278
    [71]钱鸣高,缪协兴,许家林,岩层控制中关键层的理论研究,煤炭学报,1996,3,225-230
    [72]钱鸣高,缪协兴,采场矿山压力理论研究的新进展,矿山压力与顶板管理,1996,2,17-20
    [73]Qian M.G.,He F.L.,Miu X.X.,The system of strata control around longwall face in Chine,Proceedings,'96 International Symposium on Mining Science and Technology,15-18
    [74]钱鸣高,何富连,缪协兴,采场围岩控制的回顾与发展,煤炭科学技术,1996,1,1-3
    [75]许家林,岩层移动控制的关键层理论及其应用[学位论文],徐州,中国矿业大学,1999
    [76]茅献彪,缪协兴,钱鸣高,采动覆岩中关键层的破断规律研究,中国矿业大学学报,1998,1,39-42
    [77]钱鸣高,茅献彪,缪协兴,采场覆岩中关键层上载荷的变化规律,煤炭学报,1998,2,135-230
    [78]许家林,钱鸣高,覆岩关键层位置的判断方法,中国矿业大学学报,2000,5,463-467
    [79]许家林,钱鸣高,覆岩采动裂隙分布特征的研究,矿山压力与顶板管理,1997,3-4,210-212
    [80]钱鸣高,许家林,覆岩采动裂隙分布的“O”形圈特征研究,煤炭学报,1998,5,466-469
    [81]许家林,钱鸣高,高红新,采动裂隙实验结果的量化方法,辽宁工程技术大学学报,1998,6,586-589
    [82]许家林,孟广石,应用上覆岩层采动裂隙“O”形圈特征抽放采空区瓦斯,煤矿安全,1995,7,2-4
    [83]许家林,钱鸣高,覆岩注浆减沉钻孔布置研究,中国矿业大学学报,1998,3,276-279
    [84]许家林,钱鸣高,关键层运动对覆岩及地表移动影响的研究,煤炭学报,2000,2,122-126
    [85]黎良杰,采场底板突水机理的研究[学位论文],徐州,中国矿业大学,1995
    [86]钱鸣高,缪协兴,许家林等,岩层控制中关键层的理论,徐州,中国矿业大学出版社,2000
    [87]姜福兴,Xun Luo,微震监测技术在矿井岩层破裂监测中的应用,岩土工程学报,2002,2,147-149
    [88]姜福兴,Xun Luo,杨淑华,采场覆岩空间破裂与采动应力场的微震研究,岩土工程学报,2003,1,23-25
    [89]于学馥,信息时代岩土力学与采矿计算初步,北京,科学出版社,1991
    [90]S,S,彭,煤矿地层控制,北京,煤炭工业出版社,1984
    [91]康立勋,大同综采工作面端面漏冒及其控制[学位论文],徐州,中国矿业大学,1994,
    [92]靳钟铭,徐林生,煤矿坚硬顶板控制,北京,煤炭工业出版社,1994
    [93]刘天泉,矿山岩体采动影响与控制工程学及其应用,煤炭学报,1995,20(1),1-5
    [94]Peng SS,Coal mine ground control,John Wiley & Sons,Inc,New York,1978
    [95]Arutyunyan N,Metlov V V,Some problems in the theory of creep in bodies with variable boundaries,Mechanics of Solids,1982,17(5),92-103
    [96]徐曾和,徐小荷,唐春安,坚硬顶板下煤柱岩爆的尖点突变理论分析,煤炭学报,1995,20(5),485-491
    [97]谭云亮,王泳嘉,朱浮生,矿山岩层运动非线性动力学反演预测方法,岩土工程学报,1998,4,16-19
    [98]张金才,刘天泉,论煤层底板采动裂隙带的深度及分布特征,煤炭学报,1990,15(2),46-55
    [99]B.斯列萨列夫,水体下安全采煤的条件,国外矿山防治水技术的发展和实践,冶金矿山设计院,1983
    [100][波]M.鲍莱茨基,M.胡戴克著,于振海,刘天泉译,矿山岩体力学,北京,煤炭工业出版社,1985
    [101][苏]Й.А.多尔恰尼诺夫,赵义译,构造应力与井巷工程稳定性,北京,煤炭工业出版社,1984
    [102]B.H.G.布雷斯,E.T.布朗,冯树仁等译,地下采矿岩石力学,北京,煤炭工业出版社,1990
    [103]刘天泉等,煤矿地表移动与覆岩破坏规律及其应用,北京,煤炭工业出版社,1981
    [104]张金才,张玉卓,刘天泉,岩体渗流与煤层底板突水,北京,地质出版社,1997
    [105]张金才,刘天泉,论煤层底板采动裂隙带的深度及分布特征,煤炭学报,1990,15(2),46-55
    [106]高延法,李白英,受奥灰承压水威胁煤层采场底板变形破坏规律研究,煤炭学报,1992,17(1),25-27
    [107]李白英,预防矿井底板突水的“下三带”理论及其发展与应用,山东矿业学院院报,1999,18(4),11-18
    [108]张玉卓,岩层与地表移动计算原理及程序,北京,煤炭工业出版社,1993,137-138
    [109]曹胜根,刘文斌,袁文波等,房式采煤工作面的底板岩层应力分析,湘潭矿业学院学报,1998,13(3),14-19
    [110]王作宇,刘鸿泉,承压水上采煤,北京,煤炭工业出版社,1993
    [111]王作宇,底板零位破坏带最大深度的分析计算,煤炭科学技术,1992,2,1-8
    [112]王作宇,刘鸿泉,王培彝等,承压水上采煤学科理论与实践,煤炭学报,1994,19(1),40-48
    [113]国家煤矿安全监察局编著,煤矿安全规程,北京,煤炭工业出版社,2004,11,367
    [114]徐永圻,采矿学,第2版,徐州,中国矿业大学出版社,2003,211
    [115]郭文兵,刘明举,李化敏等,多煤层开采采场围岩内部应力光弹力学模拟研究,煤炭学报,2001,26(1),8-12
    [116]胡省三,成玉琪,21世纪前期我国煤炭科技重点发展领域探讨,煤炭学报,2005,30(1),1-7
    [117]颜宪禹,煤层群单层开拓与准备是集中生产的有效途径,煤,1999,8(3),12-13
    [118]颜宪禹,周锡德,煤层群采用单层开采方式的可行性分析,矿业安全与环保,1999,4,32-33
    [119]张顶立,王悦汉,含夹矸顶煤破碎特点分析,中国矿业大学学报,2000,29(2),160-163
    [120]贾永军,含夹矸厚煤层综放开采技术分析,煤矿开采,2002,1,22-24
    [121]武虎彪,宋选民,夹矸对放项煤开采的影响,山西矿业学院学报,1996,14(3),191-195
    [122]陈海波,孙广义,张庆宝,夹矸厚煤层综放矿压规律研究,矿山压力与顶板管理,2005,3,113-117
    [123]曲天智,张顶立,含夹矸顶煤回收技术研究,矿山压力与顶板管理,1997,2,4-6
    [124]陈海波,孟宪锐,含厚夹矸煤层的综放开采,黑龙江科技学院学报,2004,14(5),269-272
    [125]伍永平,李继祖,特近距煤层上层采动对下层开采影响实验研究,西安矿业学院学报,1996,16(2),101-104
    [126]朱星辉,刘承论,于富岭,极近距离煤层工作面破碎顶板的控制研究,山东煤炭科技,2004,增刊,125-126
    [127]聂兆文,仲崇虎,刘灿华,极近距离煤层掘进技术,山东煤炭科技,2005,2,37-39
    [128]武忠,李日官,极近距离煤层回采巷道布置研究,煤矿开采,2002,7(4),14-15,18
    [129]王宝廷,刘红兵,近距离煤层下层巷道掘进冒顶事故分析,矿山压力与顶板管理,2004,2,41-43
    [130]贺哲,韩立东,范宁,近距离下覆4#煤层综采工作面顶板管理经验,山西焦煤科技,2003,4,27-29
    [131]李福,浅谈四台煤矿极近距离煤层采空区下开采方法,煤矿开采,2004,9(3),25-26,30
    [132]王雄伟,四台煤矿极近距离煤层采空区下开采技术,煤炭科学技术,2004,32(12),23-26
    [133]张建立,大同矿区6m以内近距煤层综采及顶板控制,同煤科技,2001,4,56-58
    [134]Z T Bieniawski,The geomeehanics classification in rock,engineering application Proc,ISRM Congr,Moutreux,1979,2,41-48
    [135]Zhou,Y.,Haycocks,C.,Wu,W.,Geomechanics classification for multiple seam mining,Preprint Society of Mining Engineers of AIME,1988,10
    [136]ZhaiYingda,ZhangBaisheng,Engineering Classification of Ultra-close Multiple-seam Roofs in Datong Mining District of China,In,Peng SS,The 24th International Conference on Ground Control in Mining,ORGANTOWN W V,2005,107-109
    [137]白希军,大同“两硬”开采条件提高综采效益之途径,见,煤炭生产与安全技术的创新与发展编委会,2003年煤炭工业总工程师论坛论文集(续篇),徐州,中国矿业大学出版社,2003,1-4
    [138]张全功,大同坚硬项板的矿压显现,见,煤炭部生产司生产处,矿压科技情报中心站综采分站编,综采顶板控制及矿压研究选编,北京,1984,9
    [139]宋永津,注水、压裂、弱化控制煤层坚硬难冒顶板技术,北京,煤炭工业出版社,2002,40-60
    [140]N Mohammand,The relation between in situ and laboratory rock properties used in numeric modeling,int,J,Rockmech,Min,Sci,1997,34(2),289-297
    [141]王金安,谢和平,M,A,Kwasniewski,建筑物下厚煤层特殊开采的三维数值分析,岩石力学与工程学报,1998,18(1),12-16
    [142]刘锦华,吕祖珩,块体理论在工程岩体稳定分析中的应用,北京,水利电力出版社,1988
    [143]Goodman R E,Shi G H,Block theory and its application to rock engineering,Englewood,USA,Prentice-Hall Inc,1985
    [144]柳崇伟,裂隙岩体巷道稳定性的相关规律研究[学位论文],太原,太原理工大学,2001
    [145]顾铁凤,黄景,裂隙岩体巷道顶板失稳的块体力学分析与支护强度设计,湖南科技大学学报(自然科学版),2005,20(4),21-25
    [146]李世平,吴震业,贺永年等,岩石力学简明教程,北京,煤炭工业出版社,1996,137-141
    [147]陈震,散体极限平衡理论基础,北京,水利水电出版社,1987
    [148]于海勇,阎保金,放顶煤综采工作面支架受力研究,岩石力学与工程学报,1994,13(3),261-269
    [149]陆士良,无煤柱护巷的矿压显现,北京,煤炭工业出版社,1982
    [150]陆士良,岩巷的矿压显现与合理位置,北京,煤炭工业出版社,1984
    [151]翟所业,张开智,煤柱中部弹性区的临界宽度,矿山压力与顶板管理,2003,4,14-16
    [152]吴家龙,弹性力学,新一版,上海,同济大学出版社,1996,201-206
    [153]王忠昶,张文泉,软岩矿层条带开采合理采留宽度的ANSYS三维流变模拟,矿山压力与顶板管理,2003,20(2),110-112
    [154]宋国华,马丽散,加固破碎煤体技术的应用,科技情报开发与经济,2007,17(17),295-297
    [155]高新亮,梁志荣,闫斌移,马丽散注浆加固技术在综放面顶板管理中应用,能源技术与管理,2006,5,25
    [156]王宝廷,马丽散加固巷道围岩技术方案之探讨,同煤科技,2006,2,29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700