生物柴油的制备及其副产物的纯化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对以植物油脂和甲醇等为原料进行酯交换反应制备生物柴油进行了初步研究,并研究了副产物甘油的纯化和维生素E类化合物的分析。酯交换反应采用了碱催化酯交换反应体系和酸催化酯交换反应体系,较高酸值的油脂的碱催化酯交换反应前需要进行预酯化反应以降低油脂中的游离脂肪酸含量,以保证碱催化酯交换反应的高收率及粗甘油的分离与纯化,而酸催化的酯交换反应可以免去预酯化反应过程。研究结果表明,在棕榈油的预酯化反应过程中,当催化剂硫酸的用量为棕榈油的质量的0.5%,醇油脂摩尔比为8:1,反应时间为60min,反应温度为65℃时,棕榈油的酸值由原来的22mg KOH/g降到1mg KOH/g,游离脂肪酸的转化率达到95.5%,达到了碱催化酯交换反应的要求。
     在碱催化酯交换反应过程中,当催化剂氢氧化钠的用量为油脂质量的0.5%,醇油脂摩尔比为8:1,反应温度为65℃,反应时间为30min,脂肪酸甲酯的产率达到96.0%(相对油脂质量)以上。碱催化酯交换反应中油脂中的水或催化剂中的水对脂肪酸甲酯的收率有较大影响,当水量达到油脂质量的1.5%(相对油脂质量)时,脂肪酸甲酯的收率在90.0%以下,这是碱催化酯水解的结果。
     为了进一步降低催化剂用量及醇油脂比,采用反应过程中分离粗甘油,未反应完全的油脂再次酯交换(两次酯交换)的方法,结果表明当总催化剂用量为1.0%,醇油脂摩尔比20:1,反应时间为4h,反应温度为150℃,脂肪酸甲酯的收率可达到95.3%。
     研究了硫酸催化酯交换反应过程中油脂的酸值对脂肪酸甲酯收率的影响,结果表明,当油脂的酸值为120mg KOH/g,两次酯交换反应,在总催化剂用量为1.0%,醇油脂摩尔比20:1,反应时间为4h,反应温度为150℃,脂肪酸甲酯的收率可达到98.4 %,这说明硫酸催化制备生物柴油可以采用价廉的较高酸值的油脂。初步研究了硫酸催化酯交换反应中的钢片腐蚀问题,在125℃时,硫酸含量0.35%的丁醇溶液(400mL)中,304不锈钢的腐蚀速率为1.1mm/a。
     采用GC/MS技术分析了由棉籽油和棕榈油为原料得到的脂肪酸甲酯,结果表明,精棉籽油脂肪酸甲酯主要为棕榈酸甲酯、亚油酸甲酯和油酸甲酯,含量分别为22.23%、50.18%和18.09%。棕榈油脂肪酸甲酯主要为棕榈酸甲酯、油酸甲酯和硬脂酸甲酯,含量分别为40.30%、50.07%和7.02%。
     采用GC/MS技术分析了两种来自植物油的商品维生素E,其中来自天津亿能化工试剂开发中心的维生素E主要是生育酚类占71.80%,生育三烯酚类占7.81%,角鲨烯占2.97%;而来自棕榈油(马来西亚)的维生素E主要是生育烯酚/生育三烯酚类占53.27%,生育酚类占15.86%,角鲨烯占9.56%,因此来自棕榈油的维生素E具有更好的清除生物体内自由基的作用。
The preparation of biodiesel from vegetable oil by transesterification with methanol, the purification of the glycerin and the identification of vitamin E homologues were studied. Transesterification were carried out by the acid catalysis and alkali catalysis. Vegetable oil with higher acid number should be esterified before the transesterification by alkali catalysis to reduce the content of free fatty acids, which is favorable to achieve high yield of fatty acid methyl ester and for purification of glycerin. The esterification and transesterification could be carried out simultaneously in the preparation of biodiesel by acid catalysis with higher vegetable oils. The results showed that the conversion rate of free fatty acids is 95.5% in the esterification of palm oil when the quantity of catalyst (H2SO4), the mol ratio of methanol to the oil, reaction time and reaction temperature were 0.5% (based on the oil), 8:1, 60 minutes and 65℃, respectively, and the acid number of the palm oil was reduced from 22mg KOH/g to 1mg KOH/g, which is appropriate for transesterification by alkali catalysis.
     For the transesterification of vegetable oils, the yield of fatty acid methyl ester could be achieved to more than 96.0% when the quantity of catalyst (NaOH), the mol ratio of methanol to the oil, reaction time and reaction temperature were 0.5% (based on the oil), 8:1, 30 minutes and 65℃, respectively. The content of water in the transesterification by alkali catalysis influenced the yield of fatty acid methyl ester seriously, and the yield of fatty acid methyl ester was reduced to 90.0% below when the content of water in the oils or the catalyst is 1.5%(based on the oils), which is the causation of hydrolysis of esters by the alkali catalysis.
     For reducing the quantity of catalyst and the mol ratio of methanol to the oil remarkably, the glycerin was separated and the oils were transesterified continuously, which was called di-transesterification. The results showed that the yield of fatty acid methyl ester could be achieved to 95.3% when the total quantity of catalyst (H2SO4), the total mol ratio of methanol to the oil, reaction time and reaction temperature were 1.0% (based on the oil), 20:1, 4 hours and 150℃, respectively.
     The effect of acid number of the oils to the yield of fatty acid methyl ester was studied. The results showed that the yield of fatty acid methyl ester of the di-transesterification was achieved to 98.4 %, in which the acid number of the oil, total quantity of catalyst (H2SO4), the total mol ratio of methanol to the oil, reaction time and reaction temperature were120mg KOH/g, 1.0% (based on the oil), 20:1, 4 hours and 150℃, respectively. And this showed that the inexpensive vegetable oils with higher acid number could be used to prepare biodiesel by H2SO4 catalysis. The corrosion was studied preparatively in the transesterification by H2SO4 catalysis and the results showed that the corrosion rate was 1.1mm per year for 304# stainless steel in 0.35% H2SO4- butanol solution at 125℃and 12 hours.
     The GC/MS technology was used to identify the compositions of the biodiesels from palm oil and cottonseed oil. The results indicated that the compositions of the biodiesel from cottonseed oil were mainly methyl cetylate, methyl linoleate and methyl oleate, which the percentages were 22.23%, 50.18% and 18.09%, respectively. And the main compositions of the biodiesel from palm oil were methyl cetylate, methyl oleate and methyl stearate, which the percentages were 40.3%, 50.07% and 7.02%, respectively.
     Two kinds of commercial vitamin E were analyzed by GC/MS technology. The compositions of the vitamin E (Tianjin) were mainly tocopherols, tocotrienol and squalene, which the percentages were 71.80%, 7.81% and 2.97%, respectvely. Otherwise the compositions of the vitamin E from palm oils (Malaysia) were mainly tocoenol/tocopherols, tocopherols and squalene, which the percentages were 53.27%, 5.86% and 9.56%, respectively. And so the vitamin E from palm oils was more effective to eliminate the radicals in bodys.
引文
[1] Beer T, Grant T, Williams D. Fuelcycle green house gas emissions from alternative fuels in Australian heavy vehicles[J]. Atmospheric Environment, 2002, 36(4): 753-763
    [2] Sidhu S, Graham J, Striebich R. Semi-volatile and particulate emission emissions from the combustion of alternative diesel fuels[J]. Chemosphere, 2001, 42(5): 681-690
    [3] Charles L, Peterson T, Todd H. Carbon cycle for rapeseed oil biodiesel fuels [J]. Biomass and bioenergy, 1998, 14(2): 91-101
    [4]范航,张大年.生物柴油试制研究[J].化学世界,2000, 1:65-66
    [5] Dennis, Y.C. L. Development of a clean biodiesel fuel in HongKong using recycled oil[J]. Water, Airand Soil Pollution, 2001, 130(1): 277–282
    [6]司利增,边耀璋,张春化.柴油特性分析与应用[J].小型内燃机与摩托车,2006, 35(2): 31-34
    [7] Marta M.C, Roberlucia A.C, Fernando C.S. Thermoanalytical characterization of castor oil biodiesel[J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 964-975
    [8]朱行.植物油制成生物柴油[J].粮食与油脂,2001, 5:50-51
    [9]张龙,杜风光,史吉平.生物柴油研究与应用现状及展望[J].江苏化工,2005, 33(6): 21-24
    [10]杨军峰,王忠,孙平,等.双低菜籽油制备生物柴油的工艺探索[J].柴油机,2003, 3:43-45
    [11]庾晋,白杉.积极推动生物柴油的发展[J].陕西能源与节能,2003, 3:35-36
    [12]黄忠水,纪威,李淑艳,等.国外生物柴油的应用[J].节能与环保,2003, 1(30): 38-41
    [13]高荫榆,陈文伟,阮榕生,等.生物柴油研究进展[J].可再生资源,2004, 3:5-10
    [14]郭卫军,闵恩泽.发展我国生物柴油的初探[J].石油学报,2003, 19(2): 1-4
    [15] Manuel F, Jorg P. Biodiesel: A new Oildorado[J]. Energy Policy, 2007, 35(5): 1675-1684
    [16] Zhang Y, Duke M A, Mclean D, et al. Biodiesel production from waste cooking oil: Process design and technlolgical assessment[J]. Bioresource Technology, 2003, 89(5): 1-16
    [17]盛梅,郭登峰,张大华.大豆油制备生物柴油的研究[J].中国油脂,2002, 27(1): 70-72
    [18] Anton A. K, Florin O, Alexandre C. D. The heterogeneous advantage: biodiesel by catalytic reactive distillation[J]. 2006, 40(1): 141-149
    [19] Korbitz W. Biodiesel production in Europe and North America Anencouraging prospect [J]. Renewable Energy, 1999, 16(1): 1078-1083
    [20] Bonan S, Mosca G, Vamerali T. Oil crops for biodiesel production to Italy[J]. Renewable Energy, 1999, 16(3): 1053-1056
    [21]冀星,郗小林,孔林河,等.生物柴油技术进展与产业前景[J].中国科学工程,2002, 9(4): 86-93
    [22]吴苏喜,董军英,官春云.生物柴油开发研究进展与产业化发展策略[J].粮油加工与食品机械,2006, 2:56-59
    [23] Mohamad A. W, Shyoukh A. O. Experimental evaluation of the transesterfication of waste palm oil into biodiesel[J]. Bioresource Technology, 2002, 85(3): 253-256
    [24] Alcantara R, Amores J, Canoira L, et al. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow [J]. Biomass and Bioenergy, 2000, 18 (8): 515-527
    [25] Ma F, Clements L D, Hanna M A. The effect of mixing on transesterfication of beef tallow[J]. Bioresource Technology, 1999, 69 (3): 289-293
    [26] Komers K, Machek J, Stloukal R. Biodiesel from rapeseed oil, methanol and KOH.2.Composition of solution of KOH in methanol as reaction partner of oil [J]. Lipid Science technology, 2001, 103 (6): 359-362
    [27] Karel B, Frantisek S, Radek S, et al. Kinetics and mechanism of the KOH-catalyzed methanolysis of rapeseed oil for biodiesel production[J]. Eur.J.Lipid Sci.Technol, 2002, 104 (11): 728-737
    [28]邬国英,林西平,巫森鑫,等.棉籽油间歇时反应动力学研究[J].高校化学工程学报,2003, 17(3): 314-318
    [29]张高勇,李天栋.脂肪酸烷基酯的生产方法[P].CN1031070, 1996-02-21
    [30] Stern R, Hillion G, Gateau P, et al. Process for Manufacturing a composition of Fatty Acid Esters Useful as Gas Oil Substitute Motor fuel with Hatty Ethyl Alcohol and the Resultant Esters composition [P]. US 4695411, 1987-09-22
    [31] Crabbe E, Nolasco H C, Kobayashi G, et al. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties[J]. Process Biochemistry, 2001, 6237(1): 65-71
    [32] Shashikant V G, Hifjur R. Biodiesel production from mahua oil having high free fatty acids[J]. Biomass and Bioenergy, 2005, 28(6):601-605
    [33]蒋剑春,杨凯华,聂小安.生物柴油的研究与应用[J].新能源与材料,2004, 5:22-25
    [34] [34] Galen J. Suppe S. Transesterification of soybean oil with zeolite and metal catalysts[J]. Applied Catalysis A: Gen., 2004, 257(2): 213-223
    [35] Edgar L, Yijun L, Dora E. L, et al. Synthesis of Biodiesel Via acid Catalysis[J]. Chemical Engineering, 2005, 44(14): 5353-5363
    [36] Soumanou M M, Bornscheuer U T. Improvement in lipase catalyzed synthesis of fatty acid methyl esters from sunflower oil[J]. Enzyme a microbial Technology, 2003, 33 (7): 97-103
    [37] Shimada Y, Watanabe Y, Sugihara A, et al. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing[J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 17 (3): 133-142
    [38] Michele A, Angela D, Maria Carone. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction[J]. Environment Chemistry, 2005, 3(3): 136-139
    [39]薄向利.超临界流体技术制备生物柴油的研究进展[J].化工时刊,2005, 19(12): 32-33
    [40] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol [J]. Fuel, 2001, 80 (2):225-331
    [41] Marchetti J.M, Miguel V.U, Errazu A.F. Possible methods for biodiesel production[J]. Renewable and Sustainable Energy Review, 2007, 11:1300-1311
    [42] Kusdiana D, Saka S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol[J]. Fuel, 2001, 80(5): 693-698
    [43] Kusdiana D, Saka S. Effects of water on biodiesel fuel production by supercritical methanol treatment [J]. Bioresource Technology, 2004, 91(3):289-295
    [44]孙世尧,王连鸳,杨基础,等.超临界甲醇法制备生物柴油的研究现状[J].精细石油化工,2006, 23(1): 53-56
    [45]安文杰,许德平,田中坤,等.超临界法制备生物柴油[J].天然气化工,2006, 31(2): 20-23 63
    [46]刘启栋,王存文,王为国,等.超临界条件连续操作制备生物柴油的初步研究[J].化学与生物工程,2006, 23(4): 26-28
    [47] Zamzow K.L, Tsukamoto T.K, Miller G.C. Waste from Biodiesel Manufacturing as an Inexpensive Carbon Source for Bioreactors Treating Acid Mine Drainage[J]. Mine Water and the Environment, 2006, 25(3): 163-170
    [48] Peterson G.R, Scarrah W.P. Rapeseed oil transesterificalion by heterogeneous catalysis[J]. JAOCS, 1984, 61(10): 1593-1596
    [49] Meher L.C, Sagar D.V, Naik S.N. Technical aspects of production by transesterification a review[J]. Renewable and Sustainable Energy Reviews, 2006, 10(3): 248-268
    [50]陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展,1994, 3(5):18-25
    [51] Galen J S, MohanPrasad A D, Eric J D, et al. Transesterification of soybean oil with zeolite and metal catalysts [J]. Applied Catalysis, 2004, 25 (7): 213-223
    [52] Barrault J, Bancquart S, Pouilloux Y. Selective glycerol transesterification over mesoporous basic catalysts[J]. C R.Chimie, 2004, 11 (1): 1-7
    [53]谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换[J].应用化学,2001, 18(10):846-848
    [54] Ramadhas A.S, Jayaraj S, Muraleedharan C. Biodiesel production from high FFArubber seed oil[J].Fuel, 2005, 84(3):335-340
    [55]李玉芹,曾虹燕.植物油脂肪酸甲酯-生物柴油作替代燃料的意义[J].应用化工,2005, 34(8): 464-468
    [56]曹宏远,曹维良,张敬畅.固体酸Zr(SO4)2·4H2O催化制备生物柴油[J].北京化工大学学报,2005, 32(6): 61-63
    [57] Pedro F, Joana M, Raposo I, et al. Production of biodiesel from waste frying oils[J]. Waste Management, 2006, 26(2):487-494
    [58]吴芹.高活性离子液体催化棉籽油酯交换制备生物柴油[J].催化学报,2006, 27(4): 295-296
    [59] Zheng S., Kates M, Dube M.A, et al. Acid-catalyzed production of biodiesel from waste frying oil[J]. Biomass and Bio-energy, 2006, 30(5): 267-272
    [60] Zullaikah S, Chao C, Ramjan S, et al. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil[J]. Bioresource Technology, 2005, 96(6):1889-1896
    [61]李长秀,唐忠,杨海鹰.气相色谱法测定生物柴油样品中脂肪酸甲酯和脂肪酸甘油酯的含量[J].分析测试学报,2005, 24(5): 66-68
    [62] Ackman R G. The choice of chromatography column for analysis biodiesel[J]. JAOCS, 1989, 66(3): 290-293
    [63]方芳,曾虹燕.气相色谱法测定生物柴油中的脂肪酸甲酯[J].福建林学院报,2005, 25(1): 1-4
    [64]邬国英,林西平,巫淼鑫,等.制备生物柴油的副产物甘油分离与精制工艺的研究[J].江苏工业学院学报,2003, 15(4): 18-22
    [65]沈睿曼,甘书强.皂化粗甘油的精制工艺新探[J].中南民族学报(自然科学版),1996, 15(2): 9-12
    [66]陈文伟,高荫榆,林向阳,等.生物柴油副产物甘油精制新法[J].中国油脂,2006, 5:62-69
    [67]邹世能.发酵法生产甘油[J].日用化学工业,1997, 1:41-43
    [68]王鲁石,刘治国.折光法快速测定甘油护肤水中甘油的含量[J].农肯医学,2003, 2(2): 93-94
    [69]徐秀丽.分光光度法测定甘油合剂中甘油的含量[J].泰山医学院学报,2002, 23(3): 247-248
    [70]傅若农.色谱分析概论[M].第1版.北京:化学工业出版社,2000:23-65
    [71]邢其毅.有机化学[M].第1版.北京:高等教育出版社,1978:10-35
    [72]齐书昌,王文波.气相色谱法测定工业甘油的含量[J].齐齐哈尔轻工学院学报,1994, 10(4): 84-88
    [73]李书国,薛文通,陈辉,等.食用油维生素E的分析检测技术研究进展[J].粮食与油脂,2006, 10:26-28
    [74]刘传武,杨蒸,戴小安,等.植物油制备生物柴油的研究[J].河南化工,2005, 22(6): 19-21
    [75] Sabine S, Claus R, Tanja L, et al. Separation and Identification of Tocotrienol Isomers by HPLC-MS and HPLC-NMR Coupling [J]. Analytical Chemistry, 1999, 71(9): 1780-1785
    [76] Abidi S.L. Chromatographic analysis of tocol-derived lipid antioxidants[J]. Journal ofChromatography A, 2000, 881(1):197-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700