钒系催化剂在乙苯混合脱氢过程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烃类脱氢一直是石油化学工业最具挑战性的课题之一,其特点是反应转化率受到热力学平衡的限制。苯乙烯是一种重要的基本有机化工原料,广泛应用于生产塑料、树脂和橡胶等。目前,全球苯乙烯年生产能力在2500万吨以上,其中90%以上采用乙苯催化脱氢法生产。现有工艺的主要缺点是反应温度和水/烃比高、能耗大、平衡转化率低,在分离器中水蒸气所含的大量冷凝热难以回收,因此,研究开发新的替代脱氢工艺很有必要。
     乙苯氧化脱氢具有能耗低,不受平衡转化率限制等特点,自从20世纪70年代发现一些特定形态的碳对乙苯氧化脱氢表现出良好的催化活性以来,科研工作者对此倾注了极大的热情。然而,该新工艺对苯乙烯选择性较差,大量的副产物严重阻碍着该过程的工业应用。利用温室气体CO_2选择性氧化乙苯制苯乙烯是近年来的研究热点之一,在催化剂的制备、反应条件的选择和CO_2的作用机理等方面前人已做了不少工作。但该工艺仍为强吸热反应,能耗大,受热力学平衡限制且催化剂由于表面积炭失活严重。而若在系统中引入部分氧气,一方面通过氧化反应可供给体系部分能量,从而降低系统能耗;另一方面,可以消除催化剂表面积碳,从而改善催化剂稳定性。
     基于上述思考,本论文采用等体积浸渍法制备了一系列V_2O_5/γ-Al_2O_3(V/Al)及助剂改性的催化剂,考察催化剂在CO_2气氛下乙苯氧化脱氢反应性能和在系统中通入O_2对催化剂结构和催化性能的影响。主要研究结果如下:
     1.采用浸渍法制备不同V负载量的V/Al催化剂,并用于在CO_2气氛下乙苯温和氧化脱氢制苯乙烯的反应。考察了不同催化剂对乙苯和CO_2的转化率及苯乙烯选择性的影响,反应在常压、550℃、EB空速20.4 mmool/g·cat·h的条件下进行。实验结果表明,在不同V负载量的V/Al催化剂中,V(8%wt.)/Al催化剂的呈现出良好的乙苯脱氢活性。随着V负载量的增加,催化剂在CO_2氧化乙苯脱氢过程中的初活性增加,但催化剂的稳定性变差,在CO_2氧化乙苯过程中通入少量O_2可以有效抑制催化剂失活,维持催化剂较高的活性和稳定性。
     2.采用浸渍法制备了多种助剂改性的V/Al催化剂,实验证明助剂都对催化剂的乙苯脱氢活性起了积极的作用,都在一定程度上提高了EB转化率。在助剂改性的催化剂中V-Sb/Al乙苯脱氢活性最佳,有较高的苯乙烯选择性和乙苯转化率,并且有良好的稳定性,其中V(8%)Sb(9%)/Al催化剂最佳。在CO_2氧化乙苯过程中通入少量O_2,使催化剂的初活性有所降低,但减缓了催化剂的失活速度,提高了催化剂的稳定性。
     3.本文采用程序升温还原反应(XPR)、X射线光电子能谱分析(XPS)、粉末X射线衍射分析(XRD)和N_2物理吸附对反应前后的催化剂进行了表征,表征结果表明V/Al催化剂表面的V组分以高分散形式存在,造成催化剂失活的主要原因是催化剂表面组成结构改变和表面积炭,积炭造成催化剂表面积和孔体积的减少,尤其是微孔面积的完全损失。助剂的加入能够进一步提高活性组分在载体表面的分散度,并调变催化剂表面的酸碱度,从而有利于反应气体的吸附和活化,有利于催化剂反应性能的提高。助剂Sb改性的V/Al催化剂中形成的V_(1.1)Sb_(0.9)O_4中间相可能是V-Sb/Al催化剂的活性中心。在CO_2氧化乙苯过程中加入少量O_2可以有效抑制催化剂表面积炭,同时稳定催化剂表面组成结构,从而维持较高的活性和稳定性。
Dehydrogenation of hydrocarbons is one of the challenges in the petroleum chemical industry, since it is often confined by the thermodynamic equilibrium. Styrene (ST) is one of the most important fundamental chemicals, which is used for the production of plastic, resin and synthetic rubber. The total output of styrene in the world is above 25 billion ton/a, and 90% of styrene is produced by catalytic dehydrogenation of ethylbenzene (EB) in the presence of steam, a high-energy-consuming and equilibrium-limited process.
     Oxidative dehydrogenation of EB has attracted much attention since the discovery of certain catalysts for the reaction in the early 1970s. Nevertheless, a considerable decrease in styrene selectivity owing to deep oxidation of hydrocarbons to carbon oxide makes it unpractical in economical point of view. The dehydrogenation process for the production of ST based on the selective oxidation of EB with the major global warming gas CO_2, has aroused widespread interest recently for its lower energy consumption and higher equilibrium yield of styrene. The usage of CO_2 instead of steam could provide several advantages such as reduction of the reaction temperature, remarkable energy saving in the distillation process of ST, restraining deactivation of catalysts to some degree, and so on. Numerous research works on this subject have been reported and the possibility of dehydrogenation of EB in the presence of CO_2 instead of O_2 has been acknowledged. Although the application of CO_2 is very effective, the catalysts deactivation mechanism and suitable measures to enhance their catalytic stability must be further investigated.
     Reaction coupling is one of the best substitutes of the commercial dehydrogenation, which can solve such problems and has been studied extensively in recent years. The mechanism of CO_2 oxidation is also discussed. It can be concluded that the remarkable promoting effect of CO_2 on the dehydrogenation of EB is due to both redox cycle of oxide catalyst and coupling of EB with reversed water gas shift reaction.
     In the present work, V_2O_5/γ-Al_2O_3 (V/Al) catalysts with different V loading, with different promoters were prepared by impregnation method. The catalysts were tested in the dehydrogenation of EB. The main contents of this thesis are as follows:
     1. V/Al catalysts were prepared by impregnation method, the catalysts were used in mild oxidative dehydrogenation of EB to ST in presence of CO_2. Effects of different catalysts on oxidative dehydrogenation were investigated, under reaction conditions: atmospheric pressure, 550℃, EB space velocity 20.4 mmol/g·cat·h. The results show that with increasing V loading the initial activity of V_2O_5/γ-Al_2O_3 catalysts in the dehydrogenation of ethylbenzene with CO_2 increases; whereas, the stability of these catalysts decreases. V(8%wt.)/Al has the best activity for dehydrogenation of EB. The addition of O_2 to the process improves the stability of the V/Al catalysts.
     2. The V/Al catalysts with different promoters were prepared by impregnation method. The results show that: alkali metal oxide and rare earth oxide were found being suitable promoters for V/Al catalysts. The V-Sb/Al catalyst affords the highest dehydrogenation activity, and good stability. The V(8%)Sb(9%)/Al catalyst has the highest ethylbenzene conversion and styrene selectivity. The initial activity of the catalysts in the dehydrogenation of ethylbenzene decreases by addition of O_2, whereas, the stability of these catalysts increase.
     3. The fresh and used catalysts were characterized using temperature-programmed reduction (TPR), X-ray photoelectron energy spectroscopy (XPS), X-ray diffraction (XRD), N_2 physical adsorption. The active center of dehydrogenation is belived to be related with V~(5+). Catalyst deactivation is mainly caused by coke deposition, which results in the decrease of the BET surface and pore volume. The addition of promoters can increase the BET surface and lead to higher dispersion of the active species and adjust the surface acidity and basicity. The V_(1.1)Sb_(0.9)O_4 phase was actually found to be the main component in the crystalline V-Sb bulk oxide system, this phase may be the active center of the V-Sb/Al catalysts. The addition of O_2 to the process improves the stability of the catalysts due to suppressing the coke deposition and keeping the vanadium species at high valence.
引文
[1] G. R. Meima, P. G. Menon. Catalyst deactivation phenomena in styreneproduction[J]. Appl. Catal. A: General, 2001,212 (1-2): 239-245.
    
    [2] F. Cavani, F. Trifiro. Alternative processes for the production of styrene[J]. Appl.Catal. A: General, 1995,133(2): 219-239.
    
    [3] J. S. Yoo. Gas phase oxygen oxidation of alkylaromatics over CVDFe/Mo/borosilicate molecular sieve, Fe/Mo/DBH VII. Oxidative dehydrogenationof alkylaromatics[J]. Appl. Catal. A: General, 1996,142(11): 19-20.
    
    [4] E. H. Lee. Iron oxide catalysts for dehydrogenation of ethylbenzene in thepresence of steam[J]. Catal. Rev. 1973, 8: 285-305.
    
    [5] M. Muhle, R. Shlogl, A. Reller, et al. The nature of the active phase of theFe/K-catalyst for dehydrogenation of ethylbenzene[J]. Catal. Lett. 1989, 2:201-210.
    
    [6] M. Mtlhler, M. Schuzte, T. Wesemann, et al. The nature of the iron oxide-basedcatalyst for dehydrogenation of ethylbenzene to styrene I[J]. J. Catal. 1990,126(2):339-360.
    
    [7] 陈慧贞,何淡云,肖章龄,蔡启瑞.乙苯脱氢制苯乙烯氧化铁系催化剂的研 究-晶格氧的作用[J].高等学校化学学报,1985,5:433-440.
    
    [8] 安东新午等.石油化学工业手册-中册[M].北京:科学出版社,1995:113-148.
    
    [9] G. V. Shakhnovich, I. P. Belomestnykh, N. V. Nekyasov, et al. Kinetics of ethylbenzene oxidative dehydrogenation to styrene over a vanadia/magnesia catalyst[J]. Appl. Catal., 1984, 12(1): 23-34.
    
    [10]服部忠,村上雄一,井一正纯等.钾添加对于乙苯脱氢氧化铁触媒的影响[J].工 业化学杂志(日文),1969,72(10):21-88.
    
    [11]夏明,何淡云,祝以湘.乙苯脱氢Fe_2O_3-K_2O系催化剂中晶格氧和钾的助催作 用[J].分子催化,1995,3:201-206.
    
    [12] W. P. Addiego, C. A. Estrada, D. W. Goodman., et al. An infrared study of the dehydrogenation of ethylbenzene to styrene over iron-based catalysts[J]. J. Catal., 1994, 146(2): 407-414.
    
    [13]祝以湘,夏明,何淡云.第四周期过渡金属对乙苯脱氢催化剂的助催化作用 [J].厦门大学学报(自然科学版),1994,33(4):561-564.
    
    [14]何淡云,林仁存,夏明等.乙苯脱氢制苯乙烯Fe_2O_3-K_2O系催化剂的XPS研 究[J].厦门大学学报(自然科学版),1991,30(6):577-582.
    
    [15] B. Hu, Z. Zeng, X. Yang, et al. Nucl. Instrum. Methods. Phys. Res. Sect. B, 1993, B76(1-4):178-185.
    
    [16]惠从善,陈延祥,郑家倬.工业335催化剂乙苯脱氢反应动力学[J].石油化工, 1991,20(9):600-604.
    
    [17] M. Akira, U. Hidemi, T. Massayuki, et al. Eur. Pat. Appl. EP 502, 510(Cl.B01523(?)78), 09 Sep 1992, JP Appl. 91(?)123,185,05Mar. 1991.
    
    [18] J. Ch. Wu, D. S Liu, A. N. Ko. Dehydrogenation of ethylbenzene overTiO_2-Fe_2O_3 and ZrO_2-Fe_2O_3 mixed oxide catalysts[J]. Catal. Lett., 1993, 20(3-4):191-201.
    
    [19] A. Ueno, N. Kakuta, K. Fukushima, N. Takahashi. JP Patent. H2-78435(1990).
    
    [20] N. Kakuta, A. Miyakoshi, A. Ueno, et al. Dehydrogenation of ethylbenzene overdouble oxide catalysts of ZnO-Cr_2O_3. Catalyst preparation and their catalyticperformances[J]. J. Chem. Soc. Jpn., 2000,2: 97-105.
    
    [21]辛敏谦,裘式纶,徐雁等.FAPSO-5分子筛的合成、结构及性能的研究[J].无 机化学学报,1991,7(4):405-408.
    
    [22] X S. Liu, J. H. Yu, Q. B. Kan, et al. Synthesis, characterization and catalytic properties of zeolite[B, Al, Ga, Fe]-ZSM-5[J]. Chem. Res. Chin. Unv., 1991, 7(3): 135-142.
    
    [23]阚秋斌,吴志芸.FeZSM-5催化剂上乙苯脱氢反应机理研究-瞬态应答法[J].第 四届全国催化学术报告会论文集,天津,1988,1-C-14.
    
    [24] Z. Y. Wu, Q. B. Kang, et al. In: Jansen JC et al eds. Proceedings of the 8th International Conference on Zeolites, Am sterdam, 1989, 389.
    
    [25] R. H. Allen, T. Alfrey, L. D. Yats. US Patent 3487564,1970.
    
    [26] A. J. Bridgewater, R. Burch, P. Mitehell. Carbon-supported hydrodesulphurisation catalysts Appl. Catal. 1982,4(3): 267-273.
    
    [27] D. Richard, P. Gallezot, D. Neibeeher, et al. Characterization and selectivity in cinnamaldehyde hydrogenation of graphite-supported platinum catalysts prepared from a zero-valent platinum complex[J]. Catal. Today, 1989, 6(1-2): 171-179.
    
    [28] A. G Ruiz, A. S. Escribano, I. R. Ramos. Carbon supported bimetallic catalysts containing iron I[J]. Appl. Catal. A General, 1992, 81(1): 81-100.
    
    [29] R. Drago, K. Jurezyk, Oxidative dehydrogenation of ethylbenzene to styrene over??carbonaceous catalysts[J]. Appl. Catal. A General, 1994,112(2): 117-124.
    
    [30] W. Kania, K. Jurezyk. Catalytic activity of modified γ-alumina for the oxidativedehydrogenation of ethylbenzene[J]. Appl. Catal., 1990 61: 35-44.
    
    [31] W. S. Chang, Y. Z. Chen, B. L. Yang. Oxidative dehydrogenation of ethylbenzeneover V~Ⅴ and V~Ⅳ magnesium vanadates[J]. Appl. Catal. A: General, 1995, 124(2):221-243.
    
    [32] W. Oganowski, J. Hanuza, L. Kepinski. Catalytic properties of Mg_3(VO_4)_2-MgOsystem in oxidative dehydrogenation of ethylbenzene[J]. Appl. Catal. A General,1998,171(1): 145-154.
    
    [33] I. P. Belomestnykh, E. A. Skrigan, N. N. Rozhdestvenskaya, et al. Newpreparation method of multicomponent oxide vanadium systems for oxidativedehydrogenation of alkanes, alkylaromatic and alkylheterocyclic compounds[J].Stud. Surf. Sci. Catal., 1992, 72:453-460.
    
    [34] S. Sugunan, N. K. Renukal. Oxidative dehydrogenation of ethylbenzene overSn_2O_3-V_2O_5 system[J]. Bull. Chem. Soc. Jpn., 2002, 75: 463-471.
    
    [35]吕连海,蔡天锡.乙苯氧化脱氢制苯乙烯的研究进展[J].石油化工,1988,17(1): 54-60.
    
    [36] A. Schraut, G. Emigh, H. Hofmann. Kinetic investigations of the oxydehydrogenation of ethylbenzene[J]. J. Catal., 1988,112(2): 221-228.
    
    [37] K. Brozyna, Z. Dziewiecki. Relationship between the acidity of nickel phosphate(NiP) catalysts and their activity in ethylbenzene oxydehydrogenation[J]. Appl.Catal., 1987, 35(2): 211-216.
    
    [38] G. E. Vrieland. Oxydehydrogenation of ethylbenzene to styrene over metalpyrophosphates: 1. Catalyst composition and reaction variables[J]. J. Catal., 1988,
    
    [39] G. Bagnasco, P. Ciambelli, M. Turco, et al. Layered zirconium-tin phosphates ⅡCatalytic properties in the oxydehydrogenation of ethylbenzene to styrene[J].Appl. Catal., 1991, 68(1): 69-79.
    
    [40] E. Echigoya. Proc. 8th Int. Congr. Catal., 1983,623.
    
    [41] #12
    
    [42] Oganowski Waldemar. Pol. P1159, 643 1992, Appl. 280, 846, 1989.
    
    [43]高志明,吴通好,彭少逸.铁酸镁系列超微粒子催化剂的氧化脱氢反应行为??乙苯和环己烷的氧化脱氢反应[J].催化学报,1995,16(2):96-101.
    
    [44]高志明,吴通好,彭少逸等.铁酸盐系乙苯氧化脱氢反应新型催化剂的开发 [J].石油化工,1995,24(5):289-293.
    
    [45]夏宏图,吴指南.乙苯催化氧化脱氢合成苯乙烯的研究[J].石油化工,1994, 23(2):71-75.
    
    [46] W. Oganowski. Oxidative dehydrogenation of ethylbenzene to styrene in presenceof V_2O_5-CoO-Na_2O/MgO catalysts[J]. Przem. Chem., 1992, 71(10): 383-388.
    
    [47] W. Oganowski. Stability of modified vanadium-magnesium catalyst in oxidativedehydrogenation of ethylbenzene[J]. Przem. Chem., 1993,72(2): 56-63.
    
    [48] W. Oganowski. Stabilization of the active phase of a V_2O_5-MgO Catalyst[J].Przem. Chem., 1994, 73(2): 51-53.
    
    [49] E. A. Sk rigan, L. A. Kupcha, I. P. Belom estnykh, et al. Bulletin of the Academyof Sciences of the U SSR Division of Chemical Science, 1991,40(8): 1562.
    
    [50] W. Kania, M. Sopa. Oxidative dehydrogenation of ethylbenzene to styrene onmodified alumina[J]. Pol. J. Chem., 1993,67(3): 419-423.
    
    [51] E. H. Lee. Iron oxide catalysts for dehydrogenation of ethylbenzene in thepresence of steam[J]. Catal. Revs., 1973, 8(2): 285-305.
    
    [52] W. Kania, K. Jurczyk. Acid-base properties of modified γ-alumina[J]. Appl. Catal.,1987, 34: 1-12.
    
    [53] W. Kania, K. Jurczyk. Proton acidity in modified γ-alumina[J]. Appl. Catal., 1990,61(1): 27-34.
    
    [54] K. Jurczyk, W. Kania. Base properties of modified γ-alumina[J]. Appl. Catal.,1989, 56(1): 253-261.
    
    [55] E. G. Derouame, V. Indovina. ESR of O species adsorbed on thermally activatedMgO powders[J]. Chem. Phys. Lett., 1972,14(4): 455-459.
    
    [56] N. Mimtira, I. Takahara, M. Saito, et al. Dehydrogenation of ethylbenzene overiron oxide-based catalyst in the presence of carbon dioxide[J]. Catal. Today, 1998,45(1-4): 61-64.
    
    [57] N. Mimura, M. Saito. Dehydrogenation of ethylbenzene to styrene overFe_2O_3/Al_2O_3 catalysts in the presence of carbon dioxide[J]. Catal.Today, 2000,55(1-2): 173-178.
    
    [58] T Hirano. Active phase in potassium-promoted Iron oxide catalyst fordehydrogenation of ethylbenzene[J]. Appl. Catal., 1986, 26: 81-90.
    
    [59] D. E. Stobbe, F. R. Buren, A. J. Dillen, et al. Potassium promotion of iron oxidedehydrogenation catalysts supported on magnesium oxide[J]. J.Catal. 1992,135(2): 533-547.
    
    [60] S. Sato, M. Ohhara, T. Sodesawa, et al. Combination of ethylbenzenedehydrogenation and carbon dioxide shift-reaction over a sodium oxide/aluminacatalyst[J]. Appl. Catal., 1988, 37(1-2): 207-215.
    
    [61] J. Noh, J. S. Park, K. Y. Lee, et al. CO_2 utilization for the formation of styrenefrom ethylbenzene over zirconia-supported iron oxide catalysts[J]. Appl.Organometal. Chem. 2000,14(12): 815-818.
    
    [62] A. L. Sun, Z. F. Qin, J. G. Wang. Reaction coupling of ethylbenzenedehydrogenation with water-gas shift[J]. Appl. Catal A: General, 2002, 234(1-2):179-189.
    
    [63]张维光,葛欣,孙磊等.乙苯脱氢与逆水煤气变换耦合反应的铁/活性炭催化 剂研究[J].催化学报,2000,21(1):27-30.
    
    [64] M. Sugino, H. Shimada, T. Turuda, et al. Oxidative dehydrogenation ofethylbenzene with carbon dioxide[J]. Appl. Catal. A: General, 1995, 121(1):125-137.
    
    [65] T. Badstube, H. Papp, R. Dziembaj, et al. Screening of catalysts in the oxidativedehydrogenation of ethylbenzene with carbon dioxide[J]. Appl. Catal. A: General,2000,204(1): 153-165.
    
    [66] Y. Sakurai, T Suzaki, N.Ikenaga, et al. Dehydrogenation of ethylbenzene with anactivated carbon-supported vanadium catalyst[J]. Appl. Catal. A: General, 2000,192(2): 281-288.
    
    [67] N. Ikenaga, T. Tsuruda, K. Senma, et al. Dehydrogenation of ethylbenzene withcarbon dioxide using activated carbon-supported catalysts[J]. Ind. Eng. Chem. Res.2000, 39: 1228-1234.
    
    [68]葛欣,王文月,邹琥等.乙苯脱氢与二氧化碳转化氧化铝催化剂吸附量热的 研究[J].燃料化学学报,1999,27(4):314-318.
    
    [69] N. Mimura, M. Saito. Dehydrogenation of ethylbenzene to styrene over Fe_2O_3/Al_2O_3 catalysts in the presence of carbon dioxide[J]. Catal. Lett., 1999, 58: 59-62.
    
    [70] V. P. Vislovskiy, J. S. Chang, M. S. Park, et al. Ethylbenzene into styrene with carbon dioxide over modified Vanadia-alumina catalysts[J]. Catal. Commu., 2002, 3:227-231.
    [71] J. N. Park, J. Noh, J. S. Chang, et al. Ethylbenzene to styrene in the presence of carbon dioxide over zirconia [J]. Catal Lett, 2000, 65(3): 75-78.
    [72] J. S. Chang, S. E. Park, M. S. Park. Beneficial effect of carbon dioxide in dehydrogenation of ethylbenzene to styrene over zeolite-supported iron oxide catalyst [J]. Chem. Lett., 1997,11: 1123-1124.
    [73] M. S. Park, J. S. Chang, D. S. Kim, et al. Oxidative dehydrogenation of ethylbenzene with carbon dioxide over zeolite-supported iron oxide catalysts [J].Res. Chem. Intermediat., 2002,28(5): 461-469.
    [74] Y. Sakurai, T. Suzaki, K. Nakagawa, et al. Dehydrogenation of ethylbenzene over vanadium oxide loaded MgO catalyst: promoting effect of carbon dioxide[J]. J Catal, 2002,209: 16-24.
    [75] P. Kusrowski, A. R. Lasocha, D. Majda, et al. Preparation and characterization of new Mg-Al-Fe oxide catalyst precursors for dehydrogenation of ethylbenzene in the prensence of carbon dioxide[J]. Solid. State. Ionics, 2001,141: 237-242.
    [76] N. Mimura, I. Takahara, M. Saito, et al. Dehydrogenation of ethylbenzene to styrene in the presence of CO_2 over calcined hydrotalcite-like compounds as catalysts[J]. Catal. Lett., 2002. 78(4): 125-128.
    [77] V. P. Vislovskiy, V. Y. Bychkov, M. Y. Sinev, et al. Physico-chemical properties of V-Sb-oxide systems and their catalytic behaviour in oxidative dehydrogenation of light paraffins Catal. Today, 2000, 61(1-4): 325-331.
    [78] T. Badstube, H. Papp, P. Kustrowski, et al. Oxidative dehydrogenation of ethylbenzene with carbon dioxide on alkali-promoted Fe-active carbon catalysts[J]. Catal Lett, 1998, 55: 169-172.
    [79] A. L. Sun, Zh. F. Qin, Sh. W. Chen, et al. Ethylbenzene dehydrogenation in the presence of carbon dioxide over alumina supported catalysts[J]. Catal. Today,2004, 93-95: 273-279.
    [80] G. Centi, S. Perathoner, F. Trifiro. V-Sb-oxide catalysts for the ammoxidation of propane[J]. Appl. Catal. A. 1997,157(1-2): 143-172.
    [81] S. Carra, L. Fomi. Kinetics of catalytic dehydrogenation of ethylbenzene to styrene sergio carra, Lucio Forni[J]. Ind. Eng. Chem. Proc. Des. Dev., 1965, 4(3),281-285.
    [82] M. Muhler, R. Sehlogl, G. Ertl. The nature of the iron oxide-based catalyst for
    ??dehydrogenation of ethylbenzene to styrene 2. Surface chemistry of the active phase[J]. J. Catal. 1992,138(2): 413-444.
    
    [83] L. Wang, J. Wu, C. Chung. Dehydrogenation of ethylbenzene and ethylcyclohexane over mixed binary oxide catalysts containing titania[J].Appl. Catal. 1985,16(1): 89-101.
    
    [84]黄开辉.乙苯在氧化铁系催化剂上的络合活化模型.厦门大学催化专业教材 附录:197.
    
    [85] T. Tagawa, T. Hattori, Y. Murakami. Study of the oxidative dehydrogenation of ethylbenzene: IE. Mechanism for styrene formation[J]. J. Catal. 1982, 75(1): 66-77.
    
    [86] J. Hanuza, B. J. Trzebiatowska, W. Oganowski. The oxygen bond in mo(v)/mo(vi) active centres and its role in the oxidizing dehydrogenation process[J] J.Mol.Catal. 1978,4(4): 271-287.
    
    [87] J. Hanuza, B. Jezowska-Trzebiatowska, W. Oganowski. Structure of the active layer and catalytic mechanism of the V_2O_5/MgO catalysts in the oxidative dehydrogenation ethylbenzene to styrene[J]. J. Mol. Catal., 1985,29: 109-143.
    
    [88]傅献彩,沈文霞,姚天扬.物理化学(第四版).上册[M].北京:高等教育出版 社,1999:427.
    
    [89]杨燮龙,翁斯獭,蒋可玉等.乙苯脱氢铁系催化剂的穆斯堡尔谱研究[J].催 化学报,1993,14(4):276-283.
    
    [90] G. V. Shakhnovich, I. P. Belomestnykh, N. V. Nekyasov, et al. Kinetics ofethylbenzene oxidative dehydrogenation to styrene over a vanadia/magnesiacatalyst[J]. Appl. Catal., 1984, 12(1): 23-34.
    
    [91] W. Oganowski, J. Hannza, H. Prulis, et al. Promotion effect of molybdenum,chromium and cobalt on a V-Mg-O catalysts in oxidative dehydrogenation ofethylbenzene to styrene, Appl. Catal. A: General, 1996,136(2): 143-159.
    
    [92] E. Reddy, R. Varma. Preparation, characterization, and activity ofAl_2O_3-supported V_2O_5 catalysts [J]. J. Catal., 2004,221(1): 93-101.
    
    [93] Y. Sakurai, T. Suzaki, K. Nakagwa, et al. Oxidation capability of carbon dioxidein the dehydrogenation of ethylbenzene over vanadium oxide-loaded MgOcatalyst[J]. Chem. Lett., 2000, 341(5): 526-527.
    
    [94]张春雷,李爽彭,陈艳兵等.氧缺位铁酸盐MFe_2O(4-δ)的性质研究[J].高等 学校化学学报,1998,10:1537-1541.
    
    [95] Zh. F. Qin, J. G. Liu, A. L. Sun, et al. Reaction coupling in the new processes forproducing styrene from ethylbenzene[J]. Ind. Eng. Chem. Res., 2003, 42(7):1329-1332.
    
    [96] N. Mimura, M. Saito. Dehydrogenation of ethylbenzene to styrene in the presenceof CO_2[J]. Appl. Organomet. Chem., 2000,14(12): 773-777.
    
    [97] Y. M. Liu, Y. Cao, N. Yi, et al. Vanadium oxide supported on mesoporousSBA-15 as highly selective catalysts in the oxidative dehydrogenation ofpropane[J]. J. Catal., 2004,224(2): 417-428.
    
    [98] Sh. W. Chen, Zh. F. Qin, X. F. Xu, et al. Structure and properties of thealumina-supported vanadia catalysts for ethylbenzene dehydrogenation in thepresence of carbon dioxide[J]. Appl. Catal. A: General, 2006, 302(2): 185-192.
    
    [99] S. E. Park, J. S. Chang, V.P. Vislovskiy, et al. Sixth international conference oncarbon dioxide utilization. (Breckenridge, CO, USA, September,2001), PreprintedAbstracts, P60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700