PVDF中空纤维膜萃取处理煤气化含酚废水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中空纤维膜萃取是膜过程与液液萃取相结合的新型分离技术,特别适用于金属离子、热敏性物质和难分离物质的分离与提取。与传统的液液萃取过程相比,膜萃取具有传质面积大、萃取效率高、能耗低、环境污染少及无液泛和返混、萃取剂损失少等优势。目前,该技术处于工业化应用的初始阶段,是环保领域研究的热点之一。因此有很多问题值得研究。
     本论文以疏水性PVDF中空纤维膜为传质界面,用高效萃取剂Cyanex 923-煤油-NaOH溶液体系对模拟苯酚废水进行了萃取-反萃取实验,研究了两相传质方式、水相和有机相流速、进水初始浓度、膜组件装填因子、离子强度、膜组件串联和反萃取相浓度等操作条件对萃取率和传质性能的影响。并在此基础上对实际煤气化废水进行了萃取实验。
     实验结果拟合出了萃取平衡曲线,并计算了分配系数与苯酚在水相中浓度的关系:logD=1.62-0.077caq。pH值对分配系数有重要影响,当pH>8时,分配系数下降很快。
     增大水相流速能显著加快萃取过程和提高传质系数,而改变有机相流速基本不影响传质系数。这说明水相边界层阻力是总传质阻力的控制因素,计算结果也表明有机相边界层阻力和膜相阻力所占比例不到20%。在水相流速为0.002m/s~0.016m/s的范围内,膜组件的传质单元高度为0.17m~0.75m,明显小于传统萃取设备。增大进水初始酚浓度,总传质系数反而降低,一方面,分配系数随初始浓度的增大而减小,另一方面,浓度升高加剧了传质界面两侧的浓差极化现象。膜组件装填因子和膜的均匀分布及疏密程度对传质有很大影响。增大装填因子能提高传质面积,但同时使膜丝间距变小,容易发生挤压现象,使传质系数降低。串联低装填因子的膜组件能缩短萃取时间,节省投资。盐析效应能够促进萃取传质过程。因此可以通过增大水相离子强度来强化传质。
     当NaOH浓度由0.1mol/L升高到0.5mol/L时,反萃取系数由4.83×10-7m/s增大到5.93×10-7m/s。酚回收率达到93%以上。反萃取传质系数比萃取传质系数小一个数量级,这是由于在反萃取传质界面不存在溶质的预吸附作用优势。
     实际废水中SS的含量对萃取率有明显的影响,经混凝预处理后,传质加快。在连续逆流萃取实验中,水相流速在一定范围内的增大能够提高萃取率,但超过这一范围萃取率开始降低。膜组件串联延长了两相间的接触时间,萃取率升高。对长时间使用过的膜进行SEM测试,没有发现膜污染,说明膜萃取抗污染能力很强。
Hollow fiber membrane extraction process is combined with liquid-liquid extraction of new separation technologies, especially for metal ions, heat-sensitive material and difficult to separate physical separation and extraction. With the traditional liquid-liquid extraction process, compared with membrane extraction mass transfer area, extraction efficiency, low consumption, little environmental pollution and flooding and no back mixing, extraction and less loss of advantage. Currently, the technology applied in the initial stage of industrialization, is one of the hot research field of environmental protection. So many problems are worth studying.
     In this thesis, the hydrophobic PVDF hollow fiber membrane for the mass transfer interface, with efficient extractant Cyanex 923-kerosene-NaOH aqueous solution was simulated Phenol extraction- stripping experiments to study the mass transfer of two ways, water phase and organic phase flow rate, initial concentration of water, membrane loading factor, ionic strength, membrane modules in series and anti-phase extraction and concentration of operating conditions on the extraction rate and mass transfer properties. And on this basis, the actual extraction of coal gasification wastewater was experimental.
     The results of the extraction equilibrium curve fitting and calculating the distribution coefficient and the concentration of phenol in the aqueous phase relationship: logD=1.62-0.077caq. pH values have a major impact on the distribution coefficient, when the pH>8, the distribution coefficient decreased rapidly. Increase the water phase flow rate can significantly speed up the extraction process and increase the mass transfer coefficient, the organic phase flow rate change is not effected by the mass transfer coefficient. It shows that the water phase boundary layer mass transfer resistance is the resistance of the controlling factors, the results also show that the organic layer resistance and membrane phase resistance account for less than 20%. In the water phase flow rate of 0.002m/s~0.016m/s within the modules and mass transfer unit height of 0.17m~0.75m, significantly less than traditional extraction equipment. Increasing initial concentration of water, However, reduce the overall mass transfer coefficient. On the one hand, distribution coefficients with the initial concentration decreases, on the other hand, increasing the concentration and mass concentration polarization on both sides of the interface phenomenon. Membrane packing factor and uniform distribution of film and the density levels have a significant impact on mass transfer. Increase the filling factor can increase the mass transfer area, but the membrane smaller wire spacing, prone to compression phenomena, mass transfer coefficient decreased. Series of low packing factor of the membrane can reduce the extraction time, save the investment. Salt effect can promote the mass transfer process. Therefore, by increasing the ionic strength to reinforce the water phase mass transfer.
     When the NaOH concentration from 0.1mol/L increased to 0.5mol/L, the anti-extraction coefficient was 4.83×10-7m/s increased to 5.93×10-7m/s. Phenol recovery of more than 93%. Mass transfer coefficient against mass transfer coefficient than an order of magnitude, which is due to stripping of solute mass transfer interface, there is no pre-adsorption edge.
     SS content in the actual waste water on the extraction rate significantly affected by coagulation pretreatment, mass transfer speed. In the continuous countercurrent extraction experiments, the water phase flow rate increases within a certain range can increase the extraction rate, but the extraction rate over the range began to decrease. Membrane modules in series to extend the contact time between the two phases, extraction rates increased. On the membrane long used SEM tests found no membrane fouling, indicating a strong antifouling membrane extraction.
引文
1 Guido Busca, Silvia Berardinelli, Carlo Resini. Technologies for the removal of phenol from fluid streams: A short review of recent developments. Journal of Hazardous Materials, 2008, 160: 265-288
    2王韬,李鑫钢,杜启云.含酚废水治理技术研究进展[J].化工进展, 2009, 27(2): 231-234
    3张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点[J].化学工程师, 2001, 83(2): 36-37
    4 Dabrowski. P, Podkoscielny. Z, Hubicki. M, Barczak. Adsorption of phenolic compounds by activated carbon: a critical review. Chemosphere, 2005, 58: 1049-1070
    5 V. Fierro, V. Torne Fernandez, D. Montane, A. Celzard. Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor. Mesopor. Mater, 2008, 111: 276-284
    6 G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos. Effect of activated carbons modification on porosity surface structure and phenol adsorption. Journal of Hazardous Materials, 2008, 151: 414-421
    7 N. Roostaei, F. Handan Tezel. Removal of phenol from aqueous solutions by adsorption. Environ Manag, 2004, 70: 157-164
    8 M. Otero, M. Zabkova, A.E. Rodrigues. Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep. Purif. Technol, 2005, 45: 86-95
    9 K.J. Abburi. Adsorption of phenol andα-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. J Hazard Mater, B 2003, 105: 143-148
    10戴猷元.溶剂萃取[M].化学工业出版社, 2008: 4-5
    11汪家鼎.溶剂萃取手册[M].化学工业出版社, 2001: 13-14
    12 Yang, C. F, Qian, Y, Zhang, L. J, Feng, J. Z. Solvent extraction process development and on-site trial-plant for phenol removal from Industrial coal-gasification wastewater. Chem. Eng. J, 2006, 117(2): 179-185
    13 Dachun Feng, Zhenjiang Yu, Yun Chen, and Yu Qian. Novel Single Stripper withSide-Draw to Remove Ammonia and Sour Gas Simultaneously for Coal-Gasification Wastewater Treatment and the Industrial Implementation. Ind. Eng. Chem. Res, 2009, 48: 5816-5823
    14 N. Messikha,b, M.H. Samar. Neural network analysis of liquid–liquid extraction of phenol from wastewater using TBP solvent. J. Desalination, 2007, 208: 42-48
    15章莉娟.煤气化废水萃取脱酚工艺研究[J].环境化学, 2006, 25(4): 488-490
    16 Burghoff, Bernhard and de Haan, Andre B. Liquid-Liquid Equilibrium Study of Phenol Extraction with Cyanex 923. Separation Science and Technology, 2009. 44: 8, 1753-1771
    17 Urtiaga, Ane M and Ortiz. Extraction of Phenol Using Trialkylphosphine Oxides(Cyanex 923) in Kerosene. Separation Science and Technology, 1997, 32(6): 1157-1162
    18 Zhen Li, Minghong Wu, etc. Extraction of phenol from wastewater by N-octanoylpyrrolidine. Journal of Hazardous Materials, 2004: 111-114
    19唐永良.液膜萃取技术综述[J].杭州化工, 2004, 34(3): 76-80
    20王彩玲,张立志.支撑液膜稳定性研究进展[J].化工进展, 2007, 26(7): 949-957
    21 Hongzhu Ma, Xinhai Zhang. Electrochemical catalytic treatment of phenol wastewater. Journal of Hazardous Materials, 2009, 165: 475-480
    22彭亚男.超声波在水处理中的应用[J].化学工程师, 2004, 18(11): 27-29
    23徐宁,吕效平,王延儒.气升式内环流超声化学反应器降解五氯酚离子溶液[J].南京工业大学学报(自然科版), 2005, 27(3): 26-28
    24朱昌平,超声波降解含酚废水的研究进展[J],声学技术, 2007, 26(2): 342-345
    25何茹.均相和非均相Fenton型催化剂催化氧化含酚废水[J].华南理工大学学报(自然科学版), 2003, 31(5): 51-54
    26 T.L. Thompson, J.T. Yates Jr. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev, 2006, 106: 4428-4453
    27 N. Wang, Z. Chen, L. Zhu, X. Jiang, B. Lv, H. Tang. Synergistic effects of cupric and fluoride ions on photocatalytic degradation of phenol. Photochem Photobiol Chem, 2007, 191: 193-200
    28孙福侠,吴鸣.纳米TiO2光催化降解苯酚的动力学研究[J].催化学报, 1999, 20(3): 301-305
    29常江.纳米TiO2光催化降解硝基酚类污染物动力学及机理的研究[J].环境工程学报, 2009, 3(1): 43-46
    30 M.P.Paschoalino, J. Kiwi, W.F. Jardim. Gas-phase photocatalytic decontamination using polymer supported TiO2. Appl. Catal. B: Environ, 2006, 68: 68-73
    31王学松.现代膜技术及其应用指南[M].化学工业出版社, 2005: 1-2
    32 M.Ulbeicht. Advaneed funetional Polymermembranes. Polymer, 2006: 1-46
    33 Huang Y, Baker RM. Low-Energy Distillation-Membrane Separation Process. Indestrial Engineering Chemistry Research, 2010, 29(8): 3760-3768
    34吴庸烈.膜蒸馏技术及应用进展[J].膜科学与技术, 2003, 8(23): 67-83
    35王许云,张林,陈欢林.膜蒸馏技术最新研究现状及进展[J].化工进展, 2007, 26(2): 168-173
    36唐建军,周康根.减压膜蒸馏及其应用于易挥发有机物分离的研究现状[J].水处理技术, 2002, 28 (2) : 67-70.
    37马玖彤,张凤君,吴浩宇.膜蒸馏法处理甲醇水溶液研究[J].水处理术, 2003, 29 (1) : 19-21.
    38 Karakulski K, Gryta M, Morawski A. Membrane processes used for potable water quality improvement. Desalination, 2002, 145(1-3): 315-319.
    39 Banat F, A1-Asheh S, Qtaishat M. Treatment of waters colored with methylene blue dye by vacuum membrane distillation. Desalination, 2005, 174(1): 87-96.
    40 M. Peng, L.M. Vane, S.X. Liu. Recent advances in VOCs removal from water by pervaporation. J. Hazard. Mater. B, 2003, (98): 69-90
    41 Denis Roizard, Fran?ois Lapicque, EricFavre, Christine Roizard. Potentials of pervaporation to assist VOCs recovery by liquid absorption. Chemical Engineering Science, 2009, 64: 1927-1935
    42 Barun Sinha, Ujjal K. Ghosh, Narayan C. Pradhan. Separation of Phenol from Aqueous Solution by Membrane Pervaporation Using Modified Polyurethaneurea Membranes. Appl Polym Sci, 2006, 101: 1857-1865
    43 Figoli A, Katholieke Univ Leuven. Pervaporation performance of unfilled and filled PDMS membranes and novel SBS membranes for the removal of toluene from diluted aqueous solutions. Chemical Engineering Journal, 2010, 15(3): 37-46
    44 W.Kujawski, A.Warszawski, W. Ratajczak, T. Porebski, W. Capa?a, I. Ostrowska. Application of pervaporation and adsorption to the phenol removal from wastewater. Sep. Purif. Technol, 2004, 40: 123-132
    45 Xiaogang Hao, Mark Pritzker, Xianshe Feng. Use of pervaporation for the separation of phenol from dilute aqueous solutions. Journal of Membrane Science, 2009, 335: 96-102
    46 W. Kujawski, A.Warzawski,W. Ratajczak, T. Porebski,W. Capal, I. Ostrowsk. Removal of phenol from wastewater by different separation techniques. Desalination, 2004, 163: 287-296
    47戴猷元.新型萃取分离技术的发展及应用[M].化学工业出版社, 2007, 08: 182
    48戴猷元.一种新的膜过程—膜萃取[J].化工进展, 1989, 8(2): 24-29
    49戴猷元.膜萃取过程及其进展[J].膜科学与技术, 1992, 12(1): 1-7
    50戴猷元,秦炜,张谨.有机物络合萃取化学[M].化学工业出版社, 2008: 18-20
    51 S. Bocquet, A. Torres, J. Sanchez, and G. M. Rios. Modeling the Mass Transfer in Solvent-Extraction Processes with Hollow-Fiber Membranes. AIChE Journal, 2005, 25(4): 1067-1080
    52 Z. Lazarova, S. Boyadzhieva. Treatment of phenol-containing aqueous solutions by membrane-based solvent extraction in coupled ultrafiltration modules. Chemical Engineering Journal, 2004, 100: 129-138
    53 R.M.C. Viegas, I.M. Coelhoso. Mass transfer correlations in membrane extraction: Analysis of Wilson-plot methodology. Journal of Membrane Science, 1998, 145: 129-142
    54 R Kertesz, M. Simo, S Schlosser. Membrane-based solvent extraction and stripping of phenylalanine in HF contactors. Journal of Membrane Science, 2005, 257: 37-47
    55 Ruey-Shin Juang, Hsiu-Lin Huang. Mechanistic analysis of solvent extraction of heavy metals in membrane contactors. Journal of Membrane Science, 2003, 213: 125-135
    56 Alan Gabelman, Sun-Tak. H wang. Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159: 61-106
    57 M.J.Costello, A.G.Fane, P.A.Hogan, R.W.Schofield. The effect of shell side Hydrodynamics on the performance of axial flow hollow fiber modules. J of Membrane Sci, 1993, 80: 1-11
    58张卫东,李云峰,戴猷元.中空纤维膜萃取器的子通道模型[J].膜科学与技术, 1996, 16(1): 56-61
    59 M.C.Yang, E.L.Cussler. Artificial gills. J of Membrane Sci,1989, 42: 273-284
    60李娜,贾原媛,苏学素.膜接触器—原理、应用及发展前景[M].化学工业出版社, 2009: 1-2
    61黄冬兰,王金渠,贺高红.膜接触器的研究进展[J].膜科学与技术, 2005, 25(1): 63-69
    62戴猷元.中空纤维膜萃取的传质特性及其过程强化[J].膜科学与技术, 2003, 23(4): 129-133
    63张卫东.中空纤维膜萃取过程的研究博士论文.清华大学, 1996
    64 L. Sciubba, D. Di Gioia, F. Fava. Membrane-based solvent extraction of vanillin in hollow fiber contactors. Desalination, 2009, 241: 357-364
    65 Z. Lazarov, B. Sysk and K. Schugerl. Application of large-scale hollow membrane contacors for simultaneous extractive removal and stripping of penicillin G. J.Membrane Sci, 2002, 202: 151-164
    66 Inmaculada Ortiz, Eugenio Bringas. Selective Separation of Zinc and Iron from Spent Pickling Solutions by Membrane-Based Solvent Extraction: Process Viability. Separation Science and Technology, 2005, 39(10): 2441-2455.
    67左凤英,徐右一.聚丙烯中空纤维膜萃取水溶液中铜离子的研究[J].膜科学与技术, 2006, 25(1): 50-55
    68张凤君等.二(2、4、4-三甲基戊基)膦酸在中空纤维膜组件中萃取镱、铒及传质研究[J].应用化学, 1999, 16(2): 84
    69王岩,王玉军,骆广生.中空纤维膜萃取铬离子的研究[J].化学工程, 2002, 30(5): 62-65
    70 W. Cichy, J.Szymanowsky. Recovery of phenol from aqueous streams in hollow fiber modules. Environ. Sci. Technol, 2002, 36: 2088-2093.
    71 M.T.A. Reis, O.M.F. de Freitas, M.R.C. Ismael, J.M.R. Carvalho. Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. J. Membr. Sci, 2007, 305: 313-324.
    72 Cichy. W, Schlosser S. and Szymanowski. Recovery of phenol with Cyanex?923 in membrane extraction-stipping systems. Solvent Extraction and Ion Exchange, 2001, 19: 905-923
    73 P.B.Kosaraju, K.K.Sirkar. Novel solvent- resistant hydrophilic hollow fiber membranes for efficient membrane solvent back extraction. Joumal of Membrane Seienee, 2007, 288(l): 51-60
    74 S.Boequet, F.G.Viladomat, C.M.Nova. Membrane-based solvent extraction ofaroma compounds: Choice of confgurations of hollow fiber modules based on experiments and simulation. Journal of Membrane Seienee, 2006, 281(l): 358-368
    75 R. Klassen, P.H.M. Ferom and A.E. Jansen. Membrane contactors in industrial applications. Chem. Eng. Res. And Des, 2005, 83(A3): 234-246
    76 S.F. Shen, K.H. Smith, S. Cook. Phenol recovery with tributyl phosphate in a hollow fiber membrane contactor: Experimental and model analysis. Separation and Purification Technology, 2009, 69: 48-56
    77 Correia, Paulo M. M. and de Carvalho, Jorge R. Salt Effects on the Recovery of Phenol by Liquid-Liquid Extraction with Cyanex 923. Separation Science and Technology, 2005, 40: 3365-3380
    78环国兰,张宇峰.杜启云.膜污染分析及防治[J].水处理技术, 2003, 29(1): 1-4
    79王萍,朱宛华.膜污染及清洗[J].合肥工业大小学报(自然科学版), 2001, 24(2): 230-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700