酮康唑/乳酸—羟基乙酸共聚物缓释材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳酸-羟基乙酸共聚物(PLGA)是已被美国FDA批准的可用于人体的生物可降解材料,在体内的最终降解产物是水和二氧化碳,无毒且具有极佳的生物相容性,可以制成微球、纤维、支架等各种形状的产品,被广泛应用于医用工程材料、制药和现代化工业领域。酮康唑(KCZ)是目前临床应用较为广泛的咪唑类抗真菌药物,可用于治疗皮肤科、妇产科、眼科、耳科等多种疾病,但是长期应用会产生恶心、呕吐、瘙痒、腹痛及嗜睡等副作用,甚至造成肝脏损坏,这在一定程度上限制了它的应用。
     以降低药物副作用为切入点研究生物材料缓释技术,本文将酮康唑负载于PLGA可降解载体上,采用两种不同的方法制备了毫米和微米级的载药微球,用静电纺丝法制成了载药超细纤维膜。讨论了制备工艺中的影响因素,用光学显微镜、扫描电镜、X射线衍射仪、红外光谱仪、高效液相色谱仪等仪器对微球和纤维进行分析表征,建立了体内外酮康唑含量的测定方法,测定了微球及纤维的体外释放度,并以小鼠为动物模型研究了KCZ/PLGA微球的体内药物释放规律。主要研究内容和结果如下:
     1. KCZ/PLGA缓释微球中酮康唑含量测定方法的建立。通过方法学考察,建立了用高效液相色谱仪(HPLC)测定酮康唑缓释微球的载药量和包封率的方法,选择pH=4.5和pH=7.4磷酸盐缓冲溶液为释放介质,建立了动态膜透析法测定酮康唑缓释微球体外释放度的方法。结果表明,HPLC法分离效率高、速度快,流动相可选择范围宽、灵敏度高,适用于酮康唑缓释微球中酮康唑含量的测定,为缓释微球配方筛选、工艺优化和性质表征奠定了基础。
     2.用微流控装置制备了粒径均一的KCZ/PLGA缓释微球,对微球进行了表征和体外释放度的测定。结果表明,微球的形貌受分散相及流动相溶液浓度、载药量、微球粒径的影响;微球的粒径受分散相及流动相溶液的流速影响大,受载药量的影响小。通过用红外光谱(FT-IR)、热重分析(TGA)和X射线衍射分析(XRD)等方法对微球进行分析测试,证明PLGA与酮康唑之间没有发生化学反应,只是产生预期的物理性包埋,载药微球在120℃以下具有良好的热稳定性,酮康唑的存在使载药微球中PLGA的热分解温度变低了,PLGA与酮康唑分子间的相互作用降低了载药微球中酮康唑的结晶度。载药微球的体外释药结果表明相同粒径的微球随载药量的增大,药物的释放量也增大;相同载药量的微球随粒径的增大,药物的释放量减小。
     3.利用乳化溶剂挥发法(O/W),选择不同的乳化搅拌速度,制备出相应粒径的KCZ/PLGA缓释微球,研究了缓释微球的粒径和包封率及其影响因素,考察了微球粒径、PLGA的性质、释放液pH值等对微球药物体外释放的影响。结果表明,采用乳化溶剂挥发法制备KCZ/PLGA缓释微球,制备工艺简便易行,包封率和载药量较高。微球粒径越小、PLGA分子量越低、GA含量越高、释放液pH值越小酮康唑的释放速度越快。微球前期释放较快,后期稳定,药物缓慢释放时间可达3周以上。
     4.利用静电纺丝的方法制备KCZ/PLGA超细纤维,对纤维进行了表征和体外释放度的测定。用扫描电镜(SEM)观察纤维的形貌,确定了静电纺PLGA超细纤维的最佳工艺参数:PLGA纺丝液浓度为15wt%,纺丝电压为16kV,极距为15cm。对纤维进行SEM、FT-IR、TGA和XRD分析测试,结果表明制备的KCZ/PLGA复合纤维表面光滑,酮康唑能够均匀地分散在PLGA纺丝液中而不发生凝聚。酮康唑是以分子状态分散在PLGA纤维中的,其分散过程是物理过程,并没有与PLGA纺丝液发生化学反应,因此在KCZ/PLGA复合纤维膜中酮康唑的性能不会发生改变。酮康唑的加入改变了PLGA纤维的热性能,在温度300℃以下加快了PLGA纤维的热降解速度,在300~400℃之间却使PLGA热降解速度减慢。对纤维的体外释药研究表明,载药量越大、PLGA中GA含量越高、释放液pH值越小酮康唑的释放速度越快。纤维前期释放较快,后期稳定,药物缓慢释放时间可达3周以上。
     5.建立了检测血浆中酮康唑浓度的HPLC法,以小鼠为模型,研究了KCZ/PLGA缓释微球在动物体内的降解及药物释放情况。结果显示酮康唑的绝对回收率大于87.21%,日内、日间精密度均小于3.09%,室温放置、反复冻融稳定性试验结果表明酮康唑血浆样品的稳定性良好,药物浓度的RSD均小于4.43%,符合关于生物样品分析方法的基本要求,可用于酮康唑小鼠体内药动学和生物等效性的血药浓度检测。体内降解试验说明PLGA微球有很好的缓释作用且在体内环境中可以降解完全。对比研究结果表明,微球粒径、载体分子量和载体组成对微球的降解有明显影响,其中载体组成影响最大。
Poly(lactic-co-glycolic acid)(PLGA) is a biodegradable polymeric material, which has been approved by the FDA of U.S. to be used in the human body, and it can be decomposed into water and carbon dioxide. PLGA is non-toxic and has excellent biocompatibility. Microspheres and fiber scaffolds made of PLGA are extensively used in medical engineering materials, pharmaceuticals and modern industrial fields. Ketoconazole (KCZ) has widely been used as imidazole antifungal agents such as treating many diseases of dermatology, obstetrics/gynecology, ophthalmology and otology, however, some drawbacks of using it for long term are nausea, vomiting, itching, abdominal pain and drowsiness, and in extreme cases may cause liver damage. These drawbacks limit its application.
     The main goal of this research work is exploring the biological materials mitigation technology to reduce the side effects of drugs. Ketoconazole microspheres with different particle size were prepared by two different methods with PLGA as carrier material.
     The composite fiber membrane was prepared by electrostatic spinning. We have discussed the influencing factors in the preparation process. The microspheres and fibers membrane were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and high performance liquid chromatography (HPLC). The determination method of the in vitro release content of KCZ in KCZ/PLGA microspheres was established, mice was chosen as the animal model and in vivo drug delivery of KCZ/PLGA microspheres was studied.
     The main research contents and results are summarized as follows:
     1. Establishment of determining method of the content of the KCZ in KCZ/PLGA sustained-release microspheres. The loading amount of KCZ in the sustained release microsphere and encapsulation efficiency were measured by HPLC at pH4.5and7.4using phosphate buffer solution as a release medium. Dynamic membrane dialysis method was established to determine the amount of KCZ in microspheres in vitro release. The results showed that the HPLC method has high separation efficiency, high speed, and wide range selectable mobile phase and high sensitivity. The HPLC is applicable for determining of the content of ketoconazole, which is beneficial for screening suitable sustained release microspheres formula, for optimizing preparation and characterization condition of KCZ/PLGA sustained release microspheres.
     2. Uniform particle size KCZ/PLGA sustained release microspheres were prepared by using microfluidic devices, the composition of KCZ/PLGA microspheres was characterized and in vitro release of the microspheres was determined. The results showed that the morphology of the microspheres is influenced by concentration of the dispersed phase and the mobile phase solution, drug loading and the size of microspheres. The diameter of microspheres is greatly affected by the flow rate of the dispersed phase and mobile phase, while the drug loading contributes minimal effect. Microspheres are analyzed and tested by FT-IR, thermal gravimetric analysis (TGA), and X-ray diffraction (XRD). Physical packing occurred while no chemical reactions were found between PLGA and ketoconazole in the microspheres. The thermal decomposition temperature of PLGA became lower due to the exit of KCZ; meanwhile, the degree of crystallinity of microspheres became lower due to the intermolecular interactions between KCZ and PLGA. Two important results of the in vitro release of the drug-loaded microspheres were obtained. First, in the same particle size of the microspheres, increasing the drug-loading amount increased the drug release; second, in the microspheres containing same amount of KCZ, increasing the particle size, decreased the drug release.
     3. Various particles size of KCZ/PLGA sustained release microspheres were prepared by emulsion solvent evaporation method (W/O) at different emulsification stirring speed. The drug release in vitro of the microspheres has been examined by different effects, such as the particle size of the microspheres, properties of PLGA and pH value of released solution. The results indicated that emulsion solvent evaporation method is a simple way to provide high encapsulation and high drug loading. The release rate of ketoconazole depends on the smaller size of microspheres, lower molecular weight of PLGA, higher amount of GA and low pH value of released solution. The drug can slowly be released up to three weeks or more.
     4. KCZ/PLGA microfiber fibers were prepared by electro-spinning, the composition was characterized and in vitro release was tested. The morphology of the fibers was observed by scanning electron microscopy (SEM), the optimum parameters of electrostatic spinning PLGA microfiber were established:the concentration of PLGA spinning solution was15wt%, the spinning voltage was16kV, electrode distance was approximately15cm. The SEM, FT-IR, TGA and XRD test results show that the prepared KCZ/PLGA composite fiber are smooth, ketoconazole can be uniformly dispersed in the PLGA spinning solution without aggregation on the fiber. Ketoconazole is molecular state dispersed in the PLGA fibers, the dispersion process is a physical process, and no chemical reaction occurs between KCZ and the spinning solution of PLGA. The property of ketoconazole in KCZ/PLGA composite fiber membrane is not changed. Adding KCZ changed the thermal property of the PLGA fibers, and the speed of the thermal degradation of the PLGA fibers was accelerated below3000C and plateaued from300to4000C. The studies of fiber in vitro release indicated that the greater amount of drug loading and the higher content of GA in PLGA and the lower of pH of the release liquid results in faster release of the ketoconazole. The KCZ was released faster in the early stage, and then became stable and sustained release of the drug lasted up to three weeks or more.
     5. HPLC method was established to detect the concentration of ketoconazole in plasma. Mice were used as a model to study the KCZ/PLGA sustained release microspheres degradation and drug release in vivo. The results showed that the absolute recovery of ketoconazole were greater than87.21%, intra-day precision were less than3.09%, the stability of ketoconazole plasma samples was high under the room temperature and repeated freeze-thaw test, the RSD of the concentration of the drug were less than4.43%, which is consistent with the basic requirements of the analysis of biological sample. This can be used for studying pharmacokinetic of ketoconazole in the mice and detecting the blood drug concentration of bioequivalence. The degradation test in vivo indicated that PLGA microspheres have a good sustained release effect and can be degraded completely in vivo. Comparative tests found that microsphere size, carrier molecular weight and the composition of the KCZ/PLGA microspheres have significant effects on the degradation of the microspheres, and among them, the carrier composition plays the most important role.
引文
[1]M.E.Mouelhi, D.J.Worley, B.Kuzmak, et al. Influence of ketoconazole on azimilide pharmacokinetics in healthy subjects[J]. British Journal of Clinical Pharmacology. 2004,58(6):641-647
    [2]李端枝,郑吴.酮康唑的临床应用[J].安庆医学.1997,18(2):45
    [3]K. Lin, C. Huang, J. Cheng. Ketoconazole-induced JNK phosphorylation and subsequent cell death via apoptosis in human osteosarcoma cells[J]. Toxicology Vitro.2009, 23(7):1268-1276
    [4]M.Nakabayashi,W.L.Xie, M.M.Regan, et al. Response to Low-Dose Ketoconazole and Subsequent Dose Escalation to High-Dose Ketoconazole in Patients With Androgen-Independent Prostate Cancer[J]. Cancer.2006,107(5):975-981
    [5]庞春红.抗真菌药物研究进展[J].现代实用医学.2011,23(12):1419-1412
    [6]陈露华,钟月葵.酮康唑的药理学研究进展[J].基层医学论坛.2011,15(34):1166-1167
    [7]姜晓宏.超声波加复方酮康唑霜导入治疗痤疮64例[J].中国中医药现代远程教育.2010,8(4):140
    [8]K.L. Lin, C.C. Huang, J.S. Cheng, et al. Ketoconazole-induced JNK phosphorylation and subsequent cell death via apoptosis in human osteosarcoma cells[J]. Toxicology in Vitro.2009,23(7):1268-1276
    [9]杨桂芳.保妇康栓联合酮康唑治疗阴道念珠菌性阴道炎47例[J].中国药业.2011,20(18):63
    [10]袁艳.复方酮康哗软膏治疗真菌性外耳道炎疗效观察[J].药物临床.2012,33(3):39-42
    [11]杜伟奇,施秀芳.复方酮康唑霜的制备与临床应用[J].中国实用医药.2010,5:171-172
    [12]胡俊英,杨锁印.酮康唑临床应用近况[J].河北中西医结合杂志.1998,7(9):1342-1343
    [13]邓家强,刘敏,刘俊.66例酮康唑所致不良反应分析[J].中国药物滥用防治杂志.2008,14(2):126
    [14]蔡大伟,韵磊.酮康唑制剂的临床应用及不良反应[J].抗感染药学.2006,3(12):183-185
    [15]庞捷.酮康唑外用剂型在临床中的应用[J].海峡药学.2009,21(2):114-115
    [16]H.F. Sun, X.G. Wang, X.L. Hu, et al. Promotion of angiogenesis by sustained release of rhGM-CSF from heparinized collagen/chitosan scaffolds[J]. Applied Biomaterials,2012, 100B:788-798
    [17]C.R. Ding, S.M. Xu, J.D. Wang, et al. Controlled loading and release of methylene blue from LbL polyurethane/poly(acrylic acid) film[J]. Polym. Adv. Technol,2012,23:1283-1286
    [18]Y.Q. Liang, L. Xiao, Y.L Zhai, et al. Preparation and Characterization of Biodegradable Poly(sebacic anhydride) Chain Extended by Glycol as Drug Carrier[J]. J. Appl. Polym. SCI.,2013,127:3948-3953
    [19]Y.P. Hou, J,L. Hu, H. Park, et al. Chitosan-based nanoparticles as a sustained protein release carrier for tissue engineering applications[J]. J Biomed Mater Res Part A.2012,100A:939-947
    [20]C.W.M. Yuena, J. Yipa, L. Liua, et al. Chitosan microcapsules loaded with either miconazole nitrate or clotrimazole,prepared via emulsion technique[J]. Carbohydrate Polymers.2012,89:795-801
    [21]N.F.S.de Melo, D.R.de Araujo, R. Grillo, et al. Benzocaine-Loaded Polymeric Nanocapsules:Study of the Anesthetic Activities[J]. J Pharm Sci.2012,101:1157-1165
    [22]R. Ferrari, Y.C. Yu, M. Lattuada, et al. Controlled PEGylation of PLA-Based Nanoparticles[J]. Macromol. Chem. Phys.2012,213:2012-2018
    [23]Y.C. Yu, R. Ferrari, M. Lattuada, et al. PLA-Based Nanoparticles with Tunable Hydrophobicity and Degradation Kinetics[J]. Polym Chem.2012,50:5191-5200
    [24]Z.Q. Hou, C.X, Zhou, Y Luo, et al. PLA Nanoparticles Loaded With an Active Lactone Form of Hydroxycamptothecin:Development,Optimization, and In Vitro-In Vivo Evaluation in Mice Bearing H22 Solid Tumor[J]. Drug Dev Res.2011,72:337-345
    [25]H. Hamishehkar, J. Emami, A. R. Najafabadi, et al. Pharmacokinetics and Pharmacodynamics of Controlled Release Insulin Loaded PLGA Microcapsules using Dry Powder Inhaler in Diabetic Rats[J]. Biopharm. Drug Dispos.2010,31:189-201
    [26]H. Yang, P. Tyagi, R. S. Kadam, et al. Hybrid Dendrimer Hydrogel/PLGA Nanoparticle Platform Sustains Drug Delivery for One Week and Antiglaucoma Effects for Four Days Following One-Time Topical Administration[J]. Amerian Chemical Society.2012,6:7595-7606
    [27]L.Y. Geng, X. Kou, J.D. Lei, et al. Preparation, characterization and adsorption performance ofmolecularly imprinted microspheres for erythromycin using suspension polymerization[J]. J ChemTechnol Biotechnol.2012,87:635-642
    [28]A. Abouzarzadeha, M. Forouzani, M. Jahanshahi, et al. Synthesis and evaluation of uniformly sized nalidixic acid-imprinted nanospheres based on precipitation polymerization method for analytical and biomedical applications[J]. J. Mol. Recognit. 2012,25:404-413
    [29]Y.Y Qu, J.X. Liu, K.G. Yang, et al. Boronic Acid Functionalized Core-Shell Polymer Nanoparticles Prepared by Distillation Precipitation Polymerization for Glycopeptide Enrichment[J]. Chem. Eur. J.2012,18:9056-9062
    [30]D.Z. Xu, M.Z. Wang, X.W. Ge, et al. Synthesis and Characterization of β-CD-Coated Polystyrene Microspheres by γ-Ray Radiation Emulsion Polymerization[J]. Macromol. Rapid Commun.2012,33:1945-1951
    [31]J. Liu, C.X. Wang, Y.M. Wu. Dispersion Polymerization of Acrylamide with Water-Soluble Chitosan as the Stabilizer[J]. Journal of Applied Polymer Science.2012,125: E518-E525
    [32]Z.P Song, E.S. Daniels, E.D. Sudol, et al. Mechanism of Seeded Dispersion Polymerization of Methyl Methacrylate Using Submicron Polystyrene Seed Particles[J]. J Appl Polym Sci,2011,122:203-209
    [33]L.M. Zang, J.S. Guo, J.H. Luo, et al. Synthesis and characterization of fluorine-containing polyacrylate latex with core-shell structure by UV-initiated seeded emulsion polymerization[J]. Polym. Adv. Technol.2012,23:15-20
    [34]J. Liu, D. Meisner, E. Kwong, et al. A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres[J]. Biomaterials.2007,28:3236-3244
    [35]M. Mueller, E. Schlosser, B. Gander, et al. Tumor eradication by immunotherapy with biodegradablePLGA microspheres—an alternative to incomplete Freund's adjuvant[J]. Int. J. Cancer.2011,129:407-416
    [36]M. Miiller, J. Voros, G. Csucs, et al. Surface modification of PLGA microspheres[J]. Inc. J Biomed Mater Res.2003,66A:55-61
    [37]K. Hirota, T. Hasegawa, T. Nakajima, et al. Delivery of rifampicin-PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis[J]. Journal of Controlled Release.2010,142:339-346
    [38]K. Hirota, T. Hasegawa, T. Nakajima, et al. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages[J]. Colloids and Surfaces B: Biointerfaces.2011,87:293-298
    [39]N. Brandhonneur, F. Chevanne, V. Vie, et al. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages[J]. European Journal of Pharmaceutical Sciences.2009,36:474-485
    [40]M. R. Enselme, J.P. Estebe, G. Dollo, et al. Epidural, intrathecal and plasma pharmacokinetic study of epidural ropivacaine in PLGA-microspheres in sheep model[J]. European Journal of Pharmaceutics and Biopharmaceutics.2009,72:54-61
    [41]K. Tomoda, S. Kojima, M. Kajimoto, et al. Effects of pulmonary surfactant system on rifampicin release from rifampicin-loaded PLGA microspheres[J]. Colloids and Surfaces B: Biointerfaces.2005,45:1-6
    [42]T. Onoshita, Y. Shimizu, N. Yamaya, et al. The behavior of PLGA microspheres containing rifampicin in alveolar macrophages[J]. Colloids and Surfaces B:Biointerfaces. 2010,76:151-157
    [43]G de Rosa, D. Larobina, M.I.L. Rotonda, et al. How cyclodextrin incorporation affects the properties of protein-loaded PLGA-based microspheres:the case of insulin/hydroxypropyl-h-cyclodextrin system[J]. Journal of Controlled Release.2005,102:71-83
    [44]C. thomasin, H.P. M. erkle, B. Gander. Drug Microencapsulation by PLA/PLGA Coacervation in the Light of Thermodynamics.2. Parameters Determining Microsphere Formation[J]. Journal of Pharmaceutical Sciences.1998,87:269-275
    [45]F. Itoa, H. Honnami, H. Kawakami, et al. Preparation and properties of PLGA microspheres containing hydrophilic drugs by the SPG (shirasu porous glass) membrane emulsification technique[J]. Colloids and Surfaces B:Biointerfaces.2008,67:20-25
    [46]F. Itoa, H. Fujimori, H. Honnami, et al. Effect of polyethylene glycol on preparation of rifampicin-loaded PLGA microspheres with membrane emulsification technique[J]. Colloids and Surfaces B:Biointerfaces.2008,66:65-70
    [47]J. Kim, D. Hong, Y. Chung, et al. Ammonolysis-Induced Solvent Removal:A Facile Approach for Solidifying Emulsion Droplets into PLGA Microspheres[J]. Biomacromolecules.2007,8:3900-3907
    [48]Y. Li, K.J. Zhu, J.X. Zhang, et al. In vitro and in vivo studies of cyclosporin A-loaded microspheres based on copolymers of lactide and-caprolactone:Comparison with conventional PLGA microspheres[J]. International Journal of Pharmaceutics.2005,295: 67-76
    [49]R. D. Souza, U.V. Singh, R. Kamath, et al. Curcumin-loaded PLGA Microspheres with Enhanced Radioprotection in Mice[J]. Pharmaceutical Sciences.1997,3:349-441
    [50]D.P. Go, J.A. Palmer, S.L. Gras, et al. Coating and release of an anti-inflammatory hormone from PLGA microspheres for tissue engineering[J]. J Biomed Mater Res Part A. 2012,100A:507-517
    [51]Y.M. Ju, B.Z. Yu, L. West, er al. A dexamethasone-loaded PLGA microspheres/collagen scaffold composite for implantable glucose sensors[J]. Inc. J Biomed Mater Res.2010,93A: 200-210
    [52]J.S. Park, K. Park, D.G. Woo, et al. PLGA Microsphere Construct Coated with TGF-3 Loaded Nanoparticles for Neocartilage Formation[J]. Biomacromolecules.2008,9:2162-2169
    [53]S.E. Gilchrist, D.L. Rickard, K. Letchford, et al. Phase Separation Behavior of Fusidic Acid and Rifampicin in PLGA Microspheres[J]. Mol. Pharmaceutics.2012,9:1489-1501
    [54]A. Rawatl, D.J. Burgess. Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics[J]. International Journal of Pharmaceutics.2010,394:99-105
    [55]B.S. Zolnik, D.J. Burgess. Effect of acidic pH on PLGA microsphere degradation and release[J]. Journal of Controlled Release.2007,122:338-344
    [56]Z.H. Hu, YJ. Liu, W.E. Yuan, et al. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres[J]. Colloids and Surfaces B: Biointerfaces.2011,86:206-211
    [57]B.S. Zolnik, D.J. Burgess. Evaluation of in vivo—in vitro release of dexamethasone from PLGA microspheres. Journal of Controlled Release.2008,127:137-145
    [58]E. Barcia, R. Herrero-Vanrell, A. Diez, et al. Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone[J]. Experimental Eye Research.2009,89:238-245
    [59]A.F. Carballido, P. Puebla, R.H. Vanrell, et al. Radiosterilisation of indomethacin PLGA/PEG-derivative microspheres:Protective effects of low temperature during gamma-irradiation[J]. International Journal of Pharmaceutics.2006,313:129-135
    [60]F.Y Sun, C. Sui, L.S. Teng, et al. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres[J]. International Journal of Pharmaceutics.2010,397:44-49
    [61]T. Hickey, D. Kreutzer, D. J. Burgess, et al. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices[J]. Inc. J Biomed Mater Res.2002,61:180-187
    [62]K.G. Janoria, A.K. Mitra. Effect of lactide/glycolide ratio on the in vitro release of ganciclovir and its lipophilic prodrug (GCV-monobutyrate) from PLGA microspheres[J]. International Journal of Pharmaceutics.2007,338:133-141
    [63]T.V.P. Doan, J.C. Olivier. Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization[J]. International Journal of Pharmaceutics.2009,382:61-66
    [64]J. Yang, J. Cleland. Factors Affecting the in Vitro Release of Recombinant Human Interferon-y(rhIFN-γ) from PLGA Microspheres[J]. Journal of Pharmaceutical Sciences. 1997,86:908-914
    [65]C. Manoharan, J. Singh. Insulin Loaded PLGA Microspheres:Effect of Zinc Salts on Encapsulation, Release, and Stability[J]. J Pharm Sci.2009,98:529-542
    [66]H.P. Tan, D.J. Huang, L.L. Lao, et al. J Biomed Mater Res Part B:Appl Biomater. 2009,91 B:228-238
    [67]S. Ando, D. Putnam, D.W. Pack. PLGA Microspheres Containing Plasmid DNA: Preservation of Supercoiled DNA via Cryopreparation and Carbohydrate Stabilization[J]. Journal of Pharmaceutical Sciences.1999,88:126-130
    [68]Y.S. Nam, S.H. Song, J.Y. Choi, et al. Lysozyme Microencapsualtion Within Biodegradable PLGA Microspheres:Urea Effect on Protein Release and Stability[J]. Biotechnol Bioeng.2000,70:270-277
    [69]YJ. Liu, S.P. Schwendeman. Mapping Microclimate pH Distribution inside Protein-Encapsulated PLGA Microspheres Using Confocal Laser Scanning Microscopy[J]. Mol. Pharmaceutics.2012,9:1342-1350
    [70]B. Meng, L. Li, S. Hua, et al. Effect of medium-chain triglycerides on the release behavior of Endostar encapsulated PLGA microspheres[J]. International Journal of Pharmaceutics, 2010,397:136-143
    [71]T. Ozeki, D. Kanekob, K. Hashizawa, et al. Improvement of survival in C6 rat glioma model by a sustained drug release fromlocalized PLGA microspheres in a thermoreversible hydrogel[J]. International Journal of Pharmaceutics.2012,427:299-304
    [72]R.A. Trindade, P.K. Kiyohara, P.S. de Araujo, et al. PLGA microspheres containing bee venom proteins for preventiveimmunotherapy[J]. International Journal of Pharmaceutics. 2012,423:124-133
    [73]H. Nojehdehian, F. Moztarzadeh, H. Baharvand, et al. Preparation and surface characterization of poly-1-lysine-coated PLGA microsphere scaffolds containing retinoic acid for nerve tissue engineering:In vitro study[J]. Colloids and Surfaces B:Biointerfaces. 2009,73:23-29
    [74]W. Chaisri, A.H. Ghassemi, W.E. Hennink, et al. Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters[J]. Colloids and Surfaces B:Biointerfaces.2011,84:508-514
    [75]S.E. Bae, J.S. Son, K. Park, et al. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine [J]. Journal of Controlled Release.2009,133:37-43
    [76]R. Eswaramoorthy, C.C. Chang, S.C. Wu, et al. Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthritis progression in rats[J]. Acta Biomaterialia. 2012,8:2254-2262
    [77]X.F. Zhou, B. Liu, X.F. Yu, et al. Controlled release of PEI/DNA complexes from PLGA microspheres as a potent delivery system to enhance immune response to HIV vaccine DNA prime/MVA boost regime[J]. European Journal of Pharmaceutics and Biopharmaceutics.2008,68:589-595
    [78]Z.J. Wei, C.Y. Wang, H. Liu, et al. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions [J]. Colloids and Surfaces B: Biointerfaces.2012,91:97-105
    [79]X.H. Zhu, C.H. Wang, Y.W. Tong, et al. In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold[J]. J Biomed Mater Res.2009,89A: 411-423
    [80]S.R.Mao, J. Xu, C.F. Cai, et al. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres[J]. International Journal of Pharmaceutics,2007,334:137-148
    [81]G.K. Zou, Y.L. Song, W. Zhou, et al. Effects of local delivery of bFGF from PLGA microspheres on osseointegration around implants in diabetic rats[J]. Oral Surg Oral Med Oral Pathol Oral Radiol,2012, xx:xxx
    [82]R. Dorati, I. Genta, L. Montanari, et al. The effect of g-irradiation on PLGA/PEG microspheres containing ovalbumin[J]. Journal of Controlled Release.2005,107:78-90
    [83]曾晗冰,李万里,徐华梓等.BSA—PLGA缓释微球制备工艺的优化[J].实用医学杂志,2009,25:2935-2938
    [84]I.J. Castellanos, G. Flores, K. Griebenow. Effect of the molecular weight of poly(ethylene glycol) used as emulsifier on a-chymotrypsin stability upon encapsulation in PLGA microspheres[J]. Journal of Pharmacy and Pharmacology,2005,57:1261-1269
    [85]D.M. Fan, E.D. Rosa, M.B. Murphy, et al. Mesoporous Silicon-PLGA Composite Microspheres for the Double Controlled Release of Biomolecules for Orthopedic Tissue Engineering[J]. Adv. Funct. Mater.2012,22:282-293
    [86]I.J. Castellanos, G. Flores, K. Griebenow. Effect of Cyclodextrins on a-Chymotrypsin Stability and Loading in PLGA Microspheres upon S/O/W Encapsulation[J]. American Pharmacists Association J Pharm Sci,2006,95:849-858
    [87]X. Li, Xiupeng.P. Wang, L.X. Zhang, et al. MBG/PLGA Composite Microspheres with Prolonged Drug Release[J]. Appl Biomater,2009,89B:148-154
    [88]A. Panusa, F. Selmin, G. Rossoni, et al. Methylprednisolone-Loaded PLGA Microspheres: A New Formulation for Sustained Release via Intra-Articular Administration. A Comparison Study with Methylprednisolone Acetate in Rats[J]. Inc. and the American Pharmacists Association J Pharm Sci,2011,100:4580-4586
    [89]A. Paillard-Giteau, V.T. Tran, O. Thomas, et al. Effect of various additives and polymers on lysozyme release from PLGA microspheres prepared by an s/o/w emulsion technique[J]. European Journal of Pharmaceutics and Biopharmaceutics,2010,75:128-136
    [90]H.X. Tan, J.D. Ye. Surface morphology and in vitro release performance of double-walled PLLA/PLGA microspheres entrapping a highly water-soluble drug[J]. Applied Surface Science,2008,255:353-356
    [91]C.H. Hu, H.Z. Feng, C.Y. Zhu. Preparation and characterization of rifampicin-PLGA microspheres/sodiumalginate in situ gel combination delivery system[J]. Colloids and Surfaces B:Biointerfaces,2012,95:162-169
    [92]T. Hickey, D. Kreutzer, D.J. Burgess, et al. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices[J]. Inc. J Biomed Mater Res,2002,61:180-187
    [93]T. Jiang, R.R. Petersen, G Call, et al. Development of chondroitin sulfate encapsulated PLGA microsphere delivery systems with controllable multiple burst releases for treating osteoarthritis[J]. Inc. J Biomed Mater Res Part B:Appl Biomater,2011,97B:355-363
    [94]L. Feng, X.R. Qi, X.J. Zhou, et al. Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres[J]. Journal of Controlled Release, 2006,112:35-42
    [95]Y. Geng, W.E. Yuan, F. Wu, et al. Formulating erythropoietin-loaded sustained-release PLGA microspheres without protein aggregation[J]. Journal of Controlled Release,2008. 130:259-265
    [96]T. Ozeki, D. Kaneko, K. Hashizawa, et al. Improvement of survival in C6 rat glioma model by a sustained drug release fromlocalized PLGA microspheres in a thermoreversible hydrogel[J]. International Journal of Pharmaceutics,2012,427:299-304
    [97]B. Han, H.T. Wang, H.Y. Liu, et al. Preparation of pingyangmycin PLGA microspheres and related in vitro/in vivo studies[J]. International Journal of Pharmaceutics,2010, 398:130-136
    [98]J. Liu, D. Meisner, E. Kwong, et al. A novel trans-lymphatic drug delivery system: Implantable gelatin sponge impregnated with PLGA-paclitaxel microspheres[J]. Biomaterials,2007,28:3236-3244
    [99]J.K. Jackson, T. Hung, Kevin Letchford, et al. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers[J]. International Journal of Pharmaceutics,2007, 342:6-17
    [100]Y. Sun, J.C. Wang, X. Zhang, et al. Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres:In vitro and in vivo studies[J]. Journal of Controlled Release,2008,129:192-199
    [101]S. Ando, D. Putnam, D.W. Pack, et al. PLGA Microspheres Containing Plasmid DNA: Preservation of Supercoiled DNA via Cryopreparation and Carbohydrate Stabilization[J]. Journal of Pharmaceutical Sciences,1999,88:126-130
    [101]M. Ratajczak-Enselme, J.P. Estebe, G. Dollo, et al. Epidural, intrathecal and plasma pharmacokinetic study of epidural ropivacaine in PLGA-microspheres in sheep model[J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,72:54-61
    [103]J.W. Lee, K.S. Kang, S.H. Lee, et al. Bone regeneration using a microstereolithography-produced customized poly (propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres[J]. Biomaterials,2011,32:744-752
    [104]H.P Tan, J.D. Wu, L.H. Lao, et al. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering[J]. Acta Biomaterialia,2009,5:328-337
    [105]Gibson, Schreuder-Gibson, et al. Physicochemical and Engineering Aspects[J]. Colloids and surface A.2001,469:187-188
    [106]王兴雪,王海涛.静电纺丝纳米纤维的方法与应用现状[J].非织造布.2007,15:60
    [107]Y. Wang, Santiago-Aviles. Large negative magnetoresistance and two-dimensional weak localization in carbon nanofiber fabricated using electrospinning[J]. Appl. Phys. 2003,94:1721
    [108]Abidian, Kim, Martin. Conducting-Polymer Nanotubes for Controlled Drug Release[J]. Adv. Mater.2006,18:405-409
    [109]Stevens, George. Exploring and Engineering the Cell Surface Interface Science[J]. Science,2005,310:1135-1138
    [110]Schreuder-Gibson, H. Gibson, P. Use of electrospun nanofibers for aerosol filtration in textile structures[J]. Colloid Surf. A,2001,469:187-188
    [111]X.J. Xin, M. Hussain, J.J. Mao. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold Original Research Article[J]. Biomateri-als,2007,28:316-325
    [112]L. Zhao, C.G. He. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2008,87:26-34
    [113]S.J. Sequeira, D. A. Soscia. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds[J]. Biomaterials,2012,33:3175-3186
    [114]R. Vasita, G. Mani, C.M. Agrawal, et al. Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic F-108[J]. Polymer,2010,51:3706-3714
    [115]S.J. Kim, D.H. Jang, W.H. Park, et al. Fabrication and characterization of 3-dimensional PLGA nanofiber/microfiber composite scaffolds Original Research Article[J]. Polymer, 2010,51:1320-1327
    [116]J.B. Choi, S.Y. Jo. Characterization and structure analysis of PLGA/collagen nanofibrous membranes by clectrospinning[J]. Applied Polymer Science,2012,125: E595-E603
    [117]X.W. Lei, H. Yang. Emulsion Electrospinning of a Collagen-Like Protein/PLGA Fibrous Scaffold:Empirical Modeling and Preliminary Release Assessment of Encapsulated Protein[J]. Macromolecular Bioscience,2011,11:1526-1536
    [118]N. Hild, O.D. Schneider. Two-layer membranes of calcium phosphate/ collagen/PLGA nanofibres:in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale,2011,3:401-409
    [119]B. Duan, L.L. Wu. Hybrid nanofibrous membranes of PLGA/chitosan fabricated via an electrospinning array[J]. Journal of Biomedical Materials Research Part A,2007,83:868-878
    [120]X.R. Li, X.Y. Yuan, X.L. Li, et al. Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning[J]. Journal of Biomedical Materials Research Part A,2010,92:563-574
    [121]Z.X. Meng, W. Zheng, L. Li, et al. Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold[J]. Materials Chemistry and Physics,2011,125:606-611
    [122]肖红伟,李妮,谢军军等.多壁碳纳米管调控聚乳酸-乙醇酸共聚物超细纤维的结构与性能[J].纺织学报,2011,8:7-11
    [123]R. Qi, M.W. Shen, X.Y. Cao, et al. Exploring the dark side of MTT viability assay of cells cultured onto electrospun PLGA-based composite nanofibrous scaffolding materials[J]. Analyst,2011,136:2897-2903
    [124]M.V. Jose, V. Thomas, K.T. Johnson, et al. Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering[J]. Acta Biomaterial-ia,2009,5: 305-315
    [125]袁安亮.载pBMP-2/PEI的PLGA/HA纳米纤维支架促进骨再生的研究[D].吉林大学,2012
    [126]S. Sahoo, S.L. Toh, J.C.H. Goh. A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells[J]. Biomaterials,2010,31:2990-2998
    [127]王兢.PLGA载药纤维的制备及释药行为的研究[D].北京化工大学,2011
    [128]S.S. Said, A.K. Aloufy. Antimicrobial PLGA ultrafine fibers:Interaction with wound bacteria[J]. European Journal of Pharmaceutics and Biopharmac-eutics,2011,79:108-118
    [129]何明宇.肝素化PLGA超细纤维膜及电纺血管组织工程支架研究[D].天津大学,2007
    [130]龙新云,蔡晴,杨小平等.乳酸-乙醇酸共聚物载药复合纤维制备及其释药行为研究[J].中国生物医学工程学报,2009,6:904-909
    [131]徐兰琴,黄雁.高效液相色谱法直接测定酮康唑含量[J].广州医学院学报,1997,25(4):84-86
    [132]杜继,红王,娅芳等.高效液相色谱法测定复方酮康唑溶液中酮康唑的含量[J].中国动物保健,2009:103-104
    [133]J.K. Li, N. Wang, X.S. Wu. A novel biodegradable system based on gelatin nanoparticles and poly (lactic-co-glycolic-acid)-microspheres for protein and peptide drug delivery[J]. J Pharm Sci.1997,86(8):891-895
    [134]国家药典委员会.中华人民共和国药典(二部)[M].北京:化学工业出版社,2010,1066
    [135]叶杰胜,孙莉.HPLC法测定复方酮康唑软膏中酮康唑含量的不确定度评定[J].安徽医药.2011,15(10):1216-1218
    [136]田随安,张向兵,李永利.消毒洗剂中酮康唑的高效液相色谱测定法[J].环境与健康杂志.2007,24(10):809-810
    [137]倪华,范义凤.高效液相色谱法测定复方酮康唑凝胶中酮康唑的含量[J].交通医学.2008,22(3):317-318
    [138]C. LI, H.N. Xu, X.L. Li. In vitro permeation of tetramethylpyrazine across porcine buccal mucosa [J].Acta Phamacologica Sinica.2002,23(9):792-796
    [139]L. Goh, K.J. Chen, V. Bhamidi, et al. A Stochastic Modle for Nucleation Kinetics Determination in Droplet-Based Microfluidic Systems[J]. Crystal Growth & Design. 2010,10(6):2515-2521
    [140]骆广生,兰文杰,李少伟等.微流控技术制备功能材料的研究进展[J].石油化工.2010,39(1):1-6
    [141]W. J. Jeong, J. Y. Kim, J. Choo, et al. Continuous Fabrication of Biocatalyst Immobilized Microparticles Using Photopolymerization and Immiscible Liquids in Microfluidic Systems[J]. Langmuir.2005,21(9):3738-3741
    [142]J.L. Cleland, A.J.S.Jones. Stable formulations of recombinant human growth hormone and interferon-y for microencapsulation in biodegradable microspheres[J].Pharm Res.1996,13(10):1464
    [143]J.L. Cleland. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines[J]. Biotechnol Prog.1998,14:102
    [144]K.J. Zhu, H.L. Jiang, X.Y. Du. Preparation and characterization of hcG-loaded polylactide or poly(lactide-co-glycolide)microspheres using a modified W/O/W emulsion solvent evaporation technique.J Microencap.2001,18(2):247-260
    [145]于芝颖,张海英,张华等.重组人生长激素聚乙交酯-丙交酯微球体外释放度研究[J].中国药学杂志.2004,39(8):608-611
    [146]R. Jeyanthi, B.C. Thanoo, R.C. Metha, et al. Effect of solvent removal technique onthe matrix characteristics of polylactide/glycolide microspheres for peptide delivery[J]. J Control Release.1996,38(2):235-244
    [147]J.W. McGinity, P.B. O'Donnell. Preparation of microspheres by the solvent technique [J].Adv Drug Deliv Rev.1997,28(1):25-42
    [148]D.T. O'Hagan, H. EFFERY, S.S. DAVIS. The Preparation and characterization of poly(lactide-co-glycolide) microparticles. Ⅲ:Microparticle/polymer degradation rates and the in vitro release of a model protein[J].Int J Pharm.1994,103:37-45
    [149]H. Yoshimoto, Y. M. Shin, H. Terai. A biodegradable nanofiber scaffold by electrospinn-ing and its potential for tissue engineering[J]. Biomaterials.2003,24(12):2077-2082
    [150]G. X. Shi, Q. Cai, C. Y. Wang. Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)[J]. Polymers for Advanced Technologies.2002,13(3):227-232
    [151]R. C. Mundargi, V. R. Babu, V. Rangaswamy. Nano/microtechnologies for delivering macromoleculr therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives [J]. J Control Release.2008,125 (3):193-209
    [152]赵冬梅.醋酸纤维素基超细复合纤维的制备与研究[D].东北林业大学博士论文.2012
    [153]吴忠杰,万涛.生物降解聚乳酸的制备方法研究进展[J].生物骨科材料与临床研究.2008,5(2):51-53
    [154]J. D. Schiffman. One-step electrospinning of crosslinked chitosan fibers[J]. Biomacromol ecules.2007,8(9):2665
    [155]Z. M. Huang, Y. Z. Zhang, M. Kotaki. A review on polymer nano-fibers electrospinning and their applications in nanocomposites[J]. Composite science and technology.2003, 63:2223-2253
    [156]J. Doshi, D. H. Reneker. Electrospinning process and applications of electrospun fibers [J]. Journal of Electrostatics.1995,35:151-160
    [157]J. T. Mccann, M. Marquez, Y. N. Xia. Highly porous fibers by electrospinning into a cryogenic liquid[J]. J Am Chem Soc.2006,128(5):1436-1437
    [158]李山山,何素文,胡祖明.静电纺丝的研究进展[J].合成纤维工业.2009,32(4):44
    [159]A. Formhals. Process and Apparatus for Preparing Artificial Threads[P]. US Patent Specification.1934,1-975-504
    [160]G Taylor. Disintegration of Water Drops in an Electric Field[J]. Proceedings of the Royal Society of London(Series A)-Mathematical and Physical Sciences.1964,280(138):383-397
    [161]H. L. Simons. Process and apparatus for producing patterned non-woven fabrics[P]. US Patent,1966,3280229
    [162]P. K. Baumgarten. Electrostatic spinning of acrylic microfibers[J]. Journal of Colloid Interface Science.1971,36(1):71
    [163]X..Fang, D. H. Reneker. DNA fibers by electrospinning[J]. Journal of Macromolecular Science and Physics.1997,B36:169-173
    [164]J. Doshi, D. H. Reneker. Electrospinning Process and Applications of Electrospun Fibers[J]. Journal of Electrostatics.1995,10(3):151-160
    [165]刘娜,杨建忠.静电纺纳米纤维的研究及应用进展[J].合成纤维工业.2006,29:46-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700