高锑铅阳极泥制备三氯化锑和锑白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对脆硫铅锑矿的处理、高锑低银铅阳极泥的传统处理工艺现状、立方晶型锑白的制备等进行了全面的综述。针对目前高锑低银铅阳极泥处理工艺存在的问题,提出采用控制电位氯化浸出—蒸发浓缩—连续蒸馏方法处理高锑低银铅阳极泥,以制备立方晶型锑白,并进行了实验研究。
     采用同时平衡原理,对三氯化锑浸出液中PbCl2、AgCl溶解度进行详细的热力学分析,从理论上论证了氯盐体系中铅锑分离和锑银分离的可行性和合理性。绘制标准状态下不同体系中E—lg[Cl]T图、氯化铅的溶度积与lg[Cl]T的关系图和不同锑浓度下氯化铅的溶解度曲线,以及氯化银的溶度积与lg[Cl]T的关系图和不同锑浓度下氯化银的溶解度曲线。结果表明:难溶盐PbCl2只在一定的氯离子浓度范围内才能稳定存在。当体系中锑的浓度不断增加,难溶盐PbCl2稳定存在的氯离子浓度范围有所增大,铅溶解度也随之降低,铅溶解度小于0.005mol/L的总氯浓度范围不断扩大,可有效实现铅锑分离。同样地,难溶盐AgCl只在一定的氯离子浓度范围内才能稳定存在。当体系中锑的浓度不断增加,难溶盐AgCl稳定存在的氯离子浓度范围有所增大,银溶解度也随之降低,银溶解度小于0.00001mol/L的总氯浓度范围不断扩大,可有效实现银锑分离。
     采用控制电位氯化浸出—浓缩—连续蒸馏方法处理高锑低银铅阳极泥,以制备立方晶型锑白,并进行了详细的实验研究。研究结果如下:
     1、浸出液采用氯化钠可以除去91%的氟硅酸根离子,采用浓缩方法在蒸发温度为120℃时可进一步除去溶液中的硅和氟。
     2、控制电位氯化浸出过程中溶液的电位高低决定浸出渣的物相,控制溶液电位在430mV以上,浸出渣中主要以PbCl2和AgCl存在,无单一贱金属的峰发现,而控制溶液电位在380mV以下,浸出渣中还存在金属锑单一物相。在控制溶液电位在450mV的条件下,阳极泥中的金属银和铅被氧化后大部分是以AgCl (S)和PbCl2(S)的形式沉淀于浸出渣中,有少部分以配合物的形态进入溶液,还有部分银以金属态存在于浸出渣中。
     3、采用铅阳极泥还原浸出液中的高价锑离子,还原过程温度为80℃,还原时间为2h,铅阳极泥中的金属可还原氯化浸出液中的五价锑离子,还原后液中五价锑的含量仅为0.60g/dm3,而阳极泥中呈氧化态的锑被氯化浸出液中的盐酸溶解浸出而进一步提高溶液中的锑含量。采用蒸发浓缩的方法可将氯化浸出液加热至120℃使其中的硅化合物基本蒸发出来,以防止其在后续连续蒸馏过程中蒸发,在冷凝过程结晶,堵塞冷凝器管道,影响蒸馏过程的进行。蒸发冷凝过程结晶物的主要成分是无定形水合二氧化硅。还原液冷却结晶产物的主要成分是氯化银和氯化铅,还原液经自然冷却降温处理,氯化银和氯化铅的溶解度大幅下降,可进一步富集铅和银,提高铅和银的直收率。
     4、浸出液的连续蒸馏过程的生产能力取决于蒸馏速度,蒸馏速度随蒸馏负压增加而逐渐增大;蒸馏速度随着蒸馏温度的升高而降低。砷蒸馏率随一次蒸馏温度升高而增加,砷的蒸出量在135-150℃温度区间内达到最大,当温度达到180℃时,砷的蒸出率仍只有95.2%。二次减压蒸馏产品三氯化锑纯度已达99.94%,杂质含量很低,符合化学试剂级产品质量,三氯化锑的蒸馏率达99.0%以上。
     5、当氯氧锑中和转化反应溶液中存在酒石酸铵时,pH下降速度变慢,而存在EDTA时,pH急剧下降。在酒石酸根离子存在的情况下,氯氧锑在中和转化为单一的立方晶型锑白。而在EDTA存在的情况下,中和转化为斜方晶型锑白。当n(Sb):n(C4H4O62-30:1时,中和转化产物呈八面体结构,而且菱角分明。锑白的白度和成分达到国家产品标准要求。
     6、铅银渣采用碳酸盐转化、硅氟酸浸、氨水浸银以及水合肼还原处理,银以银粉回收,直收率和总回收率分别为97%及98.12%;铅以硅氟酸铅溶液回收补充铅电解精炼贫化的铅离子,铅直收率及总回收率分别为86.26%及99.12%。蒸馏残渣采用盐酸浸泡,盐酸酸浸液可分步水解回收锑和铋,将盐酸酸浸液加水水解,先水解沉淀氯氧锑,所得氯氧锑返回控制电位氯化浸出系统进行回收;再将水解母液用稀氨水溶液调节pH值进一步水解成氯氧铋;而中和水解母液则经铁粉置换可回收海绵铜。该工艺是可行的,可回收了蒸馏残渣中的有价金属铜、锑和铋。回收率均在95%以上。
     7、从高锑低银类铅阳极泥制备锑白的锑总回收率达98%以上,试验重现性比较好。伴生金属铅和银主要分布在浸出渣、还原液冷却结晶产物和蒸馏残渣中,三者总和均达100%。而铋、铜等则主要富集在蒸馏残渣中,分别为99.04%和98.16%。砷则主要富集在连续蒸馏馏出液中,占90.42%。需经济合理综合考虑稀盐酸的回收处理得到的盐酸浓度与浸出过程中投入盐酸浓度两者的关系。
In this paper, the traditional treatment status of jamesonite, lead anode slime bearing high antimony and low silver and preparation of Cubic antimony white have been general summarized. The technology of preparing cubic antimony white from lead anode slime bearing high antimony and low silver by potential-controlled chloridization leaching, distilling concentration and continuous distillation has been proposed.
     The relationship of [Pb2+][Cl-]2-lg[Cl]T, E-lg[Cl]T in Pb-Sb-Cl-H2O system were studied and the solubility of lead chloride at different antimony concentrations was calculated both based on principle of simultaneous equilibrium. The results showed that insoluble salt PbCl2would only exist stably in a certain concentration range of chlorine ion. The solubility of Pb2+in the solution decreases with increasing of the concentration of antimony in the system, whereas increases with increasing of the concentration of total chlorine. The concentration range of total chlorine causing lead solubility less than0.005mol/L is ever-expanding. This concentration range of chlorine ion expands a little with increasing of the concentration of antimony in the system while narrows as the system acidity increases.
     Similarly, insoluble salt AgCl only stably exist at a certain concentration range of chloride ions. When the concentration of Sb in the system continuously increased, this concentration range of chlorine ion in which insoluble salt PbCl2existed stably expanded, but the solubility of Ag in the solution decreased. And the concentration range of total chlorine expanded continually corresponding solubility of silver less than0.00001mol/L, which meant separating the Ag and Sb was feasible. These study provided a theoretical basis for the separation of lead and antimony, silver and antimony in Sb-Cl-H2O system. As a result, the feasibility and an efficient way for separating these two kinds of metals were discussed and indicated, respectively.
     The technology of preparing cubic antimony white from lead anode slime bearing high antimony and low silver by Potential-controlled chloridization leaching and continuous distillation was studied in detail. Experimental results were showed as following.
     1. The removal ratio of silicofluoric ion in leaching solution is about91%by the addition of NaCl. Si and F in leach liquor can be further removed when distillation temperature is120℃by distilling concentration.
     2. The solution potential in the process of leaching process includes three stages:In the first stage, the solution potential increases slowly; In the second stage, there are no obvious change in the solution potential, so a plateau emerges in the potential-time curve; In the third process, the solution potential increases greatly. The length of plateau in the second stage decreases with increasing the concentration of Sb3+or the temperature. The phase of leached residue is determined by the solution potential. When the solution potential is controlled greater than430mV, there is mainly AgCl and PbCl2existed in the leached residue, when the potential is controlled under380mV, the metal Sb is also existed in the leaching residuum besides the AgCl and PbCl2. Therefore, the optimum potential of solution is430mV, the leaching rates of Sb, Bi and Cu are greater than98%, the leaching rate of Pb and Ag are3.10%and2.34%respectively.
     3. In the chloridization leaching process, Sb5+was reduced with lead anode slime at80℃for two hours, then the content of Sb5+is only0.60g/dm3in the reduced solution. At the same time, Sb2O3in lead anode slime was dissolved by hydrochloric acid in chloridization leaching solution, the content of Sb in the reduced solution will increase. Using, silicon compound can be distilled out basically with distilling concentration, when the reduced solution is heated to120℃. The removal of silicon compound is beneficial to the subsequent continuous distillation; it can solve the problem of pipe plug brought out because of the crystallization of these substances during the evaporation and cooling process. The major component of crystallization is amorphous hydrated silicon dioxide at the distilling concentration process. And the major components of cooling and crystallizing are AgCl and PbCl in the distillation mother solution, and solubility of AgCl and PbCl are decreased when the distillation mother solution is cooled at the atmosphere. So it can be recycled due to the high degree of enrichment.
     4. Production capacity of the continuous distillation is depended on distillation speed. Distillation speed gradually increases with the increasing of distillation negative pressure, and it will decrease with the increasing of distillation temperature. The distillation ratio of As increases with the increasing the first step distillation temperature. Arsenic distillation ratio is more than70%at130℃, but arsenic distillation ratio is still less than90%at130℃. The quantity of distilled arsenic is the most at the rage of135℃to150℃, so arsenic distillation ratio is only95.2%at180℃. Purity of trichloride antimony is up to99.94%at the second step distillation. The content of impurity in the trichloride antimony is lower, The SbCl3reach the level of the reagent completely, the distillation ratio of trichloride antimony is more than99.0%.
     5. pH decreases slowly when ammonium tartrate exists in the neutralized transformation solution. But it decreases fast when there is EDTA in the neutralized transformation solution. When tartrate ion exists in the neutralized transformation solution, antimony chloride was transformed into single cubic antimony white. And when EDTA exists in the neutralized transformation solution, antimony chloride is transformed into rhombic antimony white. When n(Sb):n(C4H4O62-)=30:1, the product presents a octahedron structure and its edges and corners are clearly. The whiteness and component of antimony white are all up to the national product standard.
     6. The residue bearing Pb and Ag was transformed into by carbonate, then lead in the transformed residue was leached with silicofluoric acid, and Silver was leached with ammonia, finally silver powder was recovered while silver ion was reducer by hydrazine hydrate. The recover ratio and overall recover ratio of silver are97%and98.12%, respectively. Lead was recovered to return to the electrowin system with lead fluosilicate. The recover ratio and overall recover ratio of lead are86.26%and99.12%, respectively.The distillation residue is soaked by hydrochloric acid. The soak solution will be hydrolyzed to recover Sb and Bi by step. The soak solution was hydrolyzed by adding water, the precipitation of Sb4O5Cl2was returned to the leaching system. pH of the hydrolyzed mother solution was adjusted by using ammonia to obtain BiOC1. Moreover, copper powder is recovered from neutralizing hydrolysis mother solution with replacement of iron powder. This process was feasible and the valuable metals, such as copper, antimony and bismuth can be recovered. The recovery rates of the valuable metals are more than95%separately.
     7. The recover rate of Sb is up to98%in the process of preparing antimony white from lead anode slime bearing high antimony and low silver. The experiment result was reappear well. Co-existed metals, such as Pb, Ag, was distributed in the leached residue, the crystallized product of cooling reducing solution and the distillation residue mostly, the sum of above all reach100%.99.04%of Bi,98.16%of Cu in the anode slime were enriched in the distillation residue respectively. And90.42%of As in the anode slime was enriched in the continuous distillate. It needs to considerate economically and reasonably that the relationship between concentrations of HC1which is recovered from dilutes hydrochloric acid and concentration of HC1as a leach solution into the leaching process.
引文
[1]赵天从.锑[M].北京:冶金工业出版社,1987.12
    [2]何启贤,陆玺争.铅锑冶金生产技术[M].北京:冶金工业出版社,2005.1
    [3]吕勇明.脆硫铅锑矿生产精锑的工艺总结[J].有色金属(冶炼部分),2001,2:23-26
    [4]安剑刚.脆硫铅锑矿综合回收铜铋实践[J].有色金属(冶炼部分),2005,(5):26-28
    [5]冉俊铭,黄世弘,易健宏.脆硫铅锑矿冶炼工艺现状及展望[J].湖南有色金属,2008,24(2):35-38
    [6]彭容秋.重金属冶金学[M].长沙:中南工业大学出版社,1987
    [7]孟柏庭.有色冶金炉[M].长沙:中南工业大学出版社,1989
    [8]肖永福.硫化锑精矿的湿法冶炼[J].湖南冶金,1984,(1):9-13
    [9]蒋汉赢,赵瑞荣.硫化碱溶液中电积锑阴极和阳极化曲线的研究[J].中南矿冶学院学报,1978,(4):66-83
    [10]蒋汉赢.湿法炼锑的电化学基础研究[J].有色冶金(冶炼部分),1981,(1):23-28
    [11]彭丽芬.锑的流态化电积及其动力学研究[J].有色冶金(冶炼部分),1982,(6):38-41
    [12]原和平.铅鼓风炉富氧熔炼的生产实践[J].中国有色冶金,2004,(6):21-25
    [13]彭海良.富氧在株冶铅烧结机及鼓风炉的设计选择及生产实践[J].湖南有色金属,2004,20(3):19-21
    [14]刘清漓.密闭鼓风炉富氧熔炼生产实践探讨[J].新疆有色金属,2007,(1):25-27
    [15]陈永明,黄潮,唐谟堂.硫化锑精矿还原造锍熔炼一步炼锑[J].中国有色金属学报,2005,15(8):1311-1316
    [16]唐朝波,唐谟堂,姚维义,等.脆硫铅锑精矿的还原造锍熔炼[J].中南工业大学学报,2003,34(5):502-05
    [17]唐谟堂,唐朝波.一种无二氧化硫排放的有色金属冶炼方法有色金属硫化矿及其含硫富集物料还原造锍熔炼[J].有色金属,2000,52(4):58~60
    [18]TANG Chao-bo,TANG Mo-tang,YAO Wei-yi, etal.The laboratory research on reducing-matting smelting of jamesonite concent rate[A],Proceedings 132th Annual Meeting and Exhibition [C].Boston:TMS,2003
    [19]唐谟堂,王玲.中和水解法处理脆硫锑铅精矿浸出液新工艺[J].中南工业大学学报,1997,28(3):226-228
    [20]列醒泉,钟启愚,林世英,等.酸性五氯化锑浸出硫化锑矿制取锑白[J].中南矿冶学院学报,1990,21(6):615-621
    [21]唐谟堂,鲁君乐,晏德生等.新氯化一水解法处理大厂脆硫锑铅矿精矿[J].有色金属(冶炼部分),1991,(5):20~22
    [22]唐谟堂,赵天从.酸法生产锑白的数模控制[J].湖南有色金属,1994,10(3):179-183
    [23]王成彦,邱定蕃,江培海.脆硫锑铅矿矿浆电解试验研究[J].有色金属,2002,54(3):24-27
    [24]王成彦,邱定蕃,江培海.矿浆电解法处理脆硫锑铅矿的介质体系选择[J].有色金属,2002,54(2):35~39
    [25]王成彦,邱定蕃,江培海.脆硫锑铅矿矿浆电解过程硫的形成机理[J].有色金属,2002,54(2):42-46
    [26]杨显万,张英杰.矿浆电解原理[M],北京:冶金工业出版社,2000
    [27]徐养良,华一新.脆硫锑铅矿铅锑分离新工艺研究[J].中国有色冶金,2005,(5):44-46
    [28]朱福良,华一新,高云涛.PbS-Sb2S3二元系在水蒸气气氛下的铅锑分离研究[J].有色金属(冶炼部分),2003,(5):2-5
    [29]朱福良,华一新,高云涛.PbS-Sb2S3-FeS三元系在水蒸气气氛下的铅锑分离[J].有色金属(冶炼部分),2003,(6):2-7
    [30]杨天足,水承静,宾万达.铅阳极泥湿法处理工艺述评[J].黄金,1996,(11):33-38
    [31]杨茂才.铅阳极泥综合利用工艺技术进展[J].贵金属,1998,19(3):55-59
    [32]日本特开昭,48-26575.1973
    [34]黄作仁.砷锑合金研制成功,并投入工业性生产[J].重有色冶炼,1982,(11):10-14
    [35]沈阳冶炼厂.从铜铅阳极泥中回收铋[J].有色金属(选冶部分),1978,(3):62-63
    [36]马伟,申殿邦,尤继龙.密闭鼓风炉炼铜过程中处理金精矿技术和经济探讨[J].有色金属(选冶部分),1997,(3):37-39.
    [37]王文绍,陈仕武.高砷烟尘制取As-Sb-Pb合金的研究[J].辽宁冶金,1981,(1):54-58.
    [38]杨杰.从贵铅炉废砖中回收贵金属.全国贵金属冶金年会论文.富春江:1994.98
    [39]杨国安,李卫锋.贵金属(增刊),1997.151
    [40]赖友芳,胡绪铭.铅阳极泥酸浸前的预处理[J].贵金属,1997,18(3):28
    [41]胡绪铭.第三届全国金银选冶学术会议论文集.1989.262
    [42]GB,2118536A.
    [43]JP,9284413.1992
    [44]JP,92118477.1992
    [45]宾万达等.全国第四届贵金属冶金科技学术会议论文集.昆明:贵金属情报网等,1990.22
    [46]付绸林.铅阳极泥全湿法提取金银的研究[J].湿法冶金,1996,59(3):27-31
    [47]杨新生.从废蓄电池渣泥制取铅化工产品的热力学分析与工艺试验[J].有色矿冶,1994,(6):21-25
    [48]李正山.氯盐法从硫酸渣中回收铅[J].成都科技大学学报,1994,(5):59-62
    [49]李正山.高铅铅阳极泥综合回收利用研究[J].环境工程,2000,(5):39~40
    [50]陈槐隆.综合利用铅渣湿法生产优质黄丹[J].有色金属(冶炼部分),1992,(1):5-8
    [51]邓裕吉.用氯化铅渣制取三盐基硫酸铅[J].有色矿冶,1995,(5):31-34
    [52]Vinals J.Leaching of gold, silver and lead from plum bojarosite containing hematite tailing in HCl-CaCl2 media[J]. Hydrometallurgy,1991, (26):179-199
    [53]Arai.Keichi.Selective leaching of lead battery slime in anodic ferrous chloride solutions[J] Journal of the Japan Institute of Metals,1984 (11):1075-1080
    [54]吴锡平,吴立新.从高银阳极泥中提取金银并回收铅锑等有价金属[J].黄金,1996,(1):44~45
    [55]熊宗国.铅阳极泥处理新工艺的研究[J].有色冶炼,1994,(5):26-30
    [56]陈丰.控制电位选择氯化富集金属[J].株冶科技,1996,(4):33-35
    [57]樊耀亭,刘长让.从铅阳极泥中提取贵金属的湿法工艺[J].河南化工,1991,(12):26-28
    [58]杨杰.大型铜电解工厂的设计研究[J].有色金属(冶炼部分),1991,(5):30-34.
    [59]唐谟堂,贺青蒲,袁延胜.新氯化—水解法处理铅阳极泥[J].有色金属(冶炼部分),1992,(3):21-23
    [60]熊宗国.全国第四届贵金属冶金科技学术会议论文集,昆明:贵金属情报网等,1990.27
    [61]胡绪铭,赖友芳,王友平.一种铅阳极泥湿法处理的方法[P],ZL89103853.1,1993
    [62]杨茂才等.贵金属(增刊),1997.273
    [63]聂晓军,陈庆邦,刘如意.高锑低银铅阳极泥湿法提银及综合回收的研究[J].广东工学院学报,1996,13(4):51-57
    [64]唐谟堂,唐朝波,杨声海,等.用AC法处理高锑低银类铅阳极泥--氯化浸出和干馏的扩大试验[J].中南工业大学学报,2002,33(4):360-363
    [65]唐谟堂,杨声海,唐朝波,等.用AC法从高锑低银类铅阳极泥中回收银和铅,中南工业大学学报,2003,34(2):132~136
    [66]唐谟堂,杨声海,唐朝波,等.AC法处理高锑低银类铅阳极泥—铜和铋的回收,中南工业大学学报,2003,34(5):499-501
    [67]丘克强,杨学林,张露露.高锑铅阳极泥处理新工艺试验研究[J].黄金,2003,24(11):37~39
    [67]杨学林,丘克强,张露露,等.利用高锑铅阳极泥制备三氧化二锑的工艺研究[J].现代化工,2004,24(2):44-46
    [68]杨学林.高锑铅阳极泥处理新工艺[D].长沙:中南大学,2004.4:30~56
    [70]张露露,杨学林,丘克强.高锑铅阳极泥真空还原除锑研究[J].化工进展,2004,23(8):869-873
    [71]胡汉祥,何晓梅,谢华林.从铅阳极泥中制备纳米三氧化二锑粉体的研究,武汉理工大学学报,2006,28(4):14~16
    [72]V.G.Gryanov, Trusov, L.I. Size effects in micromechanics of nanocrystals [J]. Progress in Materials Science,1993,37(4):289-401
    [73]H.Gleiter, Nanocrystalline materials[J].Progress in Materials Science.1989, 33(4):223-315
    [74]G.J.Thomas,R.W.Siegel, J.A Eastman. Grain boundaries in nanophase palladium. High resolution electron microscopy and image simulation[J]. Scripta.Metallet Mater,1990,24(1):201-206
    [75]J. A.Eastwan, M.R. Fitzsimons, M.Miller. Characterization of nanocrystalline Pd by X-ray diffraction and EXAFS[J]. Nanostructured Mater[J].1992,1(1):47-54
    [76]卢铁贵,徐锡华.国内外超微粒锑白的制取技术现状[J].陕西化工.1996(2):11-13
    [77]杨秉文,甘庆民.立方晶体三氧化二锑的制备方法[P],CN1072392A,1992
    [78]US.P3998940.1976
    [79]张多默,肖松文,刘志宏,李启厚.Ostwald规则与湿法锑白晶型控制[J].中南工业大学学报,2000,31(2):121-123
    [80]李启厚,肖松文,刘志宏,等.酒石酸根离子控制锑白粉末结构形貌的模板作用行为[J].高等学校化学学报,2000,21(9):1344-1347
    [81]肖松文,肖骁,刘志宏,等.水解法锑白的晶型结构控制机理[J].无机材料学报,2000,15(4):589-594
    [82]仲维卓.人工水晶[M].北京:科学出版社,1994:515-572
    [83]Cody A.M.,Cody R.D. Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors [J]. Journal of Crystal Growth. 1991,113(3):508-512
    [85]日本化学汇编.无机固态反应[M].北京:科学出版社,1985:56-62
    [86]ZhangDuo Mo, XiaoSong wen, Cho Tongrae.The polymorph control of antimony white(Sb2O3) prepared by hydrometallurgy method[J].Trans Nonferrous Met Soc China,1997,7(4):118-122
    [87]甘庆民,杨秉文.耐光三氧化二锑的制备[J].化学世界,1997,(5):243-245
    [88]姚宝书.对光稳定的三氧化二锑的制备[J].化学试剂,1989,(6):371~372
    [89]JP特开平8-231224
    [90]段学臣.湿法锑白的晶型转变[J].中国有色金属学报,1996,6(1):36-39
    [91]丘克强,张荣良,唐淑贞.超声场对中和法制备Sb203的影响.无机材料学报,2006,21(6):1333-1338
    [92]段学臣,杨向萍,吴湘伟.金属醇盐水解法制备超细粉末过程中醇与苯的回收[J].稀有金属与硬质合金,2001,145(6):41-43
    [93]Rene Winand. Chloride hydrometallurgy[J]. Hydrometallurgy.1991,27(3): 285-316
    [94]R.G.Holdich. The solubility of Aqueous lead chloride solution [J]. Hydro-metallurgy,1987,19(8):199-208
    [95]刘云霞.PbCl2在不同盐酸浓度、Sb3+浓度和温度条件下溶解度的研究[J].稀有金属.2000,24(4):270-272
    [96]Linke, W. F., Seidell, A. Solubility of inorganic and metal organic compounds [M], J. Am. Chem. Soc., New York, NY,1965
    [97]Peters,E.,Applications of chloride hydrometallurgy to treatment of sulphide minerals.Proc.Symposium on chloride hydrometallurgy, Brussels,Benelux Metallurgie,1977
    [98]Wen-de Xiao, Kai-hong Zhu,Wei-kang Yuan. An algorithm for simultaneous chemical and phase equilibrium calculation[J]. American Institute of Chemical Engineers,1989,35 (11):1813-1820
    [99]ZHENG Guoqu, CAO Huazhen. Influence of ammonia concentration on anodic deposition of nickel oxide[J]. J. Appl. electrochem.2007,37(7):799-803
    [100]S. Kotrly, L. Sucha. Handbook of Chemical Equilibria in Analytical Chemistry [M], (Ellis Horwood, Chichester,1985)
    [101]O.Dinardo,J.E.Dutrizac. The Solubility of Silver Chloride in Ferric Chloride leaching Media. Hydrometallurgy.1985,13:345-363
    [102]Hahn, F. L. and Klockmann, R., Z.Phys.Chem.,146(1933)373-403
    [103]杨显万,李敦钫.控制电位选择氯化的热力学[J].贵金属,1990,11(4):1-7
    [104]Kim,J.L, Duschner,H., J.Inorg.Nucl. Chem.,39(1977) 471-478
    [105]唐谟堂,赵天从.三氯化锑水解体系的热力学研究[J].中南矿冶学院学报.1987,18(5):522-528
    [106]钟竹前,蔡传算,梅光贵.Ag—Cl-—H2O系的热力学分析[J].有色冶炼,1982,9:33-38
    [107]傅崇说,彭铁辉,郑蒂基.PbS—Cl-—H2O系的E-log[Cl-]图及其应用[J].有色金属(冶炼部分).1984,(3):13-18
    [108]傅崇说,王庆祥,郑蒂基.关于氯化物溶液中铅、银结晶分离的理论分析.中南矿冶学院学报.1981,(4):6-9
    [109]傅崇说,王庆祥,郑蒂基.关于铅-氯离子-水体系在高离子强度及升温条件下的平衡研究.中南矿冶学院学报.1983,(3):10-15
    [110]Edstrand M. The crystal structure of the antimony oxychloride Sb4O5Cl2 and isomorphous oxybromide[J]. Acta Chem Scandinavica,1947(1):178-203
    [111]肖松文,张多默.模板效应与粉末结构型貌控制[J].化学通报.1997,(8):27-30
    [112]中国专利CN1072392A
    [113]US. P3998940.1976
    [114]王俊中;魏昶;姜琪.氟硅酸性质[J].昆明理工大学学报(自然科学版),2001,26(3):93-96
    [115]唐谟堂;陈进中;蔡传算.铅锑精矿氯化浸出渣处理新工艺(Ⅰ)—苏打转化研究[J].中南工业大学学报(自然科学版),1996,27(2):164-167
    [116]杨显万等.Solubilities of AgCl and Ag20 in Chloride Solution and Ammonia Water. ICHM 88, Intermational Academic Publishers,1988:490
    [117]杨显万.氯化银的沉淀与溶解[J].有色金属.1988,(5):46-49
    [118]杨天足,窦爱春,江名喜,等.氯离子浓度对氨水浸出氯化银的影响[J].贵金属,2006,27(4):6-11
    [119]唐谟堂,杨声海,唐朝波,等.AC法处理高锑低银类铅阳极泥--铜和铋的回收[J].中南大学学报(自然科学版),2003,34(5):499~501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700