跨音速离心压气机三维流场数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压气机的失速与喘振是两种既有密切联系又互相区别的非稳定流动现象。喘振会导致压气机叶片发生剧烈的震荡,严重时会损害压气机本身,而旋转失速是喘振发生前的先兆,深入分析旋转失速是控制压气机喘振的重要前提和基础。
     本文采用三维数值模拟的方法,利用CFD技术仿真某离心式压气机。利用NASA文献提供的压气机和扩压器叶片数据建立计算模型,并用解析几何的方法处理压气机叶片前缘的圆弧,建立压气机和扩压器的几何模型,并建立高、中、低三种不同网格密度的计算域模型,分别在80%和100%工况下对三种网格密度的计算模型,进行稳态数值计算。通过对比三种网格密度在高低工况下的流场分布特性、压力分布特性、压气机整机性能和数值仿真结果误差,发现三种网格密度模型的计算结果相差不大,压气机特性也相同,由此证明低密度网格能够满足压气机特性仿真计算的要求。
     利用低密度网格建立压气机和扩压器的全周计算模型,进行压气机近喘振点三维非定常计算。本文主要研究压气机在近喘振点附近的旋转失速现象。通过计算发现,压气机在发生旋转失速前,扩压器流道内部已经出现了流场分布不对称的现象,而且这些不均匀的流场分布在计算的不同时刻,也发生变化。在失速发生之前扩压器叶片的压力面和吸力面都出现气体分离,发生气体分离的位置从叶根处随时间变化向叶顶方向发展。
     通过计算,压气机在高工况下运行时,旋转失速发生的速度较快,失速频率为26.5Hz,并且失速发生对应压气机特性图上的范围非常窄,失速发生后紧接着压气机进入喘振状态,在计算到第13圈时,压气机进入深度喘振,这与实际压气机特性符合。本文的研究为进一步采取主动流动控制技术,如扩压器机匣或轮毂射流主动控制离心压气机喘振,奠定了基础。
Compressor stall and surge which tie up and discriminative with each other are two difference non-steady flow phenomena. Compressor surge can lead dramatic fluctuations in impeller, even destroy the compressor. Rotating stall is a precursor to the pre-surge, depth analysis of the rotating stall is an important prerequisite and foundation to control compressor surge.
     In this paper, adopt three-dimensional numerical simulation method, using CFD technology to simulation some centrifugal compressor. One literature of NASA provided the compressor and diffuser blade computing model data set and use analytic geometry approach to process the arc of compressor blade leading edge. Then establish the compressor and the diffuser geometry model, and build three different mesh density of high, medium and low of the computational domain model, respectively, calculate 80% and 100% working condition of the three kinds of mesh density model for steady-state numerical calculation. By comparing three kinds of mesh density in the high and low operating conditions of the flow field characteristics, the pressure distribution properties, compressor performance, and numerical simulation results of machine errors, found that three kinds of mesh density model results more or less, compressor characteristics also the same, thus proving that low-density grid to fulfill the requirements of the compressor characteristic simulation.
     Use low-density grid to establish the compressor and diffuser calculation model for the entire machine to carry out three-dimensional unsteady calculations nearly the compressor surge point. This paper mainly studies the compressor stall phenomenon near the surge point. From calculation found that the event of compressor rotating stall has emerged asymmetry at the diffuser flow channel before it happens, and this non-uniform flow field distribution in the calculation of different moments also change. Before the stall occurs in the diffuser blade pressure surface and suction surface have emerged out of gas separation, and the location of gas separation change over time expand from the root to the tip of the blade.
     By calculating, when the compressor is running at high operating conditions, the rotating stall occurs faster, the stall frequency is 26.5Hz, and the range of compressor stall occurs in the compressor characteristics map corresponds to a very narrow range, the compressor surge immediately occurs after the rotate stall, in the calculation of 13th round, the compressor get into the deep surge, this coincide with the actual characteristics of the compressor. This study laid the theoretical foundation and pre requisite for further using active flow control technologies, such as diffuser hub or shroud jet active control the centrifugal compressor surge.
引文
[1]郭强.带无叶扩压器的离心压缩机失速现象的实验和数值研究[D].上海交通大学博士学位论文.2007:1-16页
    [2]王志标,张早校,姜培正.压缩机动态防喘振控制策略进展分析[J].风机技术.2003年:2页
    [3] Cumpsty N.A.. Compressor Aerodynamics [M]. Longaman Group. 1989
    [4] Emmons H.W., Pearson C.E., Grant H.P.. Compressor Surge and Stall Propagation [J]. Transactions of the ASME, 1955, Vol. 77
    [5]陆家祥.柴油机涡轮增压技术[M].北京:机械工业出版社,1999:43-46页.
    [6] Day I.J.. Stall Inception in Axial Flow Compressor [J]. Journal of Turbomachinery. 1993, Vol.115
    [7] Day I.J., Freeman C.. The Unsteady Behavior of Low and High Speed Compressor [J]. Journal of Turbomachinery. 1994, Vol.116
    [8] Greitzer E.M.. The Stability of Pumping Systems [J]. Journal of Fluids Engineering. 1981, Vol.103, 193-242
    [9] Greitzer E.M.. Review-Axial Compressor Stall Phenomenon [J]. Journal of Fluids Engineering. 1980, Vol.102,134-151
    [10] Greitzer E.M.. Surge and Rotating Stall in Axial Flow Compressor. Part I:Theoretical Compression System Model [J]. Journal of Engineering for Power. 1976, Vol.98,190-198
    [11] Greitzer E.M.. Surge and Rotating Stall in Axial Flow Compressor. Part II: Experimental Results and Comparison with Theory [J]. Journal of Engineering for Power. 1976, Vol.98,199-217
    [12] Moore F.K, Greitzer E.M.. A theory of Post-Stall Transients in Axial Compressor. Part 1: Development of the Equation [J]. Journal ofengineering for gas turbines and power. 1986, Vol.108
    [13] Greitzer E.M., Moore F.K.. A theory of Post-Stall Transients in Axial Compressor. Part 2: Application [J]. Journal of engineering for gas turbines and power. 1986, Vol.108
    [14] Mccaughan F.E.. Application of Bifurcation Theory to Axial Flow Compressor Instability [J]. Journal of Turbomachinery. 1989, Vol.115,426-433
    [15] Matthias Schleer, Reza S.Abhari. Influence of Geometric Scaling on the Stability and Range of a Turbocharger Centrifugal compressor [J]. ASME Paper. GT2005-68713
    [16] Elder R.L., Gill M.E.. Discussion of the Factors Affecting Surge in Centrifugal Compressor [J]. ASME paper. 1984
    [17]魏兵海,吴克启.风机失速喘振特性及其预防措施[J].流体机械.2001,第29卷,第2期,2页
    [18]王志标,张早校,胡海军,姜培正.叶轮压缩机喘振的机理及防喘振策略研究[J].化工自动化及仪表.2003,30(2):10-13
    [19] Kriebel A.R., GS chnuind R.. Stall Propagation Cascade of Air Foils [J]. NACA, TRR-61. 1960
    [20] Lennemann E.. Unsteady Flow Phenomenon in Rotating Centrifugal Impeller Passages [J]. Journal of Engineering for Power. 1970, Vol.92(1),65-72
    [21] Day I.J., Greitzer E.M., Cumpsty N.A.. Predication of Compressor Performance in Rotating Stall [J]. ASME Paper. 1977, 77-GT-10,Vol.100,1-13
    [22] Rodgers C.. A Diffusion Factor Correlation for Centrifugal Impellers Stalling [J]. ASME Paper. 1978, 78-GT-61,Vol.100,592-603
    [23] Senoo Y., Hayaml H., Kinoshita Y.et al. Experimental Study on Flow in aSupersonic Centrifugal Impeller [J]. Journal of Engineering for Power. 1979, Vol.101, 32-41
    [24] Hideaki Kosuge. A Consideration Concerning Stall and Surge Limitations with Centrifugal Compressor [J]. ASME Paper. 1982, 82-GT-15,Vol.104,782-787
    [25] Kammer N., Rautenberg M.. A Distinction Between Diffuser Types of Stall in a Centrifugal Compressor Stage [J]. Journal of Engineering for Gas Turbines and Power. 1986, Vol.108,83-92
    [26] Wernet P., Bright M., Skoch J.. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV [J]. Journal of Turbomachinery. 2001, Vol.123,418-428
    [27]戴冀,谷传纲,苗永淼.低压离心压缩机系统喘振点的试验和计算[J].风机技术. 1995,第2卷
    [28]葛宁.轴流风扇旋转失速时的流场测量与分析[J].航空动力学报. 1997,第12卷,第1期
    [29]曹人靖.压气机旋转失速声学特性及主动控制策略探讨[J].燃气涡轮试验与研究.2001,第14卷,第2期
    [30] Jansen W.. Rotating Stall in a Radial Vaneless Diffuser [J]. Journal of Basic Engineering. 1964, Vol.86,750-758
    [31] Senoo Y., Ishida M.. Behavior of Severely Asymmetric Flow in a Vaneless Diffuser [J]. Journal of Engineering for Power. 1975, Vol.97,375-387
    [32] Senoo Y., Kinoshita Y.. Influence of Inlet Flow Conditions and geometries of Centrifugal Vaneless Diffusers on Critical Flow Angle for Reverse Flow [J]. Journal of Fluids Engineering. 1977, Vol.99,98-103
    [33] Otugen M.V., Hwang B.C.. Diffuser Stall and Rotating Zones of Separated Boundary Layer [J]. Experiments in Fluids. 1988, Vol.6,521-533
    [34] Lawless P.B., Fleeter S.. Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor. Part 1--Vaneless Diffuser [J]. Journal of Turbomachinery. 1995, Vol.117,87-96
    [35] Shin Y.H., Kim K.H., Son B.J.. An Experimental Study on the Development of a Reverse Flow Zone in a Vaneless Diffuser [J]. JSME International Journal. 1998, Vol.41(3), 546-555
    [36] Matthias Schleer, Reza S.Abhari. Influence of Geometric Scaling on the Stability and Range of a Turbocharger Centrifugal compressor [J]. ASME Paper. GT2005-68713
    [37] Mark P. Wernet. A flow field investigation in the diffuser of a high-speed centrifugal compressor using digital particle imaging velocimetry [J]. National Aeronautics and Space Administration. Meas. Sci. Technol. 2000, Vol.11
    [38] Mark P. Wernet, Michelle M. Bright, Gary J. Skoch. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV [J]. Journal of Turbomachinery. Transactions of the ASME. 2001, Vol. 123
    [39] Xu G., Nie C., Cheng X., et al. Numerical Simulation of Stall Suppression by Micro Air Injection in a Low-Speed Axial Compressor [J]. Paper IGTC’2003 Tokyo, Japan. 2002
    [40]楚武利,姜桐.离心压气机无叶扩压器旋转失速实验研究[J].航空动力学报. 1990,第5卷,第1期,163-165页
    [41]宫武旗,黄淑娟,李超.无叶扩压器内流场实验研究[J].流体机械. 1996,第24卷,第8期,3-6页
    [42]张艳莉,李继芳.离心压缩机系统运行工况的不稳定性分析[J].风机技术.2003,第1期
    [43] Raymond Andrew Hill IV. Simulation of Spike Stall Inception in a Radial Vaned Diffuser. Master of Science in Aerospace Engineering at theMassachusetts Institute of Technology. 2007
    [44]刘瑞韬,徐忠.分流叶片位置对高转速离心压气机性能的影响[J].空气动力学学报.2005,第23卷,第1期
    [45] Day I.J.. Active Suppression of Rotating Stall and Surge in Axial Compressors [J]. Journal of Turbomachinery. 1993, Vol.115
    [46] Behnken R.L. et al. Characterizing the Effects of Air Injection on Compressor Performance for Use in Active Control of Rotating Stall [J]. ASME Paper. 1997, 97-GT-316
    [47] Weigh H.J., Paduano J.D., Frechette L.G., et al. Active Stabilization of Rotating Stall and Surge in a Transonic Single Stage Axial Compressor [J]. Journal of Turbomachinery. 1998, Vol.120
    [48] Suder K.L., Hathaway M.D., Thorp S.A., et al. Compressor Stability Enhancement Using Discrete Tip Injection [J]. Journal of Turbomachinery. 2001, Vol.123
    [49] Nie C., Xu G., Cheng X., et al. Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor[J]. Journal of Turbomachinery. Vol.124, 2002
    [50] Gary J. Skoch. Experimental Investigation of Centrifugal Compressor Stabilization Techniques [J]. Proceedings of ASME Turbo Expo 2003. Power for Land, Sea, and Air, GT2003-38524
    [51] Z.S. Spakovszky. Backward Traveling Rotating Stall Waves in Centrifugal Compressors [J]. Journal of Turbomachinery. Transactions of the ASME. 2004, Vol. 126
    [52]郭强,竺晓程,杜朝辉,陈华,赵岩.带气腔的离心压缩机旋转失速的三维数值模拟[J].航空动力学报.2007,第22卷,第7期
    [53] Ted F. McKain,Greg J.Holbrook. Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor [J]. National Aeronautics and SpaceAdministration. NASA Contractor Report 204134. 1997
    [54]王伟.离心压气机三维流场数值研究[D].哈尔滨工程大学硕士学位论文. 2009
    [55] Armin Zemp, Albert Kammerer, Reza S. Abhari. Unsteady CFD Investigation on Inlet Distortion in a Centrifugal Compressor [J]. Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. GT2008-50744
    [56] Mark P. Wernet. Application of DPIV to study both steady state and transient turbomachinery flows [J]. Optics & Laser Technology. 2000, Vol.32
    [57]崔建勇,王小峰,马燕荣.压气机失速及喘振模拟技术研究.飞行试验.1999,第15卷,第2期
    [58]蒋康涛.低速轴流压气机旋转失速的数值模拟研究[D].中国科学院研究生院博士学位论文.2004
    [59]王涛.基于全流场非定常湍流数值模拟的对旋风机研究[D].山东科技大学硕士学位论文.2007
    [60]井有浩,陈佐一,胡志刚.叶轮机械失速颤振的全三维数值分析方法[J].航空动力学报.1995,第10卷,第4期
    [61]贾海军.轴流压气机跨声速三维流场数值模拟[D].西北工业大学硕士学位论文.2006
    [62]童志庭,张靖煊,李美林,聂超群.不同进口畸变下低速压气机近失速状态非定常特征[J].工程热物理学报.2006,第27卷,第1期
    [63]唐应.压气机的旋转失速与喘振[Z].
    [64]李美林,林峰,陈静宜,童志庭,聂超群.周向进口畸变对压气机失速过程的影响[J].工热物理学报.2005,第26卷,第6期
    [65]闻苏平,宫武旗,曹淑珍.旋转离心叶轮内部非定常流动实验研究[J].工程热物理学报.2004,第25卷,增刊
    [66]闻苏平,张楚华,李景银.旋转叶轮和叶片扩压器耦合的非定常流动计算[J].西安交通大学学报.2004,第38卷,第7期
    [67] B. Ribi, G. Gyarmathy. Energy Input of a Centrifugal Stage Into the Attached Piping System During Mild Surge [J]. Journal of Engineering for Gas Turbines and Power. Transactions of the ASME. 1999, Vol. 121
    [68]刘靖飙,杨策,陈山,马朝臣.非稳态单喷口射流控制扩压器内边界层的分离流动[J].推进技术.2009,第30卷,第3期
    [69] Matthias Schleer, Reza S. Abhari. Influence of geometric scaling on the stability and range of a turbocharger centrifugal compressor [J]. Proceedings of GT2005 ASME Turbo Expo 2005: Power for Land, Sea and Air. GT2005-68713
    [70] Chunwei Gu, Kazuo Yamaguchi, Toshio Nagashima, Hirotaka Higashimori. Observation of Centrifugal Compressor Stall and Surge in Phase Portraits of Pressure Time Traces at Impeller and Diffuser Wall [J]. Journal of Fluids Engineering. Transactions of the ASME. 2007, Vol. 129
    [71] M.B. Schmitz and G. Fitzky. Surge Cycle of Turbochargers: Simulation and Comparison to Experiments [J]. Power for Land, Sea, and Air. Proceedings of ASME Turbo Expo 2004, GT2004-53036
    [72] R. Hunziker, G. Gyarmathy. The Operational Stability of a Centrifugal Compressor and Its Dependence on the Characteristics of the Subcomponents [J]. Journal of Turbomachinery. Transactions of the ASME. 1994, Vol. 116
    [73] M. Mansour, N. Chokani, A. I. Kalfas, R. S. Abhari. Unsteady Entropy Measurements in a High-Speed Radial Compressor [J]. Journal of Engineering for Gas Turbines and Power. Transactions of the ASME. 2008, Vol. 130
    [74] Y. Kinoshita, Y. Senoo. Rotating Stall Induced in Vaneless Diffusers of Very Low Specific Speed Centrifugal Blowers [J]. Journal of Engineeringfor Gas Turbines and Power. Transactions of the ASME. 1985, Vol. 107
    [75]谢蓉,海洋,王晓放.分流叶片周向位置设计及其对离心叶轮内部流动的影响[J].燃气轮机技术.2009,第22卷,第2期
    [76]李丽丽.不同用途的叶轮机械内部流场数值模拟分析及结构优化研究.大连理工大学硕士学位论文.2007
    [77]初雷哲.高转速高压比离心压气机内部流动研究.中国科学院研究生院博士学位论文.2008
    [78] Gary J. Skoch. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability [J]. Journal of Turbomachinery. Transactions of the ASME. 2003, Vol. 125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700