水中硝基(氯)苯及多羟基单宁酸的O_3/H_2O_2降解效果与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体日益严重得受到各种有机物的污染,对人体健康和水环境构成了严重威胁,必须采取适当的处理工艺将其从水环境中彻底去除或者将其浓度降低到安全水平。硝基苯、硝基氯苯等含芳环物质的种类在许多国家或组织列出的水体优先控制污染物的名单中都占到50%以上,利用常规的水处理工艺很难将这些芳香物质去除,O_3及以产生·OH为基础的高级氧化工艺(AOP)能有效地去除水中这些有机污染物。O_3和H_2O_2协同作用可以产生具有极强氧化作用的·OH。
     以硝基苯为目标物,对O_3/H_2O_2氧化体系去除水中有机物的效果和机理进行了研究,考察了pH值、H_2O_2剂量、自由基抑制剂或促进剂对硝基苯的去除效果的影响。当pH值≤7时,与单独臭氧化相比,H_2O_2促进臭氧化去除硝基苯的效果较为明显,H_2O_2投加量从1.0mg/L增加到4.0mg/L时,在氧化5min内,硝基苯的去除率有明显的增加,但当H_2O_2投加量由4.0mg/L提高到20mg/L时,硝基苯的去除率呈下降趋势;同时发现单独臭氧化硝基苯的过程能产生H_2O_2;几种有机物的加入,不同程度都降低了硝基苯的去除率。无论单独臭氧化还是催化臭氧化都不能使体系TOC大幅度降低,苯环上的硝基几乎以NO_3-形式脱出。LC-MS和GC-MS的测定结果表明,硝基苯臭氧化的主要产物为酚类和羧酸类物质。对O_3/H_2O_2体系中硝基苯反应的历程进行了推导,认为硝基苯的臭氧化降解过程分为两个阶段,首先是羟基自由基的作用,使苯环羟基化,然后是羟基化的芳环发生开裂,生成各种脂肪族化合物或进一步矿化。
     对硝基氯苯(pCNB)也是水体中常见的污染物质,测定pCNB与O_3反应速率常数为1.6L/(mol·s);采用竞争动力学方法,以氯苯和硝基苯为参考化合物,测得pCNB与·OH的反应速率常数为2.6×109L/(mol·s)。pCNB臭氧化降解过程中,氯基和硝基主要以Cl-、NO_3-的形式存在,体系的TOC没有大幅度的降低。GC-MS、LC-MS的分析结果表明,pCNB臭氧化过程主要产物为对氯酚、对硝基酚、硝基氯酚等具芳环的酚类物质和乙二酸、丙二酸、马来酸、己二烯二酸等脂肪族化合物,根据这些产物对pCNB的臭氧化反应途经进行推测可知,pCNB的臭氧化降解机制与硝基苯臭氧化降解机制一致。
     通过量子化学计算,发现硝基氯苯的三种同分异构体—对硝基氯苯(pCNB)、间硝基氯苯(mCNB)和邻硝基氯苯(oCNB)的苯环上碳原子的电子云密度和自然轨道布居数(NOB)具有一定的差异。通过试验测得三种硝基氯苯(CNBs)与臭氧直接反应的二级速率常数分别为1.6、1.5、1.6L/(mol·s),以硝基苯(NB)和氯苯(CB)为竞争物,利用竞争动力学测得三种物质与·OH的反应二级速率常数分别为2.6×109、2.8×109、3.2×109L/(mol·s)。对CNBs的臭氧化过程考察发现,氧化体系的pH呈减小的趋势,溶液颜色由无色突变到黄色然后迅速恢复到无色,氧化体系中的无机碳(IC)、Cl-、NO_3-逐渐升高,不同氧化阶段均有H_2O_2产生,当目标物pCNB浓度为50mg/L时,H_2O_2的最大浓度能达到1.8mg/L。整个臭氧化过程CNBs氧化去除达到99%时,而TOC去除率仅为45%左右。GC-MS和LC-MS的结果显示三种硝基氯苯的臭氧化产物都主要包括氯酚、硝基酚、氯硝基酚等酚类物质和草酸、丙二酸、顺丁烯二酸、己二烯二酸等羧酸类物质。pCNB在臭氧化过程中,氯基和硝基可以被·OH取代,生成硝基酚和氯酚,而oCNB和mCNB的氧化产物中,未检出硝基酚和氯酚,三种硝基氯苯苯环上的氢均可被·OH取代,生成硝基氯酚,LC-MS/GC-MS共检测出10种不同的硝基氯酚。CNBs苯环上的-Cl和-NO2的取代位不同,致使苯环上碳原子的电子云密度和NOB具有一定的差异,·OH与苯环上的H发生取代反应的几率与相应C的电子云密度和NOB具有一定的相关性,而与对应的键能关系不大,·OH氧化与硝基氯苯的反应可能类似于芳环的亲电取代反应。
     对硝基苯、硝基氯苯的O_3/H_2O_2氧化降解的机制的研究认为,降解的开始阶段是由于·OH的作用使得芳环羟基化,使得芳环电子云密度增大,芳环变得不稳定而裂解,不稳定的多羟基芳环在O_3作用下裂解。以含多羟芳环的大分子天然有机物单宁酸为目标物,对单宁酸O_3/H_2O_2氧化降解效果与机理进行了研究。发现H_2O_2的加入对臭氧氧化去除单宁酸没有明显地促进作用,从TOC去除率结果来看,O_3/H_2O_2氧化体系最终TOC要比单独的臭氧化低10%左右。用顺磁共振波谱(ESR)对O_3/H_2O_2氧化体系的·OH的相对强弱进行比较,发现单宁酸强猝灭体系的·OH。单宁酸的O_3/H_2O_2氧化副产物的主要有乙醛、乙二醛、甲基乙二醛等醛类物质,最终产物主要是乙二酸、丙酮二酸等羧酸类物质,以TOC计算,乙二酸、丙酮二酸这两种羧酸占有机物的1/3左右。
Organic pollutions in water gradually become a serious threaten to human health and water environment. In order to keep water secure, proper treatment process should be innovated and adopted to eliminate or remove these pollutants. Aryls, such as NB and CNBs, occupies more than 50 percent of Priority Organic Compounds(POCs) listed in most countries. They are difficult to be eliminated with routine processes of water treatment. Ozonation and AOPs, which could produce·OH, perform powerfully in the removal of these aryls. The cooperation of O_3 and H_2O_2 can generated·OH which is a strong oxidatant.
     Selecting nitrobenzene (NB) as the model pollutant, the efficiency and mechanism of the degradation of NB in aqueous solution by O_3/H_2O_2 system were investigated. Effects of pH, H_2O_2 dose and the inhibitor or accelerant of·OH on the removal rate of NB were studied. H_2O_2 could obviously improve the ozonation of NB below pH 7. H_2O_2 dose was increased from 1.0mg/L to 4.0mg/L, within the time of 5-min reacting, the removal rate of NB was enhanced. However, as H_2O_2 dose increased from 4.0mg/L to 20mg/L, the removal efficiency of NB decreased. Different quantities of H_2O_2 were yielded in different reaction phases of single ozonation system. The addition of some organisms could make the removal of NB decreased with different degrees. Both systems of single ozonation and H_2O_2-catalysed ozonation could not reduce TOC observably. During the NB degradation process, organonitrogen was almost completely converted to nitrate and the pH value reduced significantly. Results of LC-MS and GC-MS show that main intermediate products were phenolic compounds and carbonyl compounds. Finally, a possible reaction pathway of the catalytic ozonation of NB was proposed. It had been found that the catalytic ozonation of NB can be divided into two steps. First, hydroxyl radical attacked phenyl ring, then the ring opened, forming into various aliphatic compounds or being mineralizd to inorganic compounds.
     pCNB is another stubborn organic pollutant in water. The kinetics and mechanism of ozonation of p-nitrochlorobenzene (pCNB) were investigated. The reaction rate constants of pCNB with O_3 was 1.6L/(mol·s) by direct measuration. With nitrobenzene and chlorobenzene as the reference compounds, the reaction rate constants of pCNB with·OH, measured by means of a competition kinetics, was 2.6×109L/(mol·s) During the ozonation of pCNB, organic nitrogen and organic chlorine were almost completely converted to nitrate and chloride, TOC could not be obviously reduced. Results of LC-MS and GC-MS show that main intermediate products were aromatic substances such as p-chlorophenol, p-nitrophenol, 2-chloro-5-nitrophenol, etc., and nonaromatic substances such as oxalic acid, malonic acid, maleic acid, muconic acid, etc. A possible reaction pathway of ozonation of pCNB , proposed according to these products, was found to be in accord with that of NB. Due to the dissimilar place of either nitryl or chlorine, nitrochlorobenzene has three isomers as p-nitrochlorobenzene(pCNB), m-nitrochlorobenzene(mCNB) and o-nitrochlorobenzene(oCNB). Basing on the quantum chemistry, electron cloud density of carbon atom on phenyl and NOB were calculated to be different of these three isomers. The secondary rate constants of these three CNBs reacting directly with O_3 were 1.6, 1.5, 1.6L/(mol·s), respectively. Taking nitrobenzene and chlorbenzene as reference compounds, measured with competition kinetics method, the secondary rate constants of three CNBs reacting with·OH were 2.6×109, 2.8×109, 3.2×109L/(mol·s), respectively. It suggested that the free radical reaction is the primary reaction in the ozonation process of CNBs. It was found that pH value of the solution decreased during the process, the color of the solution turned yellow suddenly, then came back to colorlessness rapidly, and the concentration of IC,Cl- and NO_3- in the system increased gradually. H_2O_2 was generated in each different phase of the process, when the concentration of the pCNB is 50mg/L, the concentration of H_2O_2 could reach maximally to 1.8mg/L. The degradation efficiency of CNBs was 99%, but the removal rate of TOC was only 45%. Intermediate products were analyzed by GC-MS/LC-MS. The products of these three CNBs mainly contain phenolic matters such as chlorophenol, nitrophenol, nitrochlorophenol, and carboxylic matters such as oxalic acid, malonic acid, maleic acid,muconic acid. In the ozonation process of pCNB, -Cl and -NO2 could be replaced by·OH, chlorophenol and nitrophenol were formed meanwhile. But in the ozonation process of oCNB and mCNB, neither nitrophenol nor chlorophenol was detected. The hydrogen on the phenyl of all these three CNBs could be replaced by·OH, thus nitrochlorophenol was produced, and ten different nitrochlorophenols were detected by GC-MS/LC-MS. The difference of the substitutional place of -Cl or -NO_2 on the phenyl could lead to the difference of the electron cloud density of carbon and the natural bond orbital (NBO) population. The probability of the reaction between·OH and the hydrogen on the phenyl has some relationship with electron cloud density of carbon and NOB, but little relationship with bond energy. The reaction between·OH and CNBs is probably similar to the electrophilic substitution reactions of aryl.
     In the degradation of NB and CNBs by O_3-O_3/H_2O_2, aryl ring was hydroxylated by·OH first, electron cloud density on the aryl increased, then the instable aryl was cracked by ozone. Tannic acid, being polyhydroxyl, is one of macromolecule nature oganic matters, the efficiency and mechanism of tannic acid degradation by O_3 and O_3/H_2O_2 were studied. Results show that the addition of H_2O_2 has no obvious promotion on the ozonation efficiency of tannic acid. But the system of O_3/H_2O_2 performs 10 percent more than solo ozonation in the removal of TOC. The relative generating intensity of·OH in the O_3/H_2O_2 system was detected by Electronic Spin Resonance(ESR). It was found that tannic acid consumingly restrained the generation of·OH, it mainly attributes to the polyhydroxyl structure of tannic acid. In addition, ozone reacts speedily with tannic acid. Ozonation of tannic acid are mainly aldehydes such as acetaldehyde, glyoxal, methyl glyoxal. Analysis of Ion Chromatogram show that final products of tannic acid are oxalic acid, ketomalonic acid, they occupies 30 percent of TOC in both systems.
引文
1 D. L. Widrig, K. A. Gray and K. S. Mcauliffe. Removal of Algal-Derived Organic Material by Preozonation and Coagulation: Monitoring Changes of Organic Quality by Pyrolysis-GC/MS. Water Research, 1996, 30(11): 2621~2632
    2 J. H. Weber, S. A. Wilson. The Isolation and Characterization of the Fulvic Acid and Humic Acid from River Water. Water Research, 1975, 9(7): 1079~1084
    3 刘晓茹,冯惠华,张燕. 我国水环境有机污染现状与对策. 水利技术监督, 2005, (5): 58~60
    4 张秀芳. 辽河中下游水体中多氯有机物的残留调查. 中国环境科学. 2000, 20(1): 31~35
    5 中国国家环保局.中国 2000 环境状况公报
    6 刘季昂,王文华,王子健. 第二松花江水体沉积中难降解污染物的种类和含量. 中国环境科学, 1998, 18(6):518 ~520
    7 许士奋,蒋新,王连生. 长江和辽河沉积物中的多环芳烃类污染物. 中国环境科学, 2000, 20(2): 128~131
    8 褚少岗,杨春,徐晓白,等. 典型污染地区底泥和土壤中残留多氯联苯的情况调查.中国环境科学, 1995, 15(3):199~203
    9 康跃惠. 珠江三角洲河口及临近海区沉积物中含氯有机污染物的分布特征. 中国环境科学, 2000, 20(3): 245~249
    10 张秀芳,董晓丽. 辽河中下游水体中有机氯农药的残留调查. 大连轻工业学院学报, 2002, 21(2): 102~104
    11 张秀芳,全燮,陈景文,等. 辽河中下游水体中多氯有机物的残留调查. 中国环境科学, 2000, 20(1): 31~35
    12 保毓书. 环境因素与生殖健康.化学工业出版社,北京,2002
    13 中国国家环保局.中国 2003 环境状况公报
    14 王毓秀,张利民. 化学农药与环境激素. 农村生态环境, 1999, 15(4): 37~41
    15 王占生. 非危言耸听, 应见微知著. 给水排水, 1998, 24 (6): 1
    16 WHO. Guidelines for Drinking Water Quality(Third Edition). 2004
    17 GB/T 5750-2001 生活饮用水卫生规范. 2001
    18 GB5749-2005 生活饮用水卫生标准. 2005
    19 M. S. Chandrakanth, B. D. Honeyman, G. L. Amy. Modeling the Interactions between Ozone, Natural Organic Matter and Particles in Water Treatment. Colloids Surfaces A: Physicochemical and Engineeing Aspects, 1996, (107): 321~342
    20 P. Xu, M. L. Janex, P. Savoye, et al. Wastewater Disinfection by Ozone: Main Parameters for Process Design. Water Research, 2002, 36(4): 1043~1055
    21 N. K. Hunt, B. J. Marinas. Kinetics of Escherichia Coli Inactivation with Ozone. Water Research, 1997, 31(5): 1355~1362
    22 A. Driedger, E. Staub, U. Pinkernell, et al. Inactivation of Bacillus Subtilis Spores And Formation of Bromate During Ozonation. Water Research, 2001, 35(12): 2950~2960
    23 A. M. Driedger, J. L. Rennecker, B. Marinas. Sequential Inactivation of Cryptosporidium Parvum Oocysts with Ozone and Free Chlorine. Water Research, 2000, 34(14): 3591~3598
    24 J. L. Rennecker, B. J. Marinas, J. H. Owens. Inactivation of Cryptosporidium Parvum Oocysts with Ozone. Water Research, 1999, 33(11): 2481~2488
    25 刘军,王占生. 臭氧-活性炭工艺对饮用水中邻苯二甲酸酯的去除.环境科学, 2004, 25(1): 72~77
    26 R. Andreozzi, V. Caprio. The Kinetc of Mn(II) Catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Research, 1992, 26(7): 917~921
    27 蔡国庆. 臭氧催化氧化去除水中高稳定性有机污染物的研究. 哈尔滨工业大学博士论文, 2001
    28 K. H. Barbara, Z.Maria, N. Jacek. Review Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Applied Catalysis B: Environmental, 2003, 46(4): 639~669
    29 U. von Gunten. Ozonation of Drinking Water: Part I. Oxidation Kinetics and Product Formation. Water Research, 2003, 37(1): 1443~1467
    30 U. von Gunten. Ozonation of Drinking Water: Part II. Disinfection and Byproduct Formationin Presence of Bromide, Iodine or Chlorine. Water Research, 2003, 37(1): 1469~1687
    31 石枫华. O3/H2O2 和 O3/Mn 催化氧化工艺去除水中有机污的效能和机理. 哈尔滨工业大学博士论文, 2003
    32 C. C. D. Yao, W. R. Haag. Rate Constants for Direct Reactions of Ozone withSeveral Drinking Water Contaminants. Water Research, 1991, 25(7): 761~773
    33 S. J. Masten, S. H. Davies. The Use of Ozonation to Degrade Organic Contaminants in Wastewater. Environmental Science and Technology, 1994, 28(4): 181~185
    34 J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. Part I. Non-Dissociating Organic Compounds. Water Research, 1983, 17(2): 173~183
    35 J. Hoigné, H. Bader. Rate Constants Of Reaction Of Ozone With Organic and Inorganic Compounds in Water. Part II. Dissociating Organic Compounds. Water Research, 1983, 17(2): 185~194
    36 S. D. Richardson. Disinfection By-products and Other Emerging Contaminants in Drinking Water. Trends in Analytical Chemistry, 2003, 22(10): 666~684
    37 W. H. Glaze, J. W. Kang. The Chemistry of Water Treatment Process Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering, 1987, 9(5): 335~352
    38 V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Research, 1998, 32(11): 3208~3222
    39 R. Andreozzi, V. Caprio, A. Insola, et al. Advanced Oxoidation Processes(AOP) for Water Purification and Recovery. Catalysis Today, 1999, 53(1):51~59
    40 B. N. Badriyha. Advanced Oxoidation Processes, Carbon Adsorption, and Biofilm Degradation of Synthetic Organiv Chemicals in Drinking Water. Doctoral Dissertation of University of Southern California,1996
    41 W. R. Haag, C. C. D. Yao. Rate Constants for Reactions of Hydroxyl Radicals with Several Drinking Water Contaminants. Environmental Science and Technology, 1992, 26(5): 1005~1013
    42 G. V. Buxton, C. L. Greenstock, W. P.Helman, et al. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous Solution. Journal of Physical and Chemical Reference Data, 1988, 17(2):513~886
    43 T. J. Hardwick. The Free Radical Mechanism in the Reactions of Hydrogen Peroxide. Chemosphere, 1957, 35(3): 428~434
    44 J. Weiss. Investigation on the Radical HO2 in Solution. Trans. Faradaysoc. 1935, 31(3): 668~676
    45 H. Taube, W. C. Bray. Chain Reactions in Aqueous Solutions Containing Ozone, Hydrogen Peroxide and Acid. Journal of the American Chemical Society, 1940, 62(2): 3357~3373
    46 H. Prengle, J. William. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UV Radiations. Water Science and Technology, 1983, 17(4): 743~751
    47 R. W. Mattews. Photooxidation of Organic Material in Aqueous Suspentions of Titanium Dioxide. Water Research, 1990, 24(5): 653~670
    48 J. Hoigné, H. Bader. The Role of Hydroxyl Radical Reactions in Ozonation Processes in Aqueous Solutions. Water Research, 1976, 10(2),377~381
    49 张晖,程江. UV/O3 法降解水中对硝基酚. 环境化学. 1996, 15(4): 68~72
    50 R. Gerald, B. Rupert. UV/O3, UV/H2O2, TiO2/UV and the Photo-fenton Reaction-Comparison of Advanced Oxidation Processes for Wastewater Treatment. Chemosphere, 1994, 28(8): 32~39
    51 S. D. Freese, D. Nozaic, M. J. Pryor, et al. Comparison of Ozone and Hydrogen Peroxide/Ozone for the Treatment of Eutrophic Water. Water Science and Technology, 999, 39(10): 325~328
    52 R. C. Stephen, I. S. Mihaela, R. B. James, et al. UV/H2O2 Treatment of Methyl tert-butyl Ether in Contaminated Waters. Environmental Science and Technology, 2000, 34(4): 659~662
    53 M. S. Abdo, H. Shaban, M. S. Bader. Decolorization by Ozone of Direct Dyes in Presence of some Catalysts. Journal Environmental Science Health,1988, 23(7): 697~681
    54 R. Gracia, J. L. Aragues, J. L. Ovelleiro. Study of the Catalytic Ozonation of Humic Substances in Water and their Ozoantion By- products. Ozone: Science and Engineering, 1996, 18(3): 195~208
    55 R. Gracia, J. L. Aragues, J. L. Ovelleiro.Mn(II)-catalysed Ozonation of Raw Ebro River Water and Its Ozonation By-Products. Water Research, 1998, 32(1): 57~62
    56 R. Andreozzi, V. Caprio, A. Insola, et al. The Use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Applied Catalysis A:General, 1996 138(1): 75~81
    57 R. Andreozzi, V. Caprio, A. Insola, et al. Kinetic Modeling of Pyruvic AcidOzonation in Aqueous Solutions Catalyzed by Mn(II) and Mn(IV) Ions, Water Research, 2001, 35(1): 109~120
    58 D. S. Pines, D. A. Reckhow. Effect of Dissolved Cobalt (II) on the Ozonation of Oxalic Acid. Environmental Science and Technology, 2002, 36(19): 4046~4051
    59 S. Cortes, J. Sarasa, P. Ormad, et al. Comparative Efficiency of the Systems O3/High pH and O3/Catalyst for the Oxidation of Chlorobenzenes in Water. Ozone: Science & Engineering. 2000, 22(4): 415~426
    60 赵翔,曲久辉,李海燕,等. 催化臭氧化饮用水中甲草胺的研究. 中国环境科学, 2004, 24 (3):332~335
    61 E. Piera, J. C. Calpe, E. Brillas, et al. 2,4-Dichlorophenxyacetic Acid Degradation by Catalyzed Ozonation:TiO2/UVA /O3 and Fe(II)/UVA/O3 Systems. Applied Catalysis B: Environmental, 2000, 27(3): 169~177
    62 E. Brillas,J. C. Calpe, P . L. Cabot. Degradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Ozonation Catalyzed with Fe2+ and Uva Light. Applied Catalysis B: Environmental, 2003, 46 (2): 381~391
    63 N. Karpel, V. Leitner, B. Delouane, et al. Effects of Catalysts during Ozonation of Salicylic Acid, Peptides and Humic Substances in Aqueous Solution. Ozone: Science & Engineering, 1999, 21(3): 261~276
    64 L. Lin, T. Nakajima, T. Jomoto, et al. Effective Catalysts for Wet Oxidation of Formic Acid by Oxygen and Ozone. Ozone: Science & Engineering, 2000, 22(3): 241~247
    65 N. Al-Hayek, B. Legube, M. Dore.Fe( Ⅲ) /Al2O3-catalysed Ozonation of Phenol and Its Ozonation By-products. Environmental Technology Letters, 1999, 10(4): 415~426
    66 D. Pines, R. Humayan, D. A. Reckhow, et al. A Catalytic Oxidation Process for Removal of Ozone-byproducts. Water Quality Technology Conference. San Francisco USA, November 1994: 1493~1499
    67 F. J. Beltrán, F. J. Rivas, E. R. Montero. Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor. Applied Catalysis B: Environmental, 2002, 39(3): 221~231
    68 T. Tanaka, K. Tsuzuki, T. Takagi. Chemical Oxidation of Organic Matter in Secondary-treated Municipal Wastewater by Using Methods Involving Ozone, Ultraviolet Radidation and TiO2 Catalyst. Water Science and Technology, 2001,43(10): 295~302
    69 R. Andreozzi, V. Caprio, A. Insola, et al. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Water Research, 1998, 32(5):1492~1496
    70 J. Ma, N. J. Graham. Degradation of Atrazine by Manganese Catalysed Ozonation- influence of Humic Substances. Water Research, 1999, 33(3): 785~793
    71 J. Ma, N. J. D. Graham. Preliminary Investigation of Manganese-catalyzed Ozonation for the Destruction of Atrazine. Ozone: Science & Engineering, 1997, 19(3): 227~240
    72 J. Ma, N. J. D. Graham. A Comparison of Mn-O3 and H2O2-O3 for the Degradation of Atrazine. 15th International Ozone Congress. London, September 2001: 17~31
    73 J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese Catalyzed Ozonation Influence of Radical Scacengers. Water Research, 2000, 34(15): 3822~3828
    74 S. P. Tong, W. P. Liu, W, H, Leng, et al. Characteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere, 2003, 50(10): 1359~1364
    75 张彭义,祝万鹏,吕斌. Ni、Fe 氧化物对吐氏酸废水催化臭氧化研究. 上海环境科学, 1996, 15 (10): 25-27
    76 F. J. Beltrán, F. J. Rivas, E. R. Montero. Mineralization Improvement of Phenol Aqueous Solutions through Heterogeneous Catalytic Ozonation. Chemical Technology and Biotechnology, 2003,78(12): 1225~1233
    77 张涛,陈忠林,马军,等. 水合氧化铁催化臭氧氧化去除水中痕量硝基苯.环境科学, 2004, 25(4): 43~47
    78 C. Cooper, R. Burch. An Investigation of Catalytic Ozonation for the Oxidation of Halocarbons in Drinking Water Preparation. Water Research, 1999, 33(18): 3695~3700
    79 R. Gracia, S. Cortes, J.Sarasa, et al. TiO2-catalysed Ozonation of Raw Ebro River Water. Water Research, 2000, 34(5):1525~1532
    80 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. AppliedCatalysis B: Environmental, 2004, 47(1): 15~25
    81 B. Kasprzyk-Hordern. Chemistry of Alumina Reactions in Aqueous Solution and its Application Inwater Treatment. Advances in Colloid and Interface Science, 2004, 110(1-2): 19~48
    82 B. Kasprzyk-Hordern, P. Andrzejewski, A. Dabrowskaa, et al. MTBE, DIPE, ETBE and TAME Degradation in Water Using Perfluorinated Phases as Catalysts for Ozonation Process. Applied Catalysis B: Environmental, 2004, 51(1): 51~66
    83 F. P. Logemann, J. H. Annee. Water Treatment with a Fixed Bed Catalytic Ozonation Process. Water Science and Technology, 1997, 35(4): 353~360
    84 H. Fujita, J. Izumi, M. Sagehashi, et al. Adsorption and Decomposition of Water-dissolved Ozone on High Silica Zeolites. Water Research, 2004, 38(11): 159~165
    85 H. Fujita, J. Izumi, M. Sagehashi, et al. Decomposition of Trichloroethene on Ozone-adsorbed High Silica Zeolites. Water Research, 2004, 38(1): 166~172
    86 J. H. Qu, H. Y. Li, H. J. Liu, et al. Ozonation of Alachlor Catalyzed by Cu/Al2O3 in Water. Catalysis Today, 2004, 90(3-4): 291~296
    87 张彭义,祝万鹏,许强.镍铜氧化物对吐氏酸废水臭氧氧化的催化作用.中国环境科学, 1998, 18(4):310~313
    88 B. Legube, N. Karpel, V. Leitner. Catalytic Ozonation: a Promising Advanced Oxidation Technology for Water Treatment. Catalysis Today, 1999, 53(1):61~72
    89 J. Staehelin, J. Hoigné. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ion and Hydrogen Peroxide. Environmental Science and Technology, 1982, 16(3): 676~681
    90 W. H. Glaze, J. W. Kang. Advanced Oxidation Process:Description of a Kinetic Model for the Oxidation of Hazardous Material in Aqueous Media with Ozone and Hydrogen Peroxide in a Semibatch Reactor. Industrial and Engineering Chemistry Research,1989, 28:(11) 1573~1580
    91 E. J. Rosenfeldt, K. G. Linden, S. Canonica. Comparison of the Efficiency of OH Radical Formation during Ozonation and the Advanced Oxidation Processes O3/H2O2 and UV/H2O2. Water Research, 2006, 40(20): 3695~3704
    92 D. Mine, K. O. Zahir. Kinetics and Mechanism of Chlorobenzene Degradationin Aqueous Samples Using Advanced Oxidation Processes. Journal of Environmental Quality, 2001, 30(6):2062~2070
    93 S. Liang, R. S. Yates, D. V. Davis, et al. Treatability of MTBE-contaminated Groundwater by Ozone and Peroxone. Journal of American Water Works Association, 2001, 93(6):110~120
    94 M. M. Mitani, A. A. Keller, C. A.Bunton, et al. Kinetics and Products of Reactions of MTBE with Ozone and Ozone/Hydrogen Peroxide in Water. Journal of Hazardous Materials. 2002, 89(2-3):197~212
    95 A. S. Amiri. O3/H2O2 Treatment of Methyl-tert-butyl Ether (MTBE) in Contaminated Waters. Water Research. 2001, 35(15):3706~3714
    96 A. S. Amiri. O3/H2O2 Treatment of Methyl-tert-butyl Ether in Contaminated Waters: Effect of Background COD on the O3-Dose. Ozone: Science & Engineering, 2002, 24(1):55~61
    97 K. Kosaka, H. Yamada. K.Shishida, et al. Evaluation of the Treatment Performance of a Multistage Ozone/Hydrogen Peroxide Process by Decomposition By-products. Water Research, 2001, 35(15):3587~3594
    98 G. Kleiser, F. H. Frimmel. Removal of Precursors for Disinfection By-products (DBPs) -Differences between Ozone- and OH-radical-induced Oxidation. The Science of the Total Environment, 2000, 256(1):1~9
    99 S. D. Freese, D. Nozaic, M. J. Pryor, et al. Comparison of Ozone and Hydrogen Peroxide/Ozone for the Treatment of Eutrophic Water. Water Science and Technology. 1999, 39(10-11):325~328
    100 J. H. Suh, M. Mohseni. A Study on the Relationship between Biodegradability Enhancement and Oxidation of 1,4-Dioxane Using Ozone and Hydrogen Peroxide. Water Research, 2004, 38(10):2596 ~2604
    101 P. Ormad, S. Cortes, A. Puig, et al. Degradation of Organochloride Compounds by O3 and O3/H2O2. Water Research.1997, 31(9):2387~2391
    102 U. von Gunten, Y. Oliveras. Kinetics of the Reaction between Hydrogen Peroxide and Hypobromous Acid: Implication on Water Treatment and Natural Systems. Water Research, 1997, 31(4):900~906
    103 S. Matthias, H. Dietmar-Christian. Oxidation of Tri- and Perchloroethene in Aqueous Solution with Ozone and Hydrogen Peroxide in a Tube Reactor. Water Research.1997, 31(1):33~40104 A. Carr, B.Steve, R. Baird. Mineralization as a Mechanism for TOC Removal: Study of Ozone/Ozone-peroxide Oxidation Using FT-IR. Water Research, 2000,
    34(16):4036~4048
    105 S. M. Siddiqui. Chlorine-ozone Interactions: Formation of Chlorate. Water Research, 1996, 30(9):2160~2170
    106 H. Gulyas, R. Bismarck, L. Hemmerling. Treatment of Industrial Wastewaters with Ozone/Hydrogen Peroxide. Water Science and Technology. 1995, 32(7): 127~134
    107 Y. Yu, J. Ma, Y Hou. Degradation Of 2,4-Dichlorophenoxyacetic Acid in Water by Ozone-hydrogen Peroxide Process. Journal of Environmental Sciences, 2006, 18(6): 1043 ~1049
    108 D. Vogna, R. Marotta, A. Napolitano, et al. Advanced Oxidation of the Pharmaceutical Drug Diclofenac with UV/H2O2 and Ozone. Water Research, 2004, 38(2):414 ~422
    109 R. Andreozzi, V. Caprio, R. Marotta, et al. Ozonation and H2O2/UV Treatment of Clofibric Acid in Water: a Kinetic Investigation. Journal of Hazardous Materials, 2003, 103(3):233 ~246
    110 A. Latifoglu, M. D. Gurol. The Effect of Humic Acids on Nitrobenzene Oxidation by Ozonation and O3/UV Processes. Water Research, 2003, 37(8):1879 ~1889
    111 W. R. Chen, M. S.Charles, K.G. Linden, et al. Treatment of Volatile Organic Chemicals on the EPA Contaminant Candidate List Using Ozonation and the O3/H2O2 Advanced Oxidation Process. Environmental Science Technology, 2006, 40(8):2734~2739
    112 N. Takahashi, K. Tomoya. Ozonation of Dyestuffs and Intermediates and Further Decrease in Dissolved Organic Carbon by Post-biodegradation.Ozone: Science & Engineering, 2006, 28(3):141~147
    113 E.Acar, T.Ozbelge. Oxidation of Acid Red-151 Aqueous Solutions by the Peroxone Process and its Kinetic Evaluation. Ozone: Science & Engineering , 2006, 28(3):155~164
    114 T. Poznyak, J. Vivero. Degradation of Aqueous Phenol and Chlorinated Phenols by Ozone.Ozone: Science & Engineering, 2005, 27 (6):447~458
    115 S. Contreras, J. Piatkowska. M. Rodríguez, et al. Biodegradability Improvementof Aqueous 2,4-Dichlorophenol and Nitrobenzene Solutions by Means of Single Ozonation. Ozone: Science & Engineering, 2005, 27 (5): 381~387
    116 K. Ikehata, G. M. El-Din. Aqueous Pesticide Degradation by Ozonation and Ozone-based Advanced Oxidation Processes: A Review (Part I), Ozone: Science & Engineering, 2005, 27(2):83~114
    117 J. Y. Kim, S. H. Moon. Kinetic Study on Oxidation of Pentachlorophenol by Ozone. J Air Waste Manag Assoc, 2000,50(4):555~562
    118 M. S. Polo, E. Salhi, U. J. Rivera, et al. Combination of Ozone with Activated Carbon as an Alternative to Conventional Advanced Oxidation Processes. Ozone: Science & Engineering, 2006, 28 (4): 237~245
    119 F. J. Beltrán. J.F.Garcia-Araya. Kinetics of Simazine Advanced Oxidation in Water. Journal of Environmental Science and Health, 2000,35(4): 439~454
    120 J. Rivas, F. J. Beltrán, J. F. Garcia-Araya, V. Navarrete. Simazine Removal from Water in a Continuous Bubble Column by O3 and O3/H2O2. Journal of Environmental Science and Health - Part B, 2001, 36( 6):809~819
    121 F. J. Beltrán, M. Gonzalez, B. Acedo, et al. Kinetic Modelling of Aqueous Atrazine Ozonation Processes in a Continuous Flow Bubble Contactor. Journal of Hazardous Materials, 2000, 80(1-3): 189~206
    122 F. J. Beltrán, M. Gonzalez, B. Acedo, et al. Use of the Axial Dispersion Model to Describe the O3 and O3/H2O2 Advanced Oxidation of Alachlor in Water. Journal of Chemical Technology and Biotechnology, 2002, 77(5):584~592
    123 J. M. Monteagudo, Rodriguez .Advanced Oxidation Processes for Destruction of Cyanide from Thermoelectric Power Station Waste Waters. Journal of Chemical Technology and Biotechnology, 2004,79(2):117~125
    124 R. Andreozzi, V. Caprio, A. Insola. Advanced Oxidation Processes for the Treatment of Mineral Oil-Contaminated Wastewaters. Water Research, 2000, 34(2): 620~628
    125 D. Grossmann, H. Koser, R. Kretschmer. Treatment of Diglyme Containing Wastewater by Advanced Oxidation- Process Design and Optimization. Water Science and Technology, 2001, 44(5): 287~293
    126 K. van Craeynest, J. Dewulf. Removal of Trichloroethylene from Waste Gases via the Peroxone Process. Water Science and Technology, 2003, 48(3):65~72
    127 B. R. Lim, H. Y. Hu, K. H. Ahn. Oxidative Treatment Characteristics ofBiotreated Textile-dyeing Wastewater and Chemical Agents Used in a Textile-dyeing Process by Advanced Oxidation Process. Water Science and Technology, 2004, 49(5-6):137-143
    128 C. Langlais, A. Laplanche, D. Wolbert. Detoxification and Disinfection by O3/H2O2 for Greenhouse Effluents Reuse Using Static Mixers. Ozone: Science & Engineering, 2001, 23(5): 385~392
    129 C. Iordache, A. Meghea. Advanced Oxidation of p-Nitrophenol. Chemistry and Materials Science, 2003,65(4):3~8
    130 R. J. Spanggord, D.Yao, T. Mill. Kinetics of Aminodinitrotoluene Oxidations with Ozone and Hydroxyl Radical. Environmental Science and Technology, 2000, 24(3): 450~454
    131 F. Wang, D. W. Smith, E. M. Gamal. Aged Raw Landfill Leachate: Membrane Fractionation, O3 only and O3/H2O2 Oxidation, and Molecular Size Distribution Analysis.Water Research, 2006, 40(3):463~474
    132 M. Rodriguez, E. Chamarro, S. Esplugas, et al.Oxidation of Nitrobenzene by O3/UV: The Influence Of H2O2 and Fe(III). Experiences in a Pilot Plant.Water Science and Technology, 2001, 44(5):39~46
    133 钟理, C. H. Kuo, M. E. Zappi. Kinetics and Mechanism of Between Ozone and Hydrogen Peroxide. 华南理工大学学报, 1997, 25(12):50~54
    134 S. M. Chen. Kinetic Studies of the Oxidation of Toluene by Ozone and Hydrogen Peroxide Mixtures. MS Thesis of Miss State Univ, USA. 1995: 341~348
    135 R. Brunet, M. M. Bourbigot, M. Cie. Gen. Eaux Dore, et al. Oxidation of Organic Compounds through the Combination Ozone-hydrogen Peroxide. Ozone: Science & Engineering, 1984, 6(3): 63~83
    136 H. Bader, J. Hoigné. Determination of Ozone in Water by the Indigo Method. Water Research, 1981, 15(4):449~456
    137 G. Eisenberg. Colorimetric Determination of Hydrogen Peroxide. Industrial & Engineering Chemistry Analyticai Edition, 1943, 15(5), 327~328
    138 GB19134-91 水质 硝基苯、硝基甲苯、硝基氯苯、二硝基甲苯的测定. 气相色谱法,1991
    139 EPA Method 556 - Determination Of Carbonyl Compounds in Drinking Water by Pentafluorobenzylhydroxylamine Derivatization and Capillary GasChromatography with Electron Capture Detection, 2001
    140 O. A. O’Connor, L. Y. Young. Toxicity and Anaerobic Biodegradability of Substituted Phenols under Methanogenic Conditions. Environmental Toxicology and Chemistry, 1989, 8(10): 853~862
    141 Environmental Protection Agency, USA. Nitrobenzene Carcinogenicity. 1980, USA:Washington
    142 Y. Mu, H. Q. Yu, J. C. Zheng, et al. Reductive Degradation of Nitrobenzene in Aqueous Solution by Zero-Valent Iron. Chemosphere, 2004, 54 (7): 789~794
    143 M. D. Gurol, P. C. Singer. Kinetics of Ozone Decomposition: a Dynamic Approach. Environmental Science and Technology, 1982, 16(7): 377~383
    144 M. O. Buffle , J. M. Schumacher, J. M. Sebastien, et al. Ozonation and Advanced Oxidation of Wastewater: Effect of O3 Dose, pH, DOM and ?OH-Scavengers on Ozone Decomposition and ?OH Generation.Ozone: Science & Engineering, 2006, 28(4):247~259
    145 钟理,胡孙林,詹怀宇.氯乙烯废水 AOPs 过程及其反应动力学.化工科技.2000, 12(1): 1~4
    146 W. H. Glaze, J. W. Kang. Advanced Oxidation Processes Test of a Kinetic Model for the Oxidation of Organic Compounds With Ozone and Hydrogen Peroxide in a Semibatch Reactor. Industrial & Engineering Chemical Research,1989, 28(11): 1580~1587
    147 A. Roberto, C. Vincenzo, I. Amedeo, et al. Advanced Oxidation Processes(AOP) for Water Purification and Recovery. Catalysis Today, 1999, 53(1): 51~59
    148 Y. Pi, J. Schumacher, M. Jekel. Decomposition of Aqueous Ozone in the Presence of Aromatic Organic Solutes. Water Research, 2005, 39(1): 83~88
    149 F. Xiong, G. J. Graham. Removal of Atrazine through Ozonation in the Presence of Humic Substances. Ozone: Science and Engineering, 1992, 14(3): 263~268
    150 石枫华. O3/H2O2 和 O3/Mn 催化氧化工艺去除水中高稳定性有机物效能和机理. 哈尔滨工业大学博士论文, 2003: 40~52
    151 J. L. Acero, S. Konrad, U. V. Gunten. Influence of Carbonate on the Ozone/Hydrogen Peroxide Based Advansed Oxidation Process for Drinking Water Treatment. Ozone: Science & Engineering, 1998, 22(3): 305~328
    152 S. Guittonneau, D. Thibaudeau, P. Méallier. Free Radicals Formation Induced by the Ozonation of Humic Substances in Aqueous Medium. Catalysist Today,1996, 29(3): 323~327
    153 J. Hoigné. Inter Calibration of OH Radical Sources and Water Quality Parameters. Water Science and Technology, 1997, 35(4): 1~8
    154 K. Tanaka, W. Luesaiwong, T. Hisanaga. Photocatalytic Degradation of Mono-, Di-, and Trinitrophenol in Aqueous TiO2 Suspension. Journal of Molecular Catalysis A, 1997, 122(1): 67~74
    155 高金胜. O3/H2O2 对水中内分泌干扰物质的去除效果及机理研究. 哈尔滨工业大学博士论文, 2004
    156 C. K. Scheck, F. F. Frimmel. Degradation of Phenol and Salicylic Acid by Ultraviolet Radiation Hydrogen Peroxide Oxygen. Water Research, 1995, 29(10): 2346~235
    157 Y. Qiu, M. Z. Zappi, C. Kuo, et al. Ozonation Of 2,6-, 3,4-, and 3,5-Dichllorophenols Isomers within Aqueous Solutions. Journal of Environmental Engineering, 1999, 125(5): 441~450
    158 J. Staehelin, R. E. Biihler, J. Hoigné. Ozone Decomposition in Water Studied By Pulse Radiolysis ·OH And HO4· as Chain Intermediates. Journal of Physical Chemistry, 1984, 88(24): 5999~6004
    159 J. M. Feng. Nitrochlorobene Market Shrinks Gradually. China Chemical Reporter, 2005, January 26:21
    160 C. Liang. Market Analysis and Development Projections for Chlorobenzene Product Series. China Chemical Reporter, 2004, August 26: 20
    161 徐根良,徐秀珠. 环境中痕量特殊有机污染物的高效液相色谱测定. 浙江大学学报(自然科学版), 1999, 33(3):323~327
    162 孙润泰,陈敏,于波,等. 气相色谱法测定水源水中硝基氯苯类化合物结果分析. 中国卫生工程学, 2002, 1(3):149~153
    163 申献辰,冯惠华,王凤荣,等. 黄河中游对硝基氯苯传输迁移转化模拟. 水科学进展, 1997, 8(3): 264~269
    164 Q. Li, M. Minami, H. Inagaki. Acute and Subchronic Immunotoxicity of p-Nitrochlorobenzene in Mice. I. Effect on Natural Killer, Cytotoxic T-lymphocyte Activities and Mitogen-stimulated Lymphocyte Proliferation. Toxicology, 1998, 127(1):223~232
    165 F. J. Beltrán, J. M. Encinar, M. A. Alonso. Nitroaromatic Hydrocarbon Ozonation in Water. 1. Single Ozonation. International Engineering ChemistryResearch, 1998, 37(1): 25~31
    166 R. W. Matthews, D. F. Sangster. Measurement by Benzoate Radiolytic Decarboxylation of Relative Rate Constants for Hydroxyl Radical. The Journal of Physical Chemistry,1965.69(9):1938~1946
    167 G. S. Travlos, J. Mahler, H. A. Ragan, et al. Thirteen-week Inhalation Toxicity of 2- and 4-Chloronitrobenzene in F344/N Rats and B6C3F1 Mice. Fundamental and Applied Toxicology, 1996, 30(1): 75~92
    168 M. Gurol, S. Nekouinaini. Kinetic Behavior of Ozone in Aqueous Solutions of Substituted Phenols. Industrial and Engineering Chemistry Fundamentals, 1984, 23(1): 54~60
    169 J. Kochany, J. R. Bolton. Mechanism of Photodegradation of Aqueous Organic Pollutants. 2. Environmental Science Technology,1992, 26(2):262~265
    170 S. Gordon, K. H. Schmidt, E. J. Hart. A Pulse Radiolysis Study of Aqueous Benzene Solutions. Journal of Physical Chemistry. 1977, 81(2):104~109
    171 B. D. Michael, E. J. Hart. The Rate Constants of Hydrated Electron, Hydrogen Atom and Hydroxyl Radical Reactions with Benzene, 1,3-Cyclohexadiene, 1,4-Cyclohexadiene and Cyclohexene. Journal of Physical Chemistry, 1970, 74(12): 2878~2884
    172 J. A. Zimbron, K. F. Reardon. Hydroxyl Free Radical Reactivity toward Aqueous Chlorinated. Water Research, 2005, 39(10):865~869
    173 B. Cercek, M. Ebert. Radiolytic Transients from p-Nitrophenol and their Inter- and Intramolecular. Advance Chemical Series. 1968, 81(2): 210~221
    174 G. Merga, B. S. M. Rao, H. Mohan, J. P. Mittal. Reactions of OH and SO42+ with some Halobenzenes and Halotoluenes : A Radiation Chemical Study. Journal of Physical Chemistry. 1994, 98(37):9158~9164
    175 H. Mohan, J. P. Mittal. Direct Evidence for H+-catalysed Dehydration of Fluorohydroxycyclohexadienyl Radical: a Pulse Radiolysis Study. Journal of the Chemical Society, Faraday Transactions. 1995, 91(14): 2121~2126
    176 沈吉敏,陈忠林,学艳,等. O3/H2O2 去除水中硝基苯效果与机理.? 环境科学, 2006, 27(9): 1791~1797
    177 F. J. Beltrán. Ozone Reaction Kinetics for Water and Wastewater Systems. New York: Lewis Publishers, 2004: 7~46
    178 徐寿昌. 有机化学. 北京:高等教育出版社, 1993: 59~61
    179 J. Kochany, J. R. Bolton. Mechanism of Photodegradation of Aqueous Organic Pollutants.2. Environmental Science Technology, 1992, 26(2):262~265
    180 H. Mohan, M. Mudaliar, C. T. Aravindakumar, et al. Studies on Structure–Reactivity in the Reaction of OH Radicals with Substituted Halobenzenes in Aqueous Solutions. Journal of the Chemical Society, Perkin Transactions 2, 1991, 2(9): 1387~1392
    181 W. Z. Tang, P. C. Huang. The Effect of Chlorine Position of Chlorinated Phenols on Their Dechlorination Kinetics by Fenton's Reagent. Waste Management, 1995, 15(8): 612~622
    182 马志红,陆忠兵,石碧. 单宁酸的化学性质及应用. 天然产物研究与开发, 2003, 15(1): 87~91
    183 J. Perkowski, U. Dawidow, W. K. Jozwiak. Advanced Oxidation of Tannic Acid in Aqueous Solution. Ozone: Science & Engineering, 2003, 25(3): 199~209
    184 V. Lahoussine-Turcaud, M. R. Wiesner, B.J.Y. Ottero, et al. Coagulation Pretreatment for Ultrafiltration of a Surface Water. Journal of the American Water Works Association, 1990, 82 (12):76~82
    185 G. Cathalifaud, J. Ayele, M. Mazet. Aluminium Effect upon Adsorption of Natural Fulvic Acids onto PAC. Water Research, 1997 31(8):689~698
    186 A. M. El-Rehaili, W. J. Weber. Correlation of Humic Substance Trihalomethane Formation Potential and Adsorption Behavior to Molecular Weight Distribution in Raw and Chemically Treated Waters. Water Research, 1987, 21(5): 573~582
    187 R. S. Summers, B.Haist, J.Koehler, et al. The Influence of Background Organic Matter on Gac Adsorption. Journal of the American Water Works Association, 1989, 81(5):66~74
    188 A. Bruchet, C.Rousseau, J. Mallevialle. Pyrolysis-GC-MS for Investigating High-molecularweight THM Precursors and Other Refractory Organics. J. Am. Water Works Assoc. 1990, 82(9):66~74
    189 G. Newcombe, M. Drikas, S. Assemi, et al. Influence of Characterised Natural Organic Material on Activated Carbon Adsorption: I. Characterisation of Concentrated Reservoir Water. Water Research, 1997, 31(5):965~972
    190 M. Elovitz, U. von Gunten. Hydroxyl Radical/Ozone Ratios during the Ozonation Processes I. The Rct Concept. Ozone: Science & Engineering, 1999, 21(3): 239~260
    191 M. Elovitz, U. von Gunten. Hydroxyl Radical/Ozone Ratios during Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and Dom Properties. Ozone: Science & Engineering, 2000, 22(2):123~150
    192 A. D. Eaton. Measuring UU-absorbing Organics: A Standard Methard Method. Journal of the American Water Works Association, 1995, 87(2):86~90
    193 C. Campos, P. Harmant. Assessing the Impact of Dissolved Organic Carbon Changes on Disinfectant Stability in a Distribution System. Water Science and Technology: Water Supply. 2002, 2(3):251~257
    194 F. J. Beltrán, J. F. Garc?a-Araya, I. Giráldez. Gallic Acid Water Ozonation Using Activated Carbon. Applied Catalysis B: Environmental, 2006, 63(3-4):249~259
    195 金伟,范瑾初. 紫外吸光值(UV254)作为有机物替代参数的探讨. 工业水处理, 1997, 17(6):30~33
    196 P. C. Chiang, Y. W. Ko, C. H. Liang, et al. Modeling an Ozone Bubble Column for Predicting its Disinfection Efficiency and Control of DBP Forrnation. Chemosphere, 1999, 39(1):55~77
    197 S. D. Richardson. Disinfection By-products and other Emerging Contaminants in Drinking Water. Trends in Analytical Chemistry, 2003, 22(10): 666~684
    198 H. S. Park, J. M.Hwang, J. W.Kang, et al. Characterization of Raw Water for the Ozone Application Measuring Ozone Consumption Rate. Water Search, 2001, 35(11):2607~2614
    199 C. C D. Yao, W. R. Haag, Rate Constant for Direct Reaction of Ozone with Several Drinking Water Contaminates. Water Search, 1991, 25(4):761~773
    200 P. Neta, L.M. Dorfman, Pulse Radiolysis Studies.XIII: Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions, Adv. Chem. Ser., 1968, 81(6):222~230
    201 Y. Z. Pi, J. Schumacher, M. Jekel. The Use of para-Chlorobenzoic Acid (pCBA) as an Ozone/Hydroxyl Radical Probe Compound. Ozone: Science & Engineering, 2005, 27 (7): 431~436
    202 E. J. Rosenfeldt, K. G. Linden, S. Canonic,et al. Comparison of the Efficiency of OH Radical Formation during Ozonation and the Advanced Oxidation Processes O3/H2O2 and UV/H2O2 .Water Research, 2006, 40(20):3695~3704

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700