现代铜闪速熔炼炉发展中若干理论与操控优化问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代铜闪速熔炼炉发展中若干理论与操控优化问题的研究,对闪速熔炼技术的突破、提高铜回收率、提升国内铜冶炼企业盈利水平以及国际市场竞争力具有重要的现实意义。
     通过对闪速炉反应塔内工艺物料颗粒较全面的分析检测和总结前人研究成果,通过从微粒运动学、动力学、两相流体力学以及统计分析和归纳等方面的论证,提出了新的闪速熔炼模型——粒子脉动碰撞模型(PPC Model)。在闪速炉悬浮熔炼过程中粒子既存在分裂行为,又存在碰撞和聚合过程,精矿粒子的分裂和碰撞聚合是一对矛盾的统一体。粒子分裂是精矿快速氧化反应的结果,也加速了粒子脉动,而精矿粒子脉动正是粒子碰撞聚合主要原因;粒子聚合使氧化脱硫反应继续,是固液相之间氧传递的重要机制。粒子脉动碰撞模型具体表述如下:
     (1)在闪速炉反应塔不同高度上,精矿粒子的分裂和颗粒群内粒子脉动碰撞过程同时存在;
     (2)通过系统地论证分析高强湍流喷射流中粒子群的脉动与碰撞机制,提出精矿粒子脉动是粒子碰撞聚合主要原因;
     (3)随着氧化反应的进行,在颗粒中心形成熔融硫化物和SO_2气泡,颗粒外表面是多孔的氧化铁壳;熔融核中气相的生成促使粒子分裂和脉动,氧气浓度和当地温度越高,这一过程越强烈;
     (4)反应塔中由于粒子的大小、粒子的成分、粒子的周围的氧气浓度和粒子温度的不同,导致各粒子之间的氧化程度差别极大。氧化反应放出的热量使精矿粒子熔化;欠氧化粒子未完成脱硫反应;
     (5)过氧化粒子在反应塔中下降时,它们彼此之间、或者与反应慢的欠氧化粒子相碰撞,聚合长大,同时过氧化颗粒被欠氧化粒子还原。
     通过反应动力学和反应热力学分析确定,悬浮熔炼过程主要反应有:铜精矿着火燃烧反应、过氧化反应、碰撞还原反应、二次氧化反应、造渣反应和燃料燃烧反应,并以此建立了闪速熔炼仿真的数学模型。通过直接验证、逻辑验证和间接验证三种方式论证了本仿真模型的合理性和可靠性。
     本研究对炉渣中的铜损失形态进行了检验分析,并进行了沉淀池工业考察和炉内熔体的垂直取样,分析了炉结形成的主要原因。通过对金隆闪速炉生产数据的统计分析,研究炉渣带走铜所占百分率(或渣含铜)与铜精矿处理量、铜锍品位、炉渣成分(铁硅比)、渣层厚度和渣中Fe_3O_4含量等参数之间的关系,并提出降低弃渣含铜损失要重点控制闪速熔炼中Fe_3O_4行为的观点和技术路线。
     针对如何强化闪速熔炼的同时减少Fe_3O_4生成量,提出了在反应塔——沉淀池——贫化电炉系统中建立明显的氧势梯度,实行“氧势梯度熔炼”制度。通过在反应塔顶加入适量固体还原剂——焦粉(或煤粒),可以形成必要的氧势梯度,从而可实现在熔炼强化的同时,降低Fe_3O_4的生成量。通过闪速炼铜数字仿真试验得到了减少Fe_3O_4生成量优化工况。
     最后,对超强化闪速熔炼精矿喷嘴新结构进行了仿真研究与开发。它是一种旋流喷嘴,通过采用不同的旋流数可以改变火焰的形状和反应过程。超强化闪速熔炼可将现有的闪速炉的最大生产能力提高3~4倍。一系列仿真试验证明,若铜精矿采用气力输送的方式送入炉内,并且通过主要操作参数的优化匹配可成功实现超强化喷嘴的设计理念和目的。
The research on several theory and operation optimizationchallenges in the development of modern copper flash smelters would bevery important for breaking through the technical difficulties of flashsmelting, increasing the copper recovery, upgrading the domesticsmelteries' profit and competition ability in the international market.
     A new flash smelting theory—Particle Pulsation Collision Modelwas presented with overall analysis on the reacting particles in the shaftof the flash smelter, with conclusions of the former research results, andwith the proving from micro-particle kinematics, dynamics, two-phasefluid dynamics, statistic analysis and conclusion. Both the particlesplitting and the collision occur in the process of suspend smelting, whichare the two-side of the union of conflict. The particle splitting is the resultof rapid oxidation of the concentrate; meanwhile it results in intensifyingthe particle pulsation, which is the main cause of the particle collision.The particle gathering makes the oxidation and desulfurization reactioncontinue, which is the main mechanism of the oxygen transfer betweensolid and liquid phases. The specific statements on the Particle PulsationCollision Model are as follows.
     (1) The particle splitting and collision co-exist at different height ofreacting shaft.
     (2) It is presented that the concentrate particle pulsation is the mainreason for particle collision and gathering with the analysis on pulsationand collision of the high intensive turbulent jet of particle group.
     (3) With the oxidation continuance, melted sulphide and SO_2bubbles are formed at the particle center. The out-surface of the particle isporous ferric oxide shell. The gas formation in melting core impels theparticle splitting and collision. The higher the oxygen concentration andthe particle temperature are, the intenser the process is.
     (4) Because of the difference of the sizes, components, surroundingoxygen concentration and temperature of the particles, particles'oxidation have much difference. The heat released from the oxidation melts the concentrate particles, and the desulfurizations of under-oxidizedparticles are not completed.
     (5) While dropping in the shaft, the over-oxidized particles collideeach other or with the under-oxidized particles and gather to becomebigger. At the same time, the over-oxidized particles are deoxidized bythe under-oxidized particles.
     With analyzing the reaction dynamics and thermodynamics, it isconfirmed that the process of suspend smelting is made up of concentratecombustion, over-oxidization, collision and reducing reaction,re-oxidization, slagging reaction and fuel combustion. The numericalsimulation model of the flash smelter is set up, whose rationality andreliability have been proved by direct, logic and indirect methods.
     In this dissertation, the form of copper loss in the slag had beentested and analyzed. The melted matter at the different heights was takenout, and the industry examination of settler's working condition wasperformed for the analysis of main reason of the scar formation. Therelationships between copper lose percentage (or copper in slag) andsmelting capacity, copper matte grade, the slag component (Fe/SiO_2),slag thickness and Fe_3O_4 content were worked out on the basis ofstatistics analysis on Jinlong copper flash smelter's data. The viewpointand technical scheme was presented, which the Fe_3O_4 content must becontrolled for reducing the copper loss.
     For controlling the Fe_3O_4 content and intensifying the flash smelting,Gradient Oxygen Distribution Smelting Method is presented, which is toset up obvious oxygen gradient in the system of shaft, settler and electricfurnace. This is performed by adding coke or coal from the top ofreaction shaft. This kind of gradient oxygen distribution would be helpfulfor reducing Fe_3O_4 content and intensifying smelting. The optimizedoperation of controlling Fe_3O_4 formation is obtained with the numericalsimulation of the copper flash smelter.
     At the end, the structure of super-intensified concentrate burner isstudied and designed conceptually. It's a kind of swirl nozzle, which canchange the flame shape and the reaction process with different swirlingnumber. With the super-intensified concentrate burner, the highest throughput will be 3~4 times as before. With a series of simulation test, itis proved that feeding the concentration with air and optimizing the mainoperation parameters would successfully realize the ideas and aim of thedesign for the burner.
引文
[1] 任鸿九,王立川.有色金属提取手册(铜镍).北京:冶金工业出版社,2000.85~168
    [2] 彭荣秋.重金属冶金学(第二版).长沙:中南大学出版社,2004,87~155
    [3] 刘纯鹏.铜冶金物理化学.上海:上海科学技术出版社,1990.63~110,213~252,445~480,573~616
    [4] 任鸿九.有色金属熔池熔炼.北京:冶金工业出版社,2001.50~69,318~321
    [5] 朱祖泽,贺家齐.现代铜冶金学.北京:科学出版社,2003.99~442
    [6] 中华人民共和国国家统计局.中华人民共和国2002年国民经济和社会发展统计公报.http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20030228_69102.htm,2003.2.
    [7] 中华人民共和国国家统计局.中华人民共和国2003年国民经济和社会发展统计公报.http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20040226_402131958.htm,2004.2.
    [8] 中华人民共和国国家统计局.中华人民共和国2004年国民经济和社会发展统计公报.http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20050228_402231854.htm,2005.2.
    [9] 彭容秋.铜冶金.长沙:中南大学出版社,2004,26~65
    [10] F.Tanaka, H.Sato, N.Hasegawa. Technology for Decreasing Refractory Wear in the Mitsubishi Process: Fundamental Research and Its Application. In: C.Di az, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Tech-nology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 171~181
    [11] Moto Goto,赵玉敏译.三菱法炼铜新技术(一).有色矿冶,1996.4:23~30
    [12] 《有色冶金炉设计手册》编委会.有色冶金炉设计手册.北京:冶金工业出版社,2000.37~39,607~618,1048~1054
    [13] 上海期货交易所.阴极铜期货合约交易操作手册.http://www.shfe.com.cn/shfe/upload/dir_200532/1178_200532.pdf,2004.
    [14] BHP Billiton Melboume Mining Club. "Pleasant Dreams": A high growth scenario. http://www.bhpbilliton.com/bbContentRepository/Presentations/MelbourneMiningClub.pdf, 2004.11.
    [15] 谢玉凤.炼铜方法的比较及选择.有色矿冶,2000.2,16(1):27~30
    [16] Outokumpu. Annual Report 1995. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_1995.pdf, 1996.4.
    [17] Outokumpu. Annual Report 1996. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_1996.pdf, 1997.4.
    [18] Outokumpu. Annual Report 1997. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_1997.pdf, 1998.4.
    [19] Outokumpu. Annual Report 1998. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_1998.pdf, 1999.4.
    [20] Outokumpu. Annual Report 1999. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_1999.pdf, 2000.4.
    [21] Outokumpu. Annual Report 2000. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_2000.pdf, 2001.4.
    [22] Outokumpu. Annual Report 2001. http://www.outokumpu.com/files/Group/Investor/Documents/AR_eng_2001.pdf, 2002.4.
    [23] Outokumpu. Annual Report 2002. http://www.outokttmpu.com/files/Group/Investor/Documents/AR_eng_2002.pdf, 2003.4.
    [24] Outokumpu. Annual Report 2003. http://www.outokumpu.com/files/Group/Investor/Documents/OUT_ar2003.pdf, 2004.4.
    [25] Outokumpu. Annual Report 2004. http://www.outokumpu.com/21661.epibrw, 2005.4.
    [26] 于熙广.金隆公司技术改造规模的选择与探讨.有色金属(冶炼部分),2000.5:28~31
    [27] 郑逊良.江西铜业股份公司与国际铜矿业公司主要技:术经济指标比较.铜业工程,2001.4:5~9
    [28] 白猛,袁则平.贵溪冶炼厂闪速熔炼富氧技术改造工程的实施与完善.世界有色金属,1997.9:16~20
    [29] 杜怀明.贵溪冶炼厂二期工程概况.有色冶金设计与研究,2000.12,21(4):1~9
    [30] 叶薇.贵溪冶炼广三期工程概况.有色冶金设计与研究,2002.10,23(3):6~9
    [31] 黄辉荣.金隆闪速熔炼系统技术改进及其效果.矿冶,2001.9,10(3):52~55
    [32] 宋修明,周俊.金隆闪速炉炉况变化及稳定对策.有色冶炼,1998.5: 29~33
    [33] 宋修明.金隆公司挖潜改造的实践及效果.有色冶炼,2003.6:21~23
    [34] 王临江.金隆铜冶炼工程概况.有色冶金设计与研究,1998.9,19(3):4~6
    [35] 王晓华.金隆闪速炉炉体结构设计特点与运行实践.有色金属(冶炼部分),1999.5:8~10
    [36] 张文海.金隆铜业的成功与展望.有色冶金设计与研究,1998.9,19(3):1~3
    [37] 周俊,黄永峰.金隆闪速炼铜操作技术的进步.有色金属(冶炼部分).2000.5:2~6
    [38] 周松林.金隆闪速炼铜特点及实践.有色冶炼,1998.4:6~12
    [39] 周松林.闪速熔炼——清洁高效的炼铜工艺.中国工程科学,2001.10,3(10):86~89
    [40] 李月玲.马格马铜公司的营销战略.世界有色金属.1995.12:27~28
    [41] C.J.Newman, T.I.Probert, A.G.Storey, et al. Kennecott Smelter Modernization Project. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 311~330
    [42] N.J.Themelis. Copper Smelting in the 21st Century. In:C.Di az, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Develop-ment, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 3~14
    [43] M.Kyto, I.V.Kojo, P.Hanniala. Outokumpu Flash Technology Meeting the Environmental and Business Chalenges of the next century. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 417~433
    [44] 姜桂平.闪速炉精矿喷嘴的技术改进.铜业工程,2002.3:20~22
    [45] 刘英刚.奥托昆普闪速熔炼精矿喷嘴的发展.有色金属(冶炼部分),1995.4:40~44
    [84] D.N.Collins, F.R.A.Jorgensen, W.J.Rankin. Sampling the Shaft of the Olympic Dam Copper Flash Furnace. In: C.Di az, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 477~491
    [85] 陈伟庆.冶金工程实验技术.北京:冶金工业出版社,2004.158~194
    [46] 姚绍芸.新型精矿喷嘴在贵溪冶炼厂二期闪速炉的应用.有色冶金设计与研究,2000.12,21(4):12~16
    [47] 周红祥.贵冶三期精矿喷嘴改造.铜业工程,2003.2:34~35
    [48] 周俊,赵荣升.金隆闪速炉精矿喷嘴运行实践.矿冶,2000.3,9(1):51~58
    [49] J. Menezes, S. Morais,吴东华译.卡拉伊巴的新型中央喷嘴.闪速炼铜,2000.2~3:194~196
    [50] A. Jokilaakso, I. V. Kojo,田凯译.水是最好的耐火材料吗.闪速炼铜,2000.2~3:153~163
    [51] A.K.Kyllo, N.B.Gray, D.Papazoglou, et al. Application of Composite Furnace Module Cooling Systems in a Flash Furnace Reaction Shaft. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 223~234
    [52] E.Andersin, Y.Anjala, M.Lahtinen. Options in Copper Flash Smelter Expansion and Modernization. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 373~391
    [53] K.Morita, H.Kadoya,谢瑞荣译.东予厂基于铜精矿质量最优化的闪速炉和PS转炉的运行.闪速炼铜,2000.2~3:106~114
    [54] Kozo Baba, Kiyoshi Honda. The Future of Flash Smelting in Japan and in the Far East. The 8th International Flash Smelting Congress. USA: Outokrumpu, 1996. 392~409
    [55] L. Hellle, I. kojo, A. Grohn,李建波译.奥托昆普闪速熔炼工艺和设备的改进.闪速炼铜,1994.2~3:50~56
    [56] M. Shima, K. Yaoita,李建波译.铜闪速冶炼工艺发展探讨 闪速炼铜.1994.2~3:42~46
    [57] M.Somerville, T.Norgate, P.Jefferies, et al. Single Stage Copper Making-Flowsheet Development. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process. Modeling and Fundamentals. PhoenixA.Z. USA: 1999. 15~33
    [58] N.Voermann, F.Ham, J.Merry, et al. Furnace Cooling Design for Modern High-Intensity Pyrometallurgical Processes. http://www.hatch.ca/Technologies/Articles/Furnace%20Cooling%20Design%20for%20Modern%20High-Intensity%20Pyrometallurgical%20Processes.pdf, 1999.
    [59] P.Barrios, J.L.Bonano, J.Contreras, et al. The Modernization of the Huelva Copper Smelter. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 66~84
    [60] P.Duran, A.Chiang, A.Luraschi. Modeling of Flash Smelter Operations at the Chagres Smelter. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Sehwarze Symposium(Book 2). Santiago Chile: 2003. 193~208
    [61] O.Rentz, Frank Sehultmann. Report on Best Available Techniques (BAT) in Copper Production Final Draft. http://www.chem.unep.ch/mereury/2001-gov-sub/sub57govatt2-A.pdf, 1999.3.
    [62] T.Kimura, N.Kemori,李贻煌译.住友东予冶炼厂闪速熔炼的新发展.闪速炼铜,1994.2~3:1~6
    [63] V. "Ram" Ramachandran, Carlos Diaz, Tony Eltringham, et al. Primary copper production-a survey of operating world copper smelters, http://www.hatch.ca/Non_Ferrous/artieles/primary_copper_production.pdf, 2005.
    [64] X.G.Guo. Process Modeling and Intelligent System in Copper Smelter-The Future Smart Smelter Concept. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 165~178
    [65] Y. Oda, T. Iwamoyo,钟筱华译.玉野冶炼厂近十年的发展.闪速炼铜,1997.1:54~60
    [66] Y. Oda, T. Shibata,欧阳辉译.玉野型闪速炉(T-FSF)的研制.闪速炼铜,2000.2~3:200~205
    [67] Zheng Yaoming, Zhou Jun. Review on Jinlong Copper Flash Smelter. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 57~65
    [68] 陈远望.隆斯卡尔冶炼厂的现代化改造.世界有色金属,2001.7:44~46
    [69] 李安全,王新江.日本铜冶炼的成功经验.世界有色金属,2001.12:27~29
    [70] 李安全.近年来国外大型铜业公司主要动向.世界有色金属,1999.12:24~26
    [71] 谭宪章.玻利登隆斯卡尔冶炼厂技术考察及其简要评述.有色冶炼,1999.8,28(4):53~57
    [72] 吴东华.闪速炉高品位冰铜冶炼方法探讨.有色冶炼,1998.3:32~33
    [73] 谢朝礼.关于我国粗铜冶炼与世界先进水平的差距问题.江西铜业工程,1995.1:44~48
    [74] 徐传华.奥托昆普公司的冶炼技术.有色冶炼,2000.10,29(5):39~42
    [75] 于润沧,唐建.从日本的铜工业崛起看其发展之路.铜业工程,2003.1: 6~8
    [76] 袁精华.闪速炉设计及操作中的节能技术和措施.有色冶金节能,2000.3:9~11
    [77] 张朝阳.智利铜工业的技术改造和污染治理.世界有色金属,2000.7:32~37
    [78] 张文海.冷风闪速冶金在中国的实现和发展.中国工程科学,2002.11,4(11):19~25
    [79] 张文海.闪速冶金在金隆铜业的进步——中国“冷风”闪速炉投产5周年.世界有色金属,2003.1:11~14
    [80] 周俊,葛哲令.优化闪速炉精矿配料的探讨.有色金属(冶炼部分),2001.2:8~11
    [81] 朱祖泽.迎接铜工业挑战——低成本处理硫化铜精矿途径的思考.中国工程科学,2000.2,2(2):87~90
    [82] 邓淑华.铜闪速炉工艺参数解析.有色冶金设计与研究,2000.9,21(3):20~24
    [83] 国家技术前瞻研究组.中国技术前瞻报告2004(能源、资源环境和先进制造).北京:科学文献出版社,2005.261
    [86] Z.Asaki, S.Mori, M.Ikeda, et al. Oxidation of Pyrrhotite Particles Falling through a Vertical Tube. Metallurgical and Materials Transactions B, 1985 Sep., Vol.16B: 627~638
    [87] A.T.Jokilaakso, R.O.Suominen, P.A.Taskinen, et al. Oxidation of Chalcopyrite in simulated suspensions smelting. Trans. Instn. Min. Metall.(Sect. C: Mineral Process Extr. Metall.), 1991 May-Aug., Vol. 100: 79~90
    [88] N.J.Themelis. Transport Phenomena in High-Intensity Smelting Fur-naces. Trans. Inst. Min. Metall. (Sect. C: Mineral Process Extr. Metall.), 1987 Dec., Vol.96: 179~185
    [89] P.C.Chaubal, H.Y.Sohn. Intrinsic Kinetics of the Oxidation of Chalcopyrite Particles under Isothermal and Nonisothermal Condi-tions. Metallurgical and Materials Transactions B, 1986 Mar., Vol.17B: 51~60
    [90] Reto T. Meili. Preparation of Homogeneous Gas/Solid Suspensions for Efficient Down-flow Reactors. http://www.msemeili.ch/articles/paper_susp_en.pdf, 2005.
    [91] Richard D.Hagni, Christopher B.Vierrether, H.Y.Sohn. Process Mineralogy of Suspended Particles from a Simulated Commericial Flash Smel- ter. Metallurgical and Materials Transactions B, 1988 Oct., V61.19B: 719-729
    [92] V.Stefanova, K.Genevski, B.Stefanov. Mechanism of Oxidation of Pyrite, Chalcopyrite and Bornite During Flash Smelting. Canadian Metallurgical Quarterly, 2004, Vol.43(1): 75-88
    [93] Y.B.Hahn, H.Y.Sohn. Mathematical Modeling of Sulfide Flash Smelting Process: Part I. Model Development and Verification with Laboratory and Polit Plant Measurements for Chalcopyrite Concentrate Smelting. Metallurgical and Materials Transactions B, 1990 Dec, Vol.21B: 945-958
    [94] Y.B.Hahn, H.Y.Sohn. Mathematical Modeling of Sulfide Flash Smelting Process: Part II. Quantitative Analysis of Radiative Heat Transfer. Metallurgical and Materials Transactions B, 1990 Dec, Vol.21B: 959-966
    [95] Zenjiro Asaki. Kinetic Studies of Copper Flash Smelting Furnace and Improvements of its Operation in the Smelters in Japan. Mineral Processing and Extractive Metallurgy Review, 1992, Vol.11: 163-185
    [96] A.A.Shook, GGRichards, J.K.Brimacombe. Mathematical Model of Chalcocite Particle Combustion. Metallurgical and Materials Transactions B, 1995 Oct., Vol.26B: 719-729
    [97] GA.Caffery, AA.Shook, J.R.Grace, et al. Comparisons between Sulfide Flash Smelting and Coal Combustion—with Implications for the Flash Smelting of High-Grade Concentrate. Metallurgical and Materials Transactions B, 2000 Oct., Vol.31B: 1005-1012
    [98] GJ.Morgan, J.K.Brimacombe. Kinetics of the Flash Converting of MK(Chalcocite) Concentrate. Metallurgical and Materials Transactions B, 1996 Apr., Vol.27B: 163-175
    [99] H.Y.Sohn, V.Ramachandran. Advances in Sulfide Smelting— Technology, R&D, and Education. In:J.A.Asteljoki, R.L.Stephens, eds. Sulfide Smelting ' 98: Current and Future Pratices. San Antonio T.X. USA: The Minerals, Metals & Materials Society, 1998. 3-37
    [100] I.D.Sutalo, F.RA.Jorgensen, N.B.Gray. Experimental and Mathematical Investigation of the Fluid Flow inside and below a 1/4 Scale Air Model of a Flash Smelting Burner. Metallurgical and Materials Transactions B, 1998 Oct., Vol.29B: 993-1006
    [101] K.W.Seo, H.Y.Sohn. Mathematical Modeling of Sulfide Flash Smelting Process: Part III. Volatilization of Minor Elements. Metallurgical and Materials Transactions B, 1991 Dec., Vol.22B: 791~799
    [102] I.H.Bonekamp, J.H.Groeneveld, M.A.Reuter, et al. Quantification of the Dynamics of the Flash Smelter. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 361~375
    [103] Helsinki University of Technology Department of Materials Science and Rock Engineering Laboratory of Materials Processing and Powder Metallurgy. Laboratory Of Materials Processing And Powder Metallurgy Annual Report 1997. http://materiaali.tkk.fi/en/LMP/annual97.pdf, 1998.
    [104] Helsinki University of Technology Department of Materials. Science and Rock Engineering Laboratory of Materials Processing and Powder Metallurgy. Laboratory Of Materials Processing And Powder Metallurgy Annual Report 1999. http://materiaali.tkk.fi/en/LMP/annual99.pdf, 2000.
    [105] Helsinki University of Technology Department of Materials Science and Rock Engineering Laboratory of Materials Processing and Powder Metallurgy. Laboratory Of Materials Processing And Powder Metallurgy Annual Report 2000. http://materiaali.tkk.fi/en/LMP/annual00.pdf, 2001.
    [106] Helsinki University of Technology Department of Materials Science and Rock Engineering Laboratory of Materials Processing and Powder Metallurgy. Laboratory Of Materials Processing And Powder Metallurgy Annual Report 1998. http://materiaali.tkk.fi/en/LMP/annual98.pdf, 1999.
    [107] Jee-Soon Kang, Su-Ⅱ Pyun. High-temperture oxidation processes in dispersed particle jet system of Cu-Fe-S mineral-bearing concentrates. Trans. Instn. Min. Metall.(Sect. C: Mineral Process Extr. Metall.), 1988 Dec., Vol.97: 198~206
    [108] W.J. Chen, C. Diaz, A. Luraschi, et al.铜的火法冶金—1995年铜国际会议论文集(,邓文基等译).北京:冶金工业出版社,1998.420~438
    [109] Nobumasa Kemori, Yukio Shibata, Mutsuo Tomono. Measurements of Oxygen Pressure in a Copper Flash Smelting Furnace by an Emf Method. Metallurgical and Materials Transactions B, 1986 Mar., Vol.17B: 111~117
    [110] N. Kemori, Yojima,陈汉春译.沿反应塔氧压分布的模拟.闪速炼铜,1989.1:57~68
    [111] N.Kemori, W.T.Denholm, H.Kurokawa. Recation Mechanism in a Copper Flash Smelting Furnace. Metallurgical and Materials Transactions B, 1989 June, Vol.20B: 327~336
    [112] N. Kemori, W.T.Denholm,陈汉春译.铜闪速炉反应塔内的反应机理.闪速炼铜,1991.3:1~12
    [113] E.J.Peuraniemi, J.Jarvi, A.Jokilaakso. Behaviour of Copper Matte Particles in Suspension Oxidation. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 463~476
    [114] Z.Miczkowski, J.Czernecki, G.Szwancyber. Modelling of the Phonomena Taking Place during the Chalcocine Concentrate Oxidation in the Fash Process. The 8th International Flash Smelting Congress. USA: Outokumpu, 1996. 351~372
    [115] 家守伸正,近藤康裕,周荣华译.铜精矿粒子在反应塔内的氧化和碰撞——炼铜闪速炉反应塔内的反应机理解析(Ⅱ).闪速炼铜,1992.1:35~45
    [116] 家守伸正,尾岛康夫,周荣华译.对闪速炉内反应粒子的显微镜观察——炼铜闪速炉反应塔内的反应机理解析(Ⅰ).闪速炼铜,1991.4:40~47
    [117] 木村,小岛,俞诚诠译.闪速熔炼反应塔里的反应机理.闪速炼铜,1987.1:62~71
    [118] 岑可法,樊建人.工程气固多相流动的理论及计算.杭州:浙江大学出版社,1990.230~284,303~375,436~474
    [119] 陈新民.火法冶金过程物理化学.北京:冶金工业出版社,1984.3~132
    [120] 重有色金属冶炼设计手册编委会.重有色金属冶炼设计手册(铜镍卷).北京:冶金工业出版社,1996.103~280
    [121] 王建军,包燕平,曲英.中间包冶金学.北京:冶金工业出版社,2001.107~109
    [122] V.M.Sanchez-Corrales, J.A.Valera-Gonzalez, P.Flores-Perez, et al. Mass Balance Calculations in Copper Flash Smelting by Means of Genetic Algorithms. JOM. 2004 Dec., 56(12): 29~32
    [123] A.Kaneda, S.Okabe, O.Iida, et al. Application of Numerical Heat and Fluid Flow Analysis to Designing the Mitsubishi Process Slag Cleaning Furnace. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Sehwarze Symposium(Book 2). Santiago Chile: 2003. 179~192
    [124] B.R.Adams, K.A.Davis, M.P.Heap, et al. Application of a Reacting CFD Model to Drop Tube Kinetics and Flash Smelter Combustion. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Develop- ment, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 389~402
    [125] C.B.Solnordal, F.R.A.Jorgensen, P.T.L.Koh, et al. CFD Modelling Of The Flow And Reactions In A Flash Furnace Smelter Reaction Shaft. http://www.cfd.com.au/cfd_conf03/papers/065Sol.pdf, 2003.12.
    [126] J.M.Berkoe, D.M.Lane, B.M.Rosendall. Computerized Fluid Dynamic (CFD) Modeling: An Important New Engineering Tool for Design of Smelting Fumaces. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 53~66
    [127] J.Szekely,许秋荣译.提取冶金的数学模型的进展.闪速炼铜,1991.3:36~43
    [128] J.Vaarno, J.Jarvi, T.Ahokainen, et al. Development of a mathematical modle of flash smelting and converting processes, http://www.cfd.com.au/cfd_conf03/papers/093Jar.pdf, 2003.12.
    [129] L. Lilja, P. Taskinen,杨红生译.计算流体力学——提高闪速冶炼技术的效率.闪速炼铜,2000.2~3:182~193
    [130] R.Parada, R.Bustamante. Dynamic Simulation of the Flash Fumace at the Chagres Smelter. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 335~348
    [131] S.R.Varnas, N.Kemori, P.T.L.Koh. Evaluation of Nickel Flash Smelting through Piloting and Simulation. Metallurgical and Materials Transactions B, 1998 Dec., Vol.29B: 1329~1343
    [132] T.Ahokainen, A.Jokilaakso. Numerical Simulation of the Outokumpu Flash Smelting Furnace Reaction Shaft. Canadian Metallurgical Quarterly, 1998, Vol.37(3~4): 275~283
    [133] Y.B.Hahn, H.Y.Sohn,黄毓英译.通过湍流轴对称气体喷嘴喷入闪速炉反应塔中的粒子轨迹和分布.闪速炼铜,1990.1:2~19
    [134] 陈卓,梅炽,周萍,等.闪速炉反应塔炉壁温度场的数值解析.有色金属,2001.2,53(1):31~34
    [135] 黄克雄,黎书华,尹爱君,等.贵溪闪速炉造锍熔炼过程计算机模拟.中南工业大学学报,1996.4,27(2):173~176
    [136] 李欣峰,梅炽,张卫华.铜闪速炉数值仿真.中南工业大学学报,2001.6,32(3):262~266
    [137] 李欣峰.炼铜闪速炉熔炼过程的数值分析与优化:[博士学位论文].湖南·长沙:中南大学,2001
    [138] 梅炽,陈卓,任鸿九,等.闪速炉生产合理强化方案的计算机仿真研究.有色金属,2000.11,52(4):50~53
    [139] 梅炽.有色冶金炉窑仿真与优化.北京:冶金工业出版社,2001.91~102
    [140] 张远君.流体力学大全.北京:北京航空航天大学出版社,1991.350~362,539~544
    [141] 周力行.多相湍流反应流体力学.北京:国防工业出版社,2002,225~270
    [142] A.K.比士瓦士,W.G.达文波特.铜提取冶金(,昆明工学院冶金系有色金属冶炼教研组译).北京:冶金工业出版社,1980.127~144,165~175,328~339
    [143] O.库巴谢夫斯基,C.B.奥尔考克.冶金热化学(,邱竹贤等译).北京:冶金工业出版社,1985.315~324
    [144] 伊赫桑·巴伦.纯物质热化学数据手册(上卷)(,程乃良等译).北京:科学出版社,2003.I-1~I-65,615~620,700~713
    [145] 伊赫桑·巴伦.纯物质热化学数据手册(下卷)(,程乃良等译).北京:科学出版社,2003.1427,1505
    [146] 黎书华,黄克雄,梅显芝.贵溪闪速炉铜锍熔炼过程热力学模型.中南工业大学学报,1995.10,26(5):627~631
    [147] I.D.Sutalo, J.A.Harris, F.R.A.Jorgensen, et al. Modeling Studies of Fluid below Flash-Smelting Burners Including Transient Behavior. Metallurgical and Materials Transactions B, 1998 Aug., Vol.29B: 773~784
    [148] G.A.Caffery, A.A.Shook, J.R.Grace, et al. A Laboratory-scale Investiga-tion of Different Burner Designs to Treat High-grade Copper Concentrate. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 13~28
    [149] F.Guevara, R.Fuentes, A.Valencia. Numerical and Experimental Modeling of the Concentrate Burner in a Flash Smelting Furnace. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 377~387
    [150] W.G.L.Davenport, A.K.Biswas. Extractive Metallurgy of Copper. Oxford: Pergamon, 2002. 173~185
    [151] 左立雄.浅谈贵冶闪速炉沉淀池的管理.铜业工程,2002.1:68~70
    [152] Kumar M.Iyer, H.Y.Sohn. Physical and Mathematical Modeling of Pyromatallurgical Channel Reactors with Bottom Gas Injection: Residence Time Distribution Analysis and Ideal-Reactor-Network Model. Metallurgical and Materials Transactions B, 1994 Apr., Vol.25B: 207~219
    [153] Kim O.Fagerlund, Heikki Jalkanen. Microscale Simulation of Settler Processes in Copper Matte Smelting. Metallurgical and Materials Transactions B, 2000 June, Vol.31B: 439~451
    [154] K.O.Fagerlund, H.Jalkanen. Some Aspects on Matte Settling in Copper Smelting. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 539~551
    [155] Jong-Leng Liow, Mikko Juusela, N.B.Gray, et al. Entrainment of a Two-Layer Liquid through a Taphole. Metallurgical and Materials Transactions B, 2003 Dec., Vol.34B: 821~832
    [156] Hang Goo Kim, H.Y.Sohn. Thermodynamic modeling of minor element in in-bath copper smelting and converting with calciun ferrite slag. Trans. Instn. Min. Metall.(Sect. C: Mineral Process Extr. Metall.), 1996 Sep.-Dec., Vol.105: 151~163
    [157] J.G.Dunn, L.G.Mackey, T.N.Smith, et al. Mineralogical study of products collected following pilot-scale smelting of some Western Australian nickel sulphide concentrates. Trans. Instn. Min. Metall.(Sect. C: Mineral Process Extr. Metall.), 1993 May.-Aug., Vol.102: 75~82
    [158] 曾令熙.闪速炉前期渣样的矿物学分析.矿产综合利用,1999.4:29~31
    [159] D.W.Rich,李建波译.奥林匹克坝闪速熔炼直接生产粗铜炉渣的化学性质.闪速炼铜,1993.2~3:15~19
    [160] E.A.de Siegel, P.D.Siegel. Automatic Mineralogical Analysis of Copper Slags. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 99-Cobre 99-Volume 6: Smelting, Technology Development, Process Modeling and Fundamentals. Phoenix A.Z. USA: 1999. 627~635
    [161] P.P.Das, S.Anand, K.Sarveswara Rao, et al. Leaching behaviour of copper converter slag obtained under different cooling conditions. Trans. Instn. Min. Metall.(Sect. C: Mineral Process Extr. Metall.), 1987 May-Aug., Vol.96: 156~162
    [162] 昂正同.降低闪速熔炼渣含铜实践.有色金属(冶炼部分),2002.5:15~17
    [163] 陈羽年.降低贵冶电炉渣含铜的研究.有色金属(冶炼部分),2003.1:21~23
    [164] 李样人.降低电炉渣含铜的措施.矿冶工程,2003.6,23(3):49~50
    [165] 李贻煌.贵溪冶炼厂降低电炉渣含铜的研究和实践.有色金属,2000.5,52(2):49~52
    [166] 毛剑涛,余齐汉.降低电炉渣含铜量的生产实践.江西有色金属,2004.6,18(2):44~45
    [167] 王树清.闪速炉炉底结瘤的控制.有色冶炼,1999.6,28(3):46~47
    [168] V.M.Paretsky, A.V.Tarasov. Effect of Slag Composition on Copper Losses in Autogenous Smelting. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 329~342
    [169] T.W.Gonzales,陈汉春译.炉渣化学与闪速炉生产.闪速炼铜,1994.2~3:30~34
    [170] S.W. Ip, J.M.Toguri,吴继烈译.铜冶炼过程中铜及冰铜的夹带行为.闪速炼铜,1993.4:41~49
    [171] R.Parada, R.Parra. Slag quality in copper flash smelting. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Sehwarze Symposium(Book 2). Santiago Chile: 2003. 383~396
    [172] 高祖新,陈华钧.概率论与数理统计.南京:南京大学出版社,1995.231~285
    [173] 曾青云.铜闪速熔炼操作数据的回归分析.有色金属(冶炼部分),1994.5:4~6
    [174] 周俊.铜闪速熔炼贫化电炉渣含铜的线性回归分析.矿冶,2003.6,12(2):58~62
    [175] A.K.Shrivastava, S.N.Bhattacharya,钟灵译.KHETRI闪速炼铜厂控制四氧化三铁的经验.闪速炼铜,1994.2~3:81~84
    [176] 昂正同.闪速炼铜过程中四氧化三铁的生成与控制.矿冶,2002.12,11(4):69~72
    [177] 高承君.闪速炉反应塔加块煤的研究.有色金属(冶炼部分),2003.1:24~25
    [178] 徐家振,叶国瑞,贺家齐,等.添加焦粉对闪速炉熔炼产物成分的影响.有色金属(冶炼部分),2000.1:10~11
    [179] G.Riveros, A.Warczok, D.Espinola. Rate of Slag Reduction with Natural Gas. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 367~382
    [180] T.Marin, T.Utigard, G.Riveros, et al. Effect of Combustion Gases on the Rate of Liquid Copper Oxidation. In:C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 397~412
    [181] M.R.Sarhadi, E.Niknejad, H.Yoozbashizadeh. Fire Refining of Copper-As, Sb and Bi Removal by Basic Oxidation with Decreased Refractory Wear. In: C.Diaz, C.Landolt, T.Utigard, eds. Copper 2003-Volume Ⅳ: Pyrometallurgy of Copper Hermann Schwarze Symposium(Book 2). Santiago Chile: 2003. 99~108
    [182] 梅炽,谢锴,陈红荣,等.闪速炼铜“高效反应区”的形成条件与应用效果.有色金属,2003.11,55(4):85~88
    [183] 韩昭沧.燃料及燃烧(第二版).北京:冶金工业出版社,1994.78~87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700