Fe_(84)(NbV)_7B_9纳米晶软磁材料的制备及其相关基础问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家十五攻关项目“非晶合金粉末固化成型——磁力控制退火晶化法制备大块状FeMB合金纳米晶的研究”(编号2001BA310A03-1),研究了Fe-M-B纳米晶软磁块体材料的制备方法及其所涉及的基础问题。
     首先,根据合金热力学知识,计算了Fe和B与相关元素各自形成二元有序合金或固溶体时混合焓的大小,发现最大的负混合焓均分别出现于Fe-Nb系和B-Nb系,其次为Fe-V系和B-V系,并且形成有序合金时能量最低。在此基础上,进一步考虑了应变能、弹性能和结构能的影响,并结合Slater-Pauling关系,预测了利用机械合金化法或利用快速凝固—非晶晶化法制备Fe_(84)(NbV)_7B_9高磁通密度的纳米晶软磁材料的可行性。
     在此基础上,采用机械合金化-高压成形法制备了Fe_(84)(NbV)_7B_9纳米晶块体材料。研究表明,在机械合金化过程中,随着球磨时间的增加,Fe、Nb(V)、B混合粉末合金化程度逐渐升高,晶粒尺寸逐渐减小,最终形成了具有bcc结构和微纳层状组织的、晶粒为10~15nm的Fe_(84)(NbV)_7B_9非平衡纳米晶固溶体。V元素的添加可加速合金化过程。完全合金化的粉末,其M_s可达150~170Am~2/kg。粉末边缘生成的非晶层有利于交换耦合作用的进行,改善了合金的矫顽力。在退火过程中,随着退火温度的升高,Fe_(84)(NbV)_7B_9纳米晶粉末晶粒尺寸逐渐长大,内应力逐渐松弛。但在750℃以下退火,纳米晶长大速度很慢,且无新相生成。对于Fe_(84)Nb_3V_4B_9合金,其晶粒尺寸可保持在10~20nm范围内。当退火温度高于750℃以后,纳米晶尺寸急剧长大,并且产生了NbFeB等杂质相。
     在机械合金化过程中,位错泵机制和层状结构为元素间原子扩散提供了快速通道。机械合金化使粉末内产生了大量的微纳层状结构,原子可以通过层间界面扩散形成非平衡固溶体。机械合金化过程中,大量位错积累的结果导致位错胞的形成,并最终发展为纳米晶。当晶格畸变和位错密度增至系统自由能足够高时可获得非晶结构。
     在上述工作基础上,采用5.5GPa的成形压力和1530w加热功率的高压成形条件,成功制备了相对密度大于97%的Fe_(84)(NbV)_7B_9纳米晶块体,晶粒尺寸约为10~15nm,饱和磁化强度约为150Am~2/kg,矫顽力约为0.85KA/m。退火时,纳米晶块体晶粒长大,应力松弛以及新相形成的规律与纳米晶粉体基本相同。研究发现,提高超高压压形压力,不但能有效抑制Fe-Nb、Fe-B等杂质相生成,而且能有效防止块体纳米晶尺寸的长大。这一结论对今后纳米晶软磁块体材料超高压成形技术的发展具有重要的指导意义。
     本文还采用水冷铜模快速凝固法首次成功制备了具有非晶与纳米晶双相结构的Fe_(84)(NbV)_7B_9块体材料,其晶粒尺寸约在10~20nm之间,且均匀分布在非晶基体中。退火时,块体中的非晶部分逐渐产生晶化现象,同时,块体材料的软磁性能逐步提高。550℃退火可获得最佳综合软磁性能:B_s=1.52~1.54T,H_c<5.0~8.0 A/m,μ_e(1KHz,0.4A/m)=18000~20000。本文研究的水冷铜模快速凝固+非晶晶化法是一种非常有前途的制备高性能纳米晶软磁块体材料的短流程方法,该方法制备的Fe_(84)(NbV)_7B_9纳米晶块体材料软磁性能远优于目前报导的各种方法制备的纳米晶软磁块体材料的软磁性能,甚至不逊于快速凝固非晶薄带+非晶晶化法制备的二维带状纳米晶软磁材料,其前景是非常诱人的。
     根据Hill微系统热力学理论,本文还建立了一个同时包含尺寸和形状效应的磁性纳米颗粒的居里温度模型,该模型对自由态和嵌入态Fe、Co、Ni磁性纳米微粒居里温度的计算结果与纳米晶体居里温度下降的实验现象吻合良好。最后,本文根据纳米晶体结合能的计算公式,建立了纳米晶体熔化与过热的等效模型。在此基础上计算了Fe、Co、Ni等磁性纳米晶体的最小临界尺寸和最低熔化温度,分析了其在使用过程中可能存在的热稳定性问题。此外,还建立了纳米晶体表面能和空位形成能模型,该模型对Fe、Co、Ni等金属的预测结果与大部分实验数据和其他理论计算相吻合。在此基础上,利用纳米晶体结合能的包覆界面模型对Fe-M-B纳米晶双相合金进行了描述,并根据熔化与过热的等效模型对其熔化温度、熔化熵、熔化焓等参量进行预测。
Preparation methods for Fe_(84)(NbV)_7B_9 nanocrystalline soft magneticalloys and related fundamental theory were investigated in this paper,supported by the National Key Technologies R & D Program of Chinaduring the 10th Five-year Plan Period (No.2001BA310A03-1).
     First, the mixing heat of formation for Fe and B that combine withother elements to form binary ordered alloys or solid solution wascalculated on the basis of thermodynamic theory. It's found that thenegative maximum value appears in the Fe-Nb and B-Nb systemsrespectively, next are Fe-V and B-V systems, and the energy requiredreaches its minimum for the formation of ordered alloys. Furthermore,considering the influence of strain energy, elastic energy and structureenergy, and combining the relationship of Slater-Pauling, the possibilityof high magnetic Fe_(84)(NbV)_7B_9 prepared by mechanical alloying or rapidsolidification- crystallizing amorphous solid is predicted.
     Accordingly, Fe_(84)(NbV)_7B_9 nanocrystalline bulk was obtained bymechanical alloying-high pressure forming. It shows that with theincreasing of milling time, Fe、Nb(V)、B mixing powders tend to higheralloying lever and the grain size decreases gradually. In the end,nonequilibrium Fe_(84)(NbV)_7B_9 nanocrystalline solid solution with bccstructure, microthin-layer morphology and grain size of 10~15nm isformed. The addition of V element can accelerate the alloying process.Completely alloyed powders exhibit high M_s of 150~170Am~2/kg.Amorphous layer generated on the boundary of powders can benefit theexchange of coupling, which improves the coercive force of alloys. Withthe increment of annealing temperature, grain size of Fe_(84)(NbV)_7B_9nanocrystalline powder increases gradually and its inner stress relaxes.However, when annealed below 750℃, the nanocrystalline size growsslowly without new phases formed. For Fe_(84)Nb_3V_4B_9 alloy, its grain sizekeeps within 10~20nm. When the annealing temperature beyond 750℃, the grain size increases rapidly and new phases, such as NbFeB appear.
     During mechanical alloying, the dislocation pump mechanism andlayer structure supply fast channel for atom diffusion between elements.Mechanical alloying forces plentiful micro-layer structure inside powders,and atoms can diffuse via interlayer interface to form nonequilibriumsolid solution. During the alloying, lots of dislocations are accumulated,which results in the formation of dislocation cell and later develops intonanocrystalline structure. When the system free energy caused by latticedistortion and dislocation density rises high enough, amorphous structurecan be obtained.
     Based on the above work, Fe_(84)(NbV)_7B_9 nanocrystalline bulk withrelative density over 97%was successfully produced under 5.SGpapressure and 1530w heating power. Its grain size is about 10~15nm,saturation magnetization is about 150Am~2/kg and coercive force is about0.85KA/m. During annealing, its regulation of the growth ofnanocrystalline grain, stress relaxation and formation of new phase fornanocrystalline bulk is well constant with that of nanocrystalline powders.It's also found that the increase of forming pressure during high pressureprocess can effectively restrain the formation of impurity phases, such asFe-Nb and Fe-B, and prevent the growth of bulk nanocrystalline grains aswell. Such conclusion is meaningful to the technique development ofsuperhigh pressure forming.
     The Fe_(84)(NbV)_7B_9 bulk with amorphous and nanocrystalline binarystructure was also successfully prepared by rapid solidification method inthe cooling copper mould. Its grain size is about 10~20nm, distributedhomogenously in the amorphous matrix. During annealing, amorphousparts in the bulk is crystallized gradually, and the soft magnetic propertyof the bulk is improved. Optimal soft magnetic data can be obtained whenannealing at 550℃, namely, B_s=1.52~1.54T, H_c<5.0~8.0 A/m,μ_e (1KHz, 0.4A/m)=18000~20000. The shortened process of rapidsolidification by cooling copper mould plus amorphous crystallization israther promising for the preparation of high performance nanocrystallinesoft magnetic bulks. The soft magnetic properties of Fe_(84)(NbV)_7B_9nanocrystalline bulk prepared by this method are much better than nanocrystalline bulks obtained by other methods. Especially, our bulkseven perform as well as those nanocrystalline soft magnetic ribbons thatprepared by rapid solidification ribbon plus amorphous crystallization.Therefore, it exhibits remarkable application potential.
     According to the Hill's thermodynamic theory for small systems, aCurie temperature model for magnetic particles was developed to showboth size effect and shape effect. Using this, the prediction of Curie pointfor freestanding and embedding magnetic particles Fe、Co、Ni is in goodagreement with experimental results. Meanwhile, the model for meltingand superheating of nanocrystals was developed on the basis ofnanocrystal cohesive energy. Accordingly, the minimum critical size andmelting temperature of Fe、Co、Ni magnetic nanocrystals were calculated,and their thermal stability during application was discussed. At last,models for higher surface energy and vacancy formation energy ofnanocrystals were developed. The predicted results for Fe、Co、Ni metalsare agreeable with mostly corresponding experimental values and othertheoretical calculations found in the literature. Based on this, Fe-M-Bbinary structure alloy was described by the nanocrystal cohesive energymodel with embedded interface, and its melting temperature, meltingentropy and melting enthalpy can be further predicted by our melting andsuperheating equivalent model.
引文
[1] 李国栋.当代磁学.合肥:中国科学技术大学出版社,1999.182~189
    [2] 马如璋,蒋民华,徐祖雄.功能材料学概论.北京:冶金工业出版社,1999.58~66
    [3] 都有为,倪刚.磁性纳米材料的新进展.物理,1998,27(9):524~529
    [4] 纪松,钱坤明,张延松等.非晶/纳米晶软磁材料及其应用.兵器材料科学与工程,2005,28(1):51~55
    [5] 刘亚丕,何时金,包大新等.软磁材料的发展趋势.磁性材料及器件,2003,34(3):26~29
    [6] Makino A, Inoue A, Masumoto T. Nanocrystalline soft magnetic Fe-M-B (M=Zr, Hf, Nb), Fe-M-O (M=Zr, Hf, Rare earth) alloys and their applications. Nanostructured Materials, 1999, 12:825~828
    [7] 王新林.非晶和纳米晶软磁合金从研究到产业化(二).金属功能材料,1996(6):205~223
    [8] Duwez P , Willens R H, Klement W. Continuous Series of Metastable Solid Solutions in Silver-Copper Alloys. J Appl Phys,1960,31 (6):1136~1137
    [9] Duwez P, Lin S. Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys. J Appl Phys, 1967,38(10): 4096~4097
    [10] Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure, J Appl Phys, 1988, 64(10): 6044~6046
    [11] 卢志超,李德仁,周少雄.非晶、纳米晶合金的国内外发展概况及应用展望.新材料产业,2002,3:20~23
    [12] Yamauchi K, Yoshizawa Y. Recent development of Nan crystalline soft magnetic alloys, Nan structured Materials, 1995, 6(1-4): 247~254
    [13] 陈国钧,王旭军.Finemet型FeCuNbSiB系纳米软磁合金的新进展.金属功能材料,2003,10(4):28~31
    [14] Yoshizawa Y, Yamauchi K. Materials Transactions. JIM, Fe-based soft magnetic alloys composed of ultrafine grain structure. 1990, 31(4):307~314
    [15] Zhou Fei, He Kai-yuan, Sui Man-ling. Nucleation and growth characteristics of amorphous Fe-Si-B-(Cu)-(Nb) alloys during isothermal crystallization process. Materials Science and Engineering, 1994, A181/A182:1419~1422
    [16] Herzer G., Warlinont H. Nanocrystalline soft magnetic materials by partial crystallization of amorphous alloys. Nanostructured Materials, 1992, 1(3):263~268
    [17] Yoshizawa Y. Magnetic properties and applications of nanostructured soft magnetic materials, Scripta Materialia, 2001, 44(8-9): 1321~1325
    [18] Suzuki K, Makino A, Kataoka N, et al. High saturation magnetization and soft magnetic properties of bee Fe-Zr-B and Fe-Zr-B-M (M=transition metal) alloys with nanoscale grain size. Mater Trans JIM, 1991, 32(1): 93~102
    [19] Suzuki K, Kataoka N, Inoue A, et al. High saturation magnetization and soft magnetic properties of BCC Fe-Zr-B alloys with ultrafine grain structure. Mater Trans JIM, 1990, 31(8): 743~746
    [20] Makino A, Suzuki K, Inoue A, et al. Magnetic properties and core losses of nanocrystalline Fe-M-B (M≡Zr, Hf or Nb) alloys. Materials Science and Engineering, 1994, A179/A180:127~131
    [21] Makino A, Yamamoto Y, Hirotsu Y, et al. Microstructure of nanocrystalline bcc Fe-M-B (M≡Nb, Hf) soft magnetic alloys. Materials Science and Engineering, 1994, A179/A180:495~500
    [22] 何开元.FeCuMSiB纳米晶软磁合金基础研究的新进展.金属功能材料,1995,3:81~89
    [23] 王立军,王六一等.高饱和磁感纳米晶软磁合金Fe-M-B的磁特性及应用前景,金属功能材料,1997,4:162~165
    [24] Makino A, Inoue A, Masumoto T. Nanocrystalline soft magnetic Fe-M-B (M=Zr,Hf, Nb) alloys produced by crystallization of amorphous phase. Materials Transactions, JIM, 1995, 36(7): 924~938
    [25] Birringer R, Gleiter H, et al. Nanocrystalline materials-an approach to a novel solid structure with gas-like disorder. Physics Letters A, 1984, 102A(8):365~369
    [26] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001,122~138
    [27] 蒲健,肖建中.大块纳米晶材料的制备、性能及应用前景.金属功能材料,2000,7(1):11~15
    [28] Valiev R Z, Islamgaliev R K, Alexandrov I V, et al. Buck nanostructured materials from sever plastic deformation. Progress in Materials Science, 2000, 45:103~189
    [29] Knobel M, Sinnecker J P, Saenger J F, et al. Effect of as-cast topological disorder on the magnetic properties of nanocrystalline Fe_(73.5)Cu_1Nb_3Si_(13.5)B_9. Philosophical Magazine B (Physics of Condensed Matter, Electronic, Optical and Magnetic Properties), 1993, 68(6): 861~867
    [30] Noh T H, Pi W K, Kang I K. Effects of two-step annealing on the magnetic properties of Fe-Cu-Mo-Si-B nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 1993, 128(1-2): 129~132
    [31] 韩伟.铁基纳米晶合金脉冲处理方法及其阻抗效应研究:[博士学位论文].北京:钢铁研究总院,2002
    [32] 居毅,李宗权.机械合金化的原理及在磁性材料研究中的应用.功能材料,2002,33(1):12~14
    [33] Fecht H J, Hllstem E, Fu Z, et al. Nanocrystalline metals prepared by high-energy ball milling. Met Trans A, 1990, 21(9): 2333~2337
    [34] Ermakov A E, Yurchikov E E, Barinov V A. Magnetic properties of amorphous powders of Y-Co alloys prepared by mechanical grinding. Fiz, Metalloved, 1981,52:1184~1193
    [35] Fecht H J, Johnson W L, Entropy and enthalpy catastrophe as a stability limit for crystalline material. Nature, 1988, 334:50~51
    [36] Schwarz R B, Koch C C. Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics. Applied Physics Letters, 1986,49(3): 146~148
    [37] 张振忠,宋广生,杨根仓等.深过冷Fe-B-Si共晶块体纳米材料的凝固组织特征.金属学报,1999,35(7):693~697
    [38] 张振忠,杨根仓,陈光等.深过冷Fe-B-Si共晶合金纳米化机制探讨.材料科学与工艺,2001,9(2):169~174
    [39] 杨晓婵.镁系储氢合金.现代材料动态,2002,4:2~3
    [40] Koch C C, Cavin O B, Mckamey C G, et al. Preparation of amorphous' Ni_(60)Nb_(40) by mechanical alloying. Applied Physics Letters, 1983, 43(11):1017~1019
    [41] Makino A, Inoue A, Masumoto T. Nanocrystalline soft magnetic Fe-M-B (M=Zr, Hf, Nb), Fe-M-O (M=Zr, Hf, Rare earth) alloys and their applications. Nanostmctured Materials, 1999,12:825~828
    [42] Cao L F, Wang M P, Xie D, et al. Thermal behavior and structure of Fe_(84)Nb_7B_9 nanocrystalline powers, Transactions of Nonferrous Metals Society of China, 2006, 16(2): 299~303
    [43] Kojima A, Horikiri H, Makino A, et al. Soft-magnetic properties of nanocrystalline bee Fe-(Nb, Zr)-B bulk alloys consolidated by warm extrusion. Materials Transactions, JIM, 1995, 36(7): 945~951
    [44] Kojima A, Horikiri H, Kawamura, Y, et al. Production of nanocrystalline bcc Fe-Nb-B bulk alloys by warm extrusion and their magnetic properties. Materials Science and Engineering, 1994, A179/A180:511~515
    [45] Maurice D R, Courtney T H, The physics of mechanical alloying: a first report. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1990,21A(2): 289~303
    [46] Bhattacharya A K, Arzt E. Diffusive reaction during mechanical alloying of intermetallics. Scripta Metall, 1992, 27(5): 635~639
    [47] Magini M, Iasonna A. Energy transfer in mechanical alloying (overview), Mater Trans JIM, 1995,36(2): 123~133
    [48] Sufiol J J, Gonzalez A. Preparation and characterization of three Fe-M (M=Ni, Zr, Nb) based alloys produced by mechanical alloying. Materials Science Forum, 2003, 426-432: 4325~4330
    [49] 曹玲飞,汪明朴,郭明星等.FeNbB纳米晶粉末的制备及结构表征.第五届海峡两岸粉末冶金技术研讨会论文集,2004,306~309
    [50] Kollar P, Kovac J, Fuzer J, et al. The structure and magnetic properties of a powder FeCuNbSiB material. Journal of Magnetism and Magnetic materials, 2000, 215-216:560~562
    [51] Bitoha T, Makino A, Inoue A. The effect of grain-size distribution on coercivity in nanocrystalline soft magnetic alloys. Journal of Magnetism and magnetic materials, 2004, 272-276:1445~1446
    [52] 桂立丰,唐汝均.机械工程材料测试手册.沈阳:辽宁科学技术出版社,1999.433~441
    [53] 季亚林.铁镍、铁钴基纳米晶软磁合金的制备与结构的研究:[博士学位论文].南京:南京大学,2000
    [54] Herzer G. Magnetization process in nanoerystalline ferromagnets. Materials Science and Engineering, 1991, A133:1~5
    [55] Makino A, Bitoh T, Inoue A, et al. Nb-poor Fe-Nb-B nanocrystalline soft magnetic alloys with small amount of P and Cu prepared by melt-spinning in air. Scripta Metall, 2003, 48:869~874
    [56] Alben R, Becker J J, Chi M C. Random anisotropy in amorphous ferromagnets. J Appl Phys, 1978,49(3): 1653~1658
    [57] Herzer G. Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn 1989, 25(5): 3327~3329
    [58] Herzer G. Soft magnetic nanocrystalline materials. Scripta Metallurgica et Materialia, 1995, 33(10/11): 1741~1756
    [59] Herzer G. Grain size dependence of coercivity and permerability in nanocrystalline fermma gnets. IEEE Trans Magn, 1990, 26(5): 1397~1402
    [60] Hemando A, Vazquez M, Kulik T, et al. Analysis of the dependence of spin-spin correlations on the thermal treatment of nanocrystalline materials. Physical Review B, 1995, 51(6): 3581~3586
    [61] 纪松,杨国斌,丁润.纳米软磁合金的双相无规磁各向异性模型.物理学报,1996,45(12):2060~2066
    [62] 刘涛,徐祖雄,赵钟涛等.纳米晶软磁合金的结构对技术磁性的影响.中国科学(A辑),1996,26(11):1016~1019
    [63] He K Y, Zhi J, Cheng L Z, et al. Origin of high permeability of nanocrystalline Fe-Cu-Nb-Si-B soft magnetic alloys. Materials Science and Engineering, 1994, A181/A182: 880~883
    [64] Suzuki K, Herzer G; Cadogan J M. The effect of coherent uniaxial anisotropies on the grain-size dependence of coercivity in nanocrystalline soft magnetic alloys. J Magn Magn Mater, 1998, 177-181:949~950
    [65] Takagi M. Electron-diffraction study of liquid-solid transition of thin metal films. J Phys Soc Japan, 1954, 9: 359~367.
    [66] 丁秉钧.纳米材料.北京:机械工业出版社,2004.
    [67] Buffat P, Borel J. Size effect on the melting temperature of gold particles. Phys Rev A, 1976, 13:2287~2298
    [68] Allen G L, Bayles R A, Gile W Wet al. Small particle melting of pure metals. Thin Solid Films, 1986, 144:297~308
    [69] Saka H, Nishikawa Y, Imura T. Melting temperature of In particles embedded in an A1 matrix. Philos MagA, 1988, 57:895~906
    [70] Graback L, Bohr J. Surperheating and surpercooling of lead precipitates in aluminum. Phys Rev Lett, 1990, 64:934~937
    [71] Castro T, Reifenberger R, Choi E, Andres R P. Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B, 1990, 42:8548~8557
    [72] David T B, Lereah Y, Deutscher G, et al. Solid-liquid transition in ultra-fine lead particles. Philos Mag A, 1995, 71:1135~1143
    [73] Koper O, Wmecki S. Specific heats and melting points of nanocrystalline materials. Nanoscale materials in chemistry, edited by Klabunde K J. John Wiley & Sons, Inc. 2001. 263~276
    [74] Sun C Q, Wang Y, Tay B K, Li S, Huang H, Zhang Y B. Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom. J Phys Chem B, 2002, 106: 10701~10705.
    [75] Sun C Q, Bai H L, Li S, Tay B K, Jiang E Y. Size effect on the electronic structure and the thermal stability of a gold nanosolid. Acta Mater, 2004, 52:501~505
    [76] 卢柯,生红卫,金朝晖.晶体的熔化与过热.材料研究学报,1997,11:658~665.
    [77] Zhang D L, Cantor B. Melting behaviour of In and Pb particles embedded in an Al matrix. Acta Mater, 1991, 39:1595~1602
    [78] Goswami R, Chattopadhyay K. The superheating of Pb embedded in a Zn matrix: the role of interface melting. Philos Mag Lett, 1993, 68:215~221.
    [79] Sheng H W, Ren G, Peng L M, Hu Z Q, Lu K. Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philos Mag Lett, 1996,73:179~186
    [80] Sheng H W, Xu J, Yu L G, Sun X K, Hu Z Q, Lu K. Melting processes of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling. J Mater Res, 1996, 11:2841~2851
    [81] Chattopadhyay K, Goswami R. Melting and superheating of metals and alloys. Prog Mater Sci, 1997, 42:287~298
    [82] Lu K, Li Y. Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals. Phys Rev Lett, 1998, 80:4474~4477
    [83] Zhang L, Jin Z H, Zhang L H, Sui M L, Lu K. Superheating of confined Pb thin films. Phys Rev Lett, 2000, 85:1484-1487
    [84] Jin Z H, Gumbsch P, Lu K, Ma E. Melting Mechanisms at the Limit of Superheating. Phys Rev Lett, 2001, 87:055703
    [85] Lai S L, Guo J Y, Petrova V. Size dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys Rev Lett, 1996, 77:99~102
    [86] Eckert J, Holzer J C, mhn C C, et al. Melting behavior of nanocrystalline aluminum powders. Nanostruct Mater, 1993,2:407~413
    [87] Shi F G. Size dependent thermal vibrations and melting in nanocrystals. J Mater Res, 1994, 9:1307~1313
    [88] Jiang Q, Tong H Y, Hsu D T, Okuyama K, Shi F G. Thermal stability of crystalline thin films. Thin Solid Films, 1998, 312:357~361
    [89] Jiang Q, Aya N, Shi FG. Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl Phys A-Mater, 1997, 64:627~629
    [90] Jiang Q, Shi HX, Li JC. Finite size effect on glass transition temperatures. Thin Solid Films 1999,354:283~286
    [91] Jiang Q, Shi HX, Zhao M. Melting thermodynamics of organic nanocrystals. J Chem Phys, 1999, 111: 2176~2180
    [92] Jiang Q, Zhang Z, Wang Y W. Thermal stability of low dimensional crystals. Mater Sci Eng A-Struct, 2000, 286:139~143
    [93] Zhang Z, Li J C, Jiang Q. Modeling for size-dependent and dimension-dependent melting of nanocrystals. J Phys D, 2000, 33:2653~2658
    [94] Lindemann F A. rider die berechnung molekularer eigenfrequenzen. Z Phys, 1910, 11: 609.
    [95] 陆海鸣,蒋青.尺寸依赖的界面能与界面应力.世界科技与发展,2005,27:8~28
    [96] Myers D, Surfaces, interfaces, and colloids, principles and applications, 2nd edition. New York: John Wiley & Sons, Inc, 1999
    [97] Alymov M I, Shorshorov M Kh. Surface tension of ultrafine particles. Nanostructured mater, 1999, 12:365~368
    [98] Lu H M, Jiang Q. Size-Dependent Surface Energies of Nanocrystals. J Phys Chem B, 2004, 108:5617~5619
    [99] Lu H M, Jiang Q. Size-Dependent Surface Tension and Tolman's Length of Droplets. Langrnuir, 2005, 21:779~781
    [100] Lu H M, Jiang Q. Comment on "Higher Surface Energy of Free Nanoparficles". Phys Rev Lett, 2004, 92:179601~1
    [101] Nanda K K, Maisels A, Kmis F E, Fissan H, Stappert S. Higher Surface Energy of Free Nanoparticles. Phys Rev Lett, 2003, 91:106102-1~106102-4
    [102] Nanda K K, Maisels A, Kruis F E, Fissan H, Stappert S. Reply to "Comment on 'Higher Surface Energy of Free Nanoparficles'". Phys Rev Lett, 2004, 92:179602-1
    [103] Nanda K K. Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparficles. Appl Phys Lett, 2005, 87:021909-1~021909-3
    [104] Xie D, Wang M P, Cao L F. A simplified model to calculate the higher surface energies ofnanocrystals. Phys Stat Sol (b), 2005, 242:R76~R78
    [105] Qi W H. Comment on "A simplified model to calculate the higher surface energies of nanocrystals". Phys Stat Sol (b), 2005, 242:R129~R130
    [106] Xie D, Wang M P, Cao L F. Rely to "Comment on 'A simplified model to calculate the higher surface energies of nanocrystals'". Phys Stat Sol (b), 2005, 242: R131~R133
    [107] Kraftmakher Y, Strelkov P G. Vacancies and interstitials in metals. Edited by Seeger A, Schumacher D, Schilling W, et al. Amsterdam: North Holland Publ. Co. 1970. 59
    [108] Chadwick A V, Terenzi M. Defects in solids. Modern Techniques, New York: Plenum Press, 1986.
    [109] Korzhavyi P A, Abrikosov I A, Johansson B. First-principles calculations of the vacancy formation energy in transition and noble metals. Phys. Rev. B. 1999, 59:11693~11703.
    [110] Damask A C, Dienes G J. Point defects in metals. Science Publishers Inc, New York, 1963. p. 195.
    [111] Kraftmakher Y. Equilibrium vacancies and thermophysical properties of metals. Phys Rep 1998;299(2-3):79~188 and references therein.
    [112] Wollenberger H J. Physical Metallurgy. Amsterdam: North-Holland Publishing Co, 1970. 1146
    [113] G6recki T. Vacancies for solid krypton bubble copper, nickel and gold particles. Z Metall, 1974, 65(6): 426~431
    [114] Ploatoglou H M, Methfessel M, Scheffler M. Vacancy-formation energies at the (111) surface and in bulk A1, Cu, Ag, and Rh. Phys Rev B 1993, 48:1877~1883
    [115] Boer de F R, Boom R, Mattens W C M, Miedema A R, Niessen A K. Cohesion in Metals;Transition Metal Alloys. North-Holland Publishing Co, Amsterdam, 1988.676.
    [116] Brooks H. Impurities and imperfections. Cleveland: American society for metals, 1955.4
    [117] Tiwari G P, Patil R V. A correlation between vacancy formation energy and cohesive energy. Scripta Metall, 1975, 9:833~836
    [118] Crawford J H, Slifkin L M. Point Defect in Solids, Vol 1, General and Ionic Crystals. New York: Plenum Press, 1972.21~59
    [119] Mehl M J, Papaconstantopoulos D A. Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals. Phys Rev B, 1996, 54:4519~4530
    [120] Korhonen T, Puska M J, Nieminen R M. Vacancy-formation energies for fcc and bee transition metals. Phys Rev B, 1995, 51:9526~9532
    [121] Schaefer H E. Investigation of thermal equilibrium vacancies in metals by positron annihilation. Phys Status Solidi A 1987, 102(1): 47~65
    [122] Schultz H, Ehrhart P. Atomic Defects in Metals. Springer Publishing Co, Berlin, 1991:43
    [123] Manninen M, Nieminen R, Hautojarvi P, Arponen J. Electrons and positrons in metal vacancies. Phys Rev B, 1975, 12:4012~4022
    [124] Soderlind P, Yang L H, Moriarty J A, Wills J M. First-principles formation energies of monovacancies in bee transition metals. Phys Rev B, 1999, 61:2579~2586
    [125] Swanson M L, Piercy G R, Kidson G V, et al. Defects in quenched zirconium. J Nuclear Mater, 1970, 34:340~342
    [126] Baskes M I, Johnson R A. Modified embedded atom potentials for HCP metals. Modelling and Simulation in Materials Sciece and Engineering, 1994, 2(1): 147~163
    [127] Doyama M, Koehler J S. The relation between the formation energy of a vacancy and the nearest neighbor interactions in pure metals and liquid metals. Acta Metall, 1976, 24(9): 871~879
    [128] Janot C, Mallejac D, Georg B. Vacancy-Formation Energy and Entropy in Magnesium Single Crystals. Phys Rev B 1996, 2(8): 3088~3098
    [129] Omar M A. Elementary Solid State Physics. London: Addison-Wesley. 1975.
    [130] Terblans J J, Erasmus W J, Viljoen E C, et al. Orientation dependence of the surface segregation kinetics in single crystals. Surface and Interface Analysis, 1999, 28: 70~72.
    [131] Terblans J J. Calculating the bulk vacancy formation energy (Ev) for a Schottky defect in a perfect Cu (111), Cu (100) and a Cu (110) single crystal. Surface and Interface Analysis, 2002,33(9): 767~770
    [132] Terblans J J. Calculated bulk vacancy formation energy (Ev) for a Schottky defect in Al single crystals. Surf Interface Anal, 2003,35(6): 548~551
    [133] Jiang Q, Lu H M, Zhao M. Modelling of surface energies of elemental crystals J Phys: Condens Matt, 2004, 16(4): 521~530
    [134] King H K. Physical Metallurgy. Amsterdam: North-Holland Publishing Co, 1970. 33~68
    [135] Mark Winter, Webelements, UK: The University of Sheffield and Webelements Ltd. 2005.
    [136] Brandes E A, Brook G B. Smithells Metals Reference Book 6th edition. Butterworths Publishing Co, London, 1983:15-2~15-3
    [137] Kittel C. Introduction to solid state physics 7th edition. John & Sons Inc, New York, 1996, 53~96
    [138] Gladkikh N T, Kryshtal O P. On the size dependent of the vacancy formation energy. Functional mater, 1999, 6:823~827
    [139] Qi W H, Wang M P. Size dependence of vacancy formation energy of nanoparticle. Physica B, 2003, 334:432~435
    [140] Xie D, Wang M P, Cao L F. Comment on "Vacancy formation energy of small particles". J Mater Sci, 2005, 40:3565~3566
    [141] Hellstem E, Fecht H J, Fu Z, Johnson W L. Structural and thermodynamic properties of heavily mechanically deformed Ru and AIRu. J Appl Phys, 1989, 65(1): 304~310
    [142] Fdedel J. Dislocations. London: Pergamon, 1964:418
    [143] Dariusz O, Patti H. Nanocrystalline metals prepared by low energy ball milling. J Appl Phys, 1996, 79(6): 2975~2980
    [144] Bever M B, Holt D L, Titchener A L. Stored energy of cold work. Prog Mater Sci, 1973, 17:192
    [145] 冯端,师昌绪,刘治国.材料科学导论.北京:化学工业出版社,2002:669~680
    [146] 胡大禄,周兆,曹建春等.合金设计的现状与进展.云南冶金,1998,27(2):49~54
    [147] Miedema A R, Chatel de P F, Boer de F R. Cohesion in alloys-fundamentals of a semi-empirical model. Physica 100B, 1980:1-28
    [148] Eshelby D J. Solid State Physics 3. New York: Academic Press, 1956. 79
    [149] 郑志刚.合金热力学性质的Miedema理论计算:[硕士学位论文].南宁:广西大学,2005
    [150] 戴道生,钱昆明.铁磁学.北京:科学出版社,2000.321
    [151] Skorvanek I, Duhaj P, GrOssinger R. Low-temperature magnetic behaviour in amorphous and nanmcrystalline Fe-Nb-B alloys. J of Magn and Magn Mater, 2000, 215-216:431~433
    [152] Weeber A W, Bakker H. Amorphization by ball milling (A review). Physica B, 1988,153(1-3): 93~135
    [153] Sunol J J. Structural and thermal study of Fe-Ni-Si-B powders prepared by mechanical alloying, Mater Sci Forum, 1998, 269-272:503~508
    [154] 何圣静,高莉如.非晶态材料及其应用.北京:机械工业出版社,1987:21~30.
    [155] Zhang Z, Liu B, Thermodynamics and crystallographic mechanism of metastable phase formation in Nb-Fe, Nb-Co, and Nb-Ni systems by ion mixing. J Appl Phys, 1994, 75(10): 4948~4952
    [156] 徐晖,何开元,程力智等,机械合金化FeZrB粉末的结构和磁性,金属功能材料,1998,5(4):170~172
    [157] Kollar P, Petrovic P, Fechova E, et al. The structure and magnetic properties of Fe-Si-Cu-Nb-B powder prepared by mechanochemical way. Journal of Materials Synthesis and Processing, 2000, 8(5/6): 301~304
    [158] Rajia M M, Ponpandian N, Majumdar B, et al. Soft magnetic propertyes of nanostructured FINEMET alloy powder cores. Materials Science and Engineering, 2001, A304-306:1062~1065
    [159] 邱军,解子章,扬让,等.非晶粉末爆炸固结材料的磁性能.北京科技大学学报,1994,16(4):330~334.
    [160] 长崎诚三,平林真,刘安生.二元合金状态图集.北京:冶金工业出版社.2004
    [161] 林晓敏,姚斌,苏文辉.静高压下非晶(Fe0.99 Mo0.01)78Si9813合金晶化过程的热力学研究.高压物理学报,1997,11(4):260~265.
    [162] Omuro K, Miura H. Chemical effect of ternary additions on amorphization in Fe-C systems by mechanical alloying. Appl.Phys.Lett., 1994,64:2961
    [163] Sunol J J, Mora M T, Clavaguera N. Thermal stability study of some Fe-Ni-P-Si alloy powders. Materials Science Forum, 1998, 269-272:175~180
    [164] Sharma S K, Macht M P, NaundorfV. Some correlations observed for diffusion in amorphous Ti_(60)Ni_(40) and Fe_(40)Ni_(40)B_(20) alloys, J Non-Cryst Solids, 1993, 156-158:437~440
    [165] Takagi M, Kawamura Y, Araki M, et al. Preparation of bulk amorphous alloys by explosive consolidation and properties of the prepared bulk, Mater Sci Eng, 1988, 98: 457~460
    [166] Kawamura Y, Takagi M, Senoo M, et al. Preparation of bulk amorphous alloys by high temperature sintering under a high pressure, Mater Sci Eng, 1988, 98:415~418
    [167] Suzuki K, Makino A, Inoue A, et al. Low core losses of nanocrystalline Fe-M-B(M=Zr, Hf, or Nb) alloys, J Appl Phys, 1993, 74(5): 3316~3322
    [168] Carsley J E, Ning J, Milligan W W, et al. Simple, mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct Mater, 1995, 5 (4): 441~448
    [169] Palumbo G, Thorpe S J, Aust K T, Triple line disclination effects on the mechanical behaviour of materials. Scr Metall Mater, 1990, 24 (12): 2347~2350
    [170] Tang N J, Zhong W, Jiang H Y, et al. Nanostmctured magnetite (Fe_3O_4) thin films prepared by sol-gel method. J Magn Magn Mater, 2004, 282 (1-3): 92~95
    [171] Miiner A M, Gerber A, Croisman B, et al. Spin-Dependent Electronic Transport in Granular Ferromagnets. Phys Rev Lett, 1996, 76 (3): 475~478
    [172] Fisher M E, Barber M N, Scaling Theory for Finite-Size Effects in the Critical Region. Phys Rev Lett, 1972, 28 (23): 1516~1519
    [173] Sun C Q, Zhong W H, Li S, et al. Coordination imperfection suppressed phase stability of ferromagnetic, ferroelectfic, and superconductive nanosolids. J Phys Chem B, 2004, 108 (3): 1080~1084
    [174] Yang C C, Jiang Q, Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals. Acta Mater, 2005,53 (11): 3305~3311
    [175] Meng Q, Zhou N, Rong Y, et al. Size effect on the Fe nanocrystalline phase transformation. Acta Mater, 2002, 50 (18): 4563~4570
    [176] Cui X F, Zhao M , Jiang Q. Curie transition temperature of ferromagnetic low-dimensional metals. Thin Solid Films, 2005, 472 (1-2) 328~333
    [177] 谢丹,齐卫宏,汪明朴.金属纳米微粒熔化热力学性能的尺寸形状效应.金属学报.2004,40:1041~1044
    [178] Wautelet M, Dauchot J P, Hecq M. On the phase diagram of non-spherical nanoparticles. J Phys Condens Matt, 2003, 15 (21): 3651~3655
    [179] Zhang R Willis R F. Thickness-Dependent Curie Temperatures of Ultrathin Magnetic Films: Effect of the Range of Spin-Spin Interactions, Phys Rev Lett, 2001, 86 (12): 2665~2668
    [180] Hill T L. Themodynamics of Small Systems. NewYork and Amsterdam: W A Benjamin. INC, 1963.
    [181] Xie D, Wang M P, Qi W H.A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J Phys: Condens Matt, 2004, 16:L401~L405
    [182] Qi W H, Wang M P, Xu G Y. The partical size dependence of cohesive energy of metallic nanoparticles. Chem Phys Lett, 2003, 372:632~634
    [183] Adamson A W. Physical Chemistry of Surface. New York: John-Wiley & Sons Inc, 1990. 57
    [184] Askeland D R, Phule P P. The Science and Engineeing of Materials. UK: Thomson Learning Inc, 2003.84
    [185] 都有为.超细微粒的磁性.磁性材料及器件,1990,21(3):20~24
    [186] Born M. Thermodynamics of crystals and melting. J Chem Phys, 1939, 7: 591~598
    [187] Dash J G. History of the search for continuous melting. Rev Mod Phys 1999, 71(5): 1737~1743
    [188] Zhao M, Jiang Q. Melting and surface melting of low dimensional In crystals. Solid State Commurt, 2004, 130:37~39
    [189] 谢丹,汪明朴,齐卫宏,曹玲飞.纳米晶体熔化与过热的等效模型.金属学报.2005,41:458~462
    [190] Nanda K K, Sahu S N, Behem S N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys Rev A, 2002, 66:013208
    [191] Nanda K K. Size-dependent melting of small particles: a classical approach. Eur J Phys, 1998, 19:471~472
    [192] Tateno J. An empirical relation on the melting temperature of some ionic crystals. Solid State Commun, 1972, 10:61~62
    [193] Rose J H, Ferrante J, Smith J R. Universal binding energy curves for metals and bimetallic interfaces. Phys Rev Lett, 1981, 47:675~678
    [194] Rose J H, Ferrante J, Smith J R. Universal binding-energy relation in chemisorption. Phys Rev B, 1982, 25:1419~1422
    [195] Rose J H, Ferrante J, Smith J R. Hall effect, anisotropy, and temperature-dependence measurements of 1/fnoise in silicon on sapphire. Phys Rev B, 1983, 28:1935~1943
    [196] Qi W H, Wang M P. Size and shape dependent superheating of nanoparticles embedded in a matrix. Mater Lett, 2005, 59: 2262~2266.
    [197] Li C H, Hoe J L, Wu P. Empirical correlation between melting and cohesive energy of binary Laves phases. J Phys Chem Solids, 2003, 64:201~212
    [198] 蒋青,梁立红.纳米晶体的熔化与过热.世界科技研究与发展.2003,24(6): 57~67
    [199] Mott N F. The Resistance of Liquid Metals. Proc Roy Soc A, 1934, 146:465~472
    [200] Regel A R, Glazov V M. Entropy of melting of semiconductors. Semiconductors, 1995, 29:405~417
    [201] 谢丹.金属纳米微粒热力学性能尺寸形状效应的研究:[学士学位论文].长沙:中南大学,2003
    [202] 齐卫宏.金属纳米微粒热力学性能的尺寸效应和形状效应研究:[博士学位论文].长沙:中南大学,2004
    [203] Dinsdale A T. SGTE data for pure elements. CALPHAD, 1991,15(4): 317~425 and reference therein.
    [204] Goldstein A N, Echer C M, Alivisatos A P. Melting in semiconductor nanocrystals. Science, 1992, 256:1425~1427
    [205] Hofmeister H, Thiel S, Dubiel M, et al. Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl Phys Lett, 1997, 70:1694~1696
    [206] Dubiel M, Hofmeister H, Schurig E. Compressive Stresses in Ag Nanoparticle Doped Glasses by Ion Implantation. Phys Stat Sol B, 1997, 203:R5~R6
    [207] Sun C Q. Bond-order-length-strength (BOLS) correlation mechanism for the shape and size dependency of a nanosolid. J Phys Condens Matt, 2002, 14(34): 7781~7795
    [208] 戴道生,韩汝琪.非晶态物理,北京:电子工业出版社,1989.14
    [209] 叶恒强,朱静,李斗星等.材料界面结构与特性,北京:科学出版社,1999.47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700