MBR的膜污染机制与可持续操作原理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浸没式膜生物反应器(SMBR)日益广泛的应用于城市污水和工业污水的处理上。MBR的成功运行与经济性和膜污染紧密相关。SMBR中,在给定通量(flux)条件下,膜污染主要表现透膜压力(TMP)的上升。MBR的膜污染十分复杂并受到反应器的设计特点、操作模式和生物学因素的影响。因此,降低膜污染,提高MBR的表现需要综合考虑解决办法。本论文探索了膜污染的机理和各种改善MBR可持续操作的策略。
     在膜污染机理的研究中,透膜压力的上升被描述为三个阶段:第一阶段发生在初始的几小时内,由于膜孔的缩窄或堵塞造成的膜表面特性的改变,导致透膜压力突然的上升。第二阶段表现为透膜压力的长时间慢速上升过程,主要原因是膜表面的胞外高分子物质(EPS)累积。膜表面EPS主要来源是膜对混合液中的EPS截留。第三阶段是透膜压力的突然跃升并导致膜过滤无法继续操作,形成这一阶段有多种原因,但都符合恒通量过滤中膜污染自我加速的基本特点。为了理解SMBR膜污染的复杂特性,“污染路线图”揭示了膜生物反应器的操作和设计特点与一般污染因素(例如:被过滤液的特性、膜本身的特性、流体力学条件等)的联系。MBR的污染机理图描述了3阶段的污染和相应的多样化的污染机理。
     在相同的污泥条件下,利用Millipore公司的系列微滤和超滤膜,考察了膜的材质和孔径对于膜的污染特性和截留特性的影响。膜材质、孔径的不同主要影响微滤膜在初始阶段膜污染,表现在初始透膜压力的跃升程度不同。不同操作通量下,不同孔径的膜对有机物的截留能力随污染程度的加重而提高。凝胶渗透色谱(GPC)试验结果表明,微滤膜在污染后对有机高分子聚合物都有一定的截留作用。通过对污染后膜表面特性的考察发现,污染后膜表面的ZETA电位受活性污泥混合液的ZETA电位影响并与活性污泥混合液ZETA电位相似。被污染膜的傅里叶变换红外光谱图显示,污染后膜表面发生了多糖类与蛋白质的附着。共聚焦激光扫描电子显微镜(CLSM)与场发射扫描电镜(FSEM)照片显示,低通量下污泥颗粒的附着并不严重,高通量下会迅速形成EPS与污泥颗粒混合的滤饼层。
     应用通量阶梯方法,通过对超滤及微滤的平板和中空纤维膜的考察,建立了可持续通量的确定方法,也同时建立了MBR中膜污染的比较方法。在存在一定误差情况下,能够通过短时间的通量阶梯试验来大致预测长周期的膜污染情况。
     污泥停留时间(SRT)作为MBR的重要操作参数会影响活性污泥的生物特性进而影响膜污染。DGGE图说明了随着污泥停留时间的延长,污泥中占主导地位的菌群发生了变化。污泥停留时间10天和30天时,在相同的进水体积负荷条件下,包含了活性污泥上清液中溶解态和污泥絮体上附着态EPS之和的总EPS浓度相似,然而,EPS的溶解态和附着态分布比例不同。上清液中占主导的多糖类的EPS随污泥停留时间延长而降低。活性污泥混合液的黏度随污泥停留时间延长而升高,然而由曝气引发的液相流速相近。通量阶梯试验结果显示污泥停留时间延长能够降低膜污染速率(dTMP/dt),提高可持续通量。在恒通量20L/m~2·h(LMH)下长时间运行中发现,延长污泥停留时间,长期膜污染程度降低。
     采用两个平行运行160天的MBR,在相同平均污泥负荷条件下,分别采用恒定负荷和波动负荷进水,活性污泥在非稳态与稳态条件下微生物代谢特性不同。通量阶梯试验与长时间过滤实验证明,在80天的非稳态时,波动负荷条件下的膜污染高于其在恒定负荷条件下。在达到稳态条件下,波动负荷条件下的膜污染低于其在恒定负荷条件下。微生物代谢比较发现,上清液中的SMP、多糖类的EPS以及污泥颗粒粒径是影响膜污染的主要因素,并导致了稳态与非稳态下膜污染结果的差异。稳态条件下,波动负荷的活性污泥的比耗氧速率远远高于恒定负荷的活性污泥的比耗氧速率,推测可能其活性污泥中处于活跃状态的微生物比例高,从而降低了“F/M”,并导致了两种活性污泥的EPS代谢差异。
     在MBR平行比较实验中,通过应用增强膜过滤表现的高分子絮凝剂(MPE50)来研究絮凝剂对膜污染的影响。通量阶梯试验结果显示,加入MPE后能使反应器的可持续通量高于空白反应器50%。长周期的实验结果表明,在可持续通量的范围内,加入MPE轻微改善膜污染。高于可持续通量,加入MPE后的MBR的膜污染显著减轻。通过MPE的絮凝作用,提高了污泥的粒径分布,降低了上清液中SMP和EPS浓度(主要是多糖类的EPS物质)。停止加入维持剂量的MPE,应用MPE的膜生物反应器的膜污染比空白反应器严重。停止加入MPE后,污泥粒径虽有下降,但依然大于空白污泥。停止加入MPE会造成上清液中SMP和EPS浓度大幅提高。通过膜污染比较发现,上清液中SMP和EPS浓度比污泥粒径对膜污染影响显著,是造成膜污染主要原因。
     采用连续出水和间歇出水操作方式的对比实验结果表明,间歇出水操作能有效控制污染速率并防止透膜压力的较快跃升:在低于可持续通量操作时,间歇出水操作能推迟透膜压力跃升出现。在高于可持续通量操作时,间歇出水操作能降低透膜压力快速上升。主要原因是通过间歇出水,控制了滤饼层的厚度和密度。
The submerged membrane bioreactor (sMBR) is being increasingly applied for municipal and industrial wastewater treatment. The success and economics of the membrane bioreactor (MBR) is linked to the fouling of the membranes, Which is manifest in a rise in transmembrane pressure (TMP) at a given flux. Fouling in MBRs is complex and influenced by MBR design features, mode of operation and biological factors. Thus, the enhancement of MBR performance, which involves minimizing fouling, will require a range of solutions. This thesis explores membrane fouling mechanisms and various strategies to improve the sustainable operation of membrane bioreactors (MBRs).
     In membrane fouling study, the rise in TMP is described as a 3-stage process. Stage 1 occurs in a period of a few hours and involves abrupt TMP rise-up due to 'conditioning', presumably by pore blockage and closure. Stage 2 is a prolonged period of slow TMP rise, which we ascribe to accumulation of extracellular polymeric substances (EPS). Stage 3 is a sudden rise in TMP, which rapidly leadsto inoperability of the membranes. This stage could have several causes, which are all driven by the self-accelerating nature of fouling under constant flux operation. In order to understand the complex nature of fouling in submerged MBRs, the MBR fouling 'Roadmap' has been developed that shows the relationship between the many operational and design characteristics of the MBR and the generic 'fouling factors', i.e. the nature of the feed (to the membrane), the membrane properties, and the hydrodynamic environment. MBR 'Fouling mechanism map' which depicts the 3 stages of fouling and the multiple fouling mechanisms that could occur has been also presented.
     Under the same activated sludge condition, using Millipore series MF and UF membrane, the effect of membrane material and pore size on membrane fouling and SMP rejection have been studied. The initial fouling in TMP "jump" is mainly affected by different material and pore size of MF membrane. At different flux, the TOC rejection by MF membrane in different pore size is stronger and stronger with membrane fouling intensity increassing. Gel Permeation Chromatography (GPC) results show the fouled MF membranes are able to reject EPS, the rejection ability is linked to membrane pore size and fouling intensity. Through the investigation on surface fouling property of fouled membrane, the surface zeta potential of fouled membrane is affected by the activated sludge property. The zeta potential of fouled membrane surface is similar to the activated sludge. The Fourier Transform Infrared Spectroscopy (FTIR) result shows polysaccharide and protein deposit on the membrane surface. Images of Confocal Laser Scanning Microscope (CLSM) and Field Emission Scanning Electron Microscope (FSEM) show the deposit of activated sludge particles is not serious at low flux, while at high flux, EPS and the activated sludge particles will form combined cake layer.
     Applying Flux-stepping method, through the investigation of flat sheet and hollow fibre MF and UF membrane, the "sustainable flux" determination method and membrane fouling comparison method in MBR are set up. The short-term flux-stepping experiment results are able to predict long-term membrane fouling in MBR despite some errors.
     Sludge Retention Time (SRT), an important operating parameter of the MBR as it affects the biological characteristics of the sludge and therefore influences membrane fouling. The DGGE profiles suggest a shift in the dominant bacterial community with the prolonged SRT. The total amount of extracellular polymeric substance (EPS) extracted from the floc and the supernatant is approximately constant at the two SRTs under the same organic loading rate. However, The EPS distribution is different. The polysaccharide EPS is dominant in the supernatant EPS, its concentration is decreasing with prolonged SRT. The viscosity of the biomass increases with the prolonged SRT, while the estimated average air induced water velocity is almost same for at the two SRTs. The results of flux stepping tests show that the membrane fouling rate (dTMP/dt) can be decreased and "sustainable flux" can be increased with prolonged SRT. Long-term experimental run at a constant flux of 20 L/m~2.h clearly shows long term fouling is decreased with prolonged SRT.
     Two parallel lab scale MBRs have been operated for 160 days. Under the same average sludge loading rate, fed with constant concentration synthetic wastewater and regularly variable concentration wastewater to simulate the daily feed fluctuation, the activitated sludge properties are different in stable and unstable state. In 80days unstable state (stage 1), the membrane performance at variable loading is worse than that at constant loading; while in the stable state, the result is reverse. The difference in microbial activities of activitated sludge shows SMP, polysaccharide in supernatant and particle size has been found to impact the fouling and cause the difference on membrane performance in stable state and unstable state.In stable state, the SOUR of sludge at variable loading is higher than that at constant loading, presumably the active bacteria ratio is high in the sludge at variable loading and the "F/M" is decreased, which result in the difference of EPS production by the two kinds of sludge.
     The polymeric membrane performance enhancer (MPE50) has been applied in two parallel submerged membrane bioreactors to test its effect on membrane fouling. The 'critical flux' determined by the flux stepping test has been increased by 50% after the addition of MPE. Long-term experiments results show, below the "sustainable flux", the membrane performance of MBR with MPE is slightly improved. Above the "sustainable flux", the addition of MPE is found to apparently.mitigate membrane fouling. The possible explanations for these results are the increased in the particle size distribution of the activated sludge as well as the decreased in SMP and EPS (mainly polysaccharides) concentrations in the supernatant due to MPE flocculation. After the termination of the maintenance MPE addition, the particle size doesn't drop too much, while the supernatant EPS and SMP concentration increase dramatically. The membrane performance has been found to be worse than the MBR without MPE, which suggests that SMP and is the dominant fouling factor, membrane fouling will be affected stronger by supernatant polysaccharide than the particle size of sludge.
     The comparison result shows intermittent permeation is able to control fouling rate and prevent TMP jump. Below sustainable flux, intermittent permeation operation is able to postpone TMP jump. Above sustainable flux, intermittent permeation operation is able to decrease the TMP increase rate at high flux. The main possible reason is the cake layer thickness and density is controlled by intermittent permeation.
引文
[1] S.Judd,The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. ELSEVIER, 2006.
    [2] S.Churchouse, Membrane Bioreactors Going From Lab to Large Scale Application: - Problems to Clear Solutions? Membranes and the Environment: A special post-ICOM workshop in honour of Roger Ben Aim, Tony Fane and John Howell, Oxford, UK. 2002.
    [3] C.W.Smith, D.D.G., and R.M.Talcott,, The Use of Ultrafiltration Membrane for Activated Sludge Separation Proc, 24th Annual Purdue Industrial Waste Conference, Purdue University, West Lafayette, Indiana,. 1969: p.pp. 1300-1310.
    [4] P.Cote, J.-L.B., and G.Faup,, Bubble Free Aeration Using Membranes: Process Analysis. Journal of Water Pollution Control Federation, 1988. 60(11): p. 1986-1992.
    [5] A.G.Livingston, Extractive Membrane Bioreactors: A New Process Technology for Detoxifying Chemical Industry Wastewaters. Journal of Chemical Technology and Biotechnology, 1994. 60: p. 117-124.
    [6] K.Yamamoto, M.H., T.Mahmood, and T.Matsuo,, Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Water Science and Technology, 1989. 21: p. 43-54.
    [7] Z.Cadi, J.Manem, and R.Moletta,, Anaerobic Digestion of a Synthetic Wastewater Containing Starch by a Membrane Reactor. Environmental Technology, 1994. 15: p. 1029-1039.
    [8] W.Liu J.A.Howell T.CArnot et.al, A Novel Extractive Membrane Bioreactor for Treating Biorefractory Organic Pollutants in the Presence of High Concentrations of Inorganics: Application to a Synthetic Acidic Affluent Containing High Concentrations of Chlorophenol and Salt. Journal of Membrane Science, 2001. 181: p. 127-140.
    [9] P.Cote, Buisson, H., and Praderie, M., Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Science and Technology, 1998. 38(4-5): p. 437-442.
    [10] M.Gander, B.Jefferson,and S.Judd, Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Separation and Purification Technology, 2000. 18(2): p. 119-130.
    [11] J.Hermia, Constant Pressure Blocking Filtration Laws: Application to Power Law Non-Newtonian Fluids. Trans.I.Chem.E, 1982. 60: p. 183-187.
    [12] R.W.Field, Mass Transport and the Design of Membrane Systems. In: Industrial Membrane Separation Technology, eds. K.Scott and R.Hughes. London, 1996. Blackie: p. 67-113.
    [13] G.Leslie, Critical Performance Issues in MBR Reclamation Plants, Membrane Bioreactors and Water Reclamation Principles and Practice. Singapore MBR symposium,, 18 November, 2003.
    [14] S.Holler and W.Trosch, Treatment of Urban Wastewater in a Membrane Bioreactor at High Organic Loading Rates. Journal of Biotechnology, 2001. 92: p. 95-101.
    [15] C.H.Xing, E.Tardieu, Y.Qian, et al., Ultrafiltration Membrane Bioreactor for Urban Wastewater Reclamation. Journal of Membrane Science, 2000. 177: p. 73-82.
    [16] S.Chaize and A.Huyard, Membrane Bioreactor on Domestic Wastewater Treatment Sludge Production and Modelling Approach. Water Science and Technology, 1991. 23: p. 1591-1600.
    [17] X.Huang, R.Liu, and Y.Qian, Behaviour of Soluble Microbial Products in a Membrane Bioreactor. Process Biochemistry, 2000. 36: p. 401-406.
    [18] N.Cicek, H.Winnen, M.T.Suidan, et al., Effectiveness of the Membrane Bioreactor in the Biodegradation of High Molecular Weight Compounds. Water Research, 1998. 32: p. 1553-1563.
    
    [19] X.Huang, P.Gui, and Y.Qian, Effect of Sludge Retention Time on Microbial Behaviour in a Submerged Membrane Bioreactor. Process Biochemistry, 2001. 36: p. 1001-1006.
    [20] D.J.Barker and D.C.Stuckey, A Review of Soluble Microbial Products (SMP) in Wastewater Treatment Systems. Water Research, 1999. 33: p. 3063-3082.
    [21] B.E.Rittmann, W.Bae, E.Namkung, et.al, A Critical Evaluation of Microbial Product Formation in Biological Processes. Water Science and Technology, 1987. 19: p. 517-528.
    [22] A.D.Bailey, G.S.Hansford, and P.L.Dold, The Use of Crossflow Microfiltration to Enhance the Performance of an Activated Sludge Reactor. Water Research, 1994. 28: p. 297-301.
    [23] V.Urbain, V.de Silva, D.A.Stahl, et al., Integration of Performance, Molecular Biology and Modelling to Describe the Activated Sludge Process. Water Science and Technology, 1998. 37: p. 223-229.
    [24] T.Murakami, J.Usui, K.Takamura,et.al, Application of Immersed-Type Membrane Separation Activated Sludge Process to Municipal Wastewater Treatment. Water Science and Technology, 2000. 41: p. 295-301.
    [25] S.Rosenberger, U.Kruger, W.Manz, U.S., et al., Performance of a Bioreactor with Submerged Membranes for Aerobic Treatment of Municipal Waste Water. Water Research, 2002. 36: p. 413-420.
    [26] I T.Yeom, Y-M.Nah, and K-H.Ahn, Treatment of Household Wastewater Using an Intermittently Aerated Membrane Bioreactor. Desalination, 1999. 124: p. 193-204.
    [27] C.Chiemchaisri, Y.K.Wong, T.Urase, et al., Organic Stabilization and Nitrogen Removal in Membrane Separation Bioreactor for Domestic Wastewater Treatment. Water Science and Technology, 1992. 25: p. 231-240.
    [28] A.Brookes, S.Judd, E.Reid, et al., Biomass Characterisation in Membrane Bioreactors. IMSTEC'03 5th International Membrane Science and Technology Conference Sydney Australia, November 10-14, 2003.
    [29] Y.Lee, J.Cho, Y.Seo, et al., Modeling of Submerged Membrane Bioreactor Process for Wastewater Treatment. Desalination, 2002. 146: p. 451 -457.
    [30] P.Cote, H.Buisson, C.Pound, et al., Immersed Membrane Activated Sludge for the Reuse of Municipal Wastewater. Desalination, 1997. 113: p. 189-196.
    [31] H.Buisson, P.Cote, M.Praderie, et al., The Use of Immersed Membranes for Upgrading Wastewater Treatment Plants. Water Science and Technology, 1998. 37: p. 89-95.
    [32] C.Chiemchaisri, K.Yamamoto, and S.Vigneswaran, a., Household Membrane Bioreactor in Domestic Wastewater Treatment. Water Science and Technology, 1993. 27: p. 171-178.
    [33] H.Winnen, M.T.Suidan, P.V.Scarpino, et al., Effectiveness of the Membrane Bioreactor in the Biodegradation of High Molecular-Weight Compounds. Water Science and Technology, 1996. 34: p. 197-203.
    [34] N.Cicek, J.P.Franco, M.T.Suidan, et al., Using a Membrane Bioreactor. Journal American Water Works Association, 1998. 90: p. 105-113.
    [35] N.Cicek, J.P.Franco, M.T.Suidan, et al., Characterization and Comparison of a Membrane Bioreactor and a Conventional Activated-SludgeSystem in the Treatment of Wastewater Containing high Molecular Weight Compounds. Water Environment Research, 1999. 71: p. 64-70.
    [36] K-H.Ahn, H-Y.Cha, and K-G.Song, Retrofitting Municipal Sewage Treatment Plants Using and Innovative Membrane Bioreactor System. Desalination, 1999. 124: p. 279-286.
    [37] R.Ben Aim Applications and Nutrient Removal, Membrane Bioreactors and Water Reclamation Principles and Practice. Singapore MBR symposium, 18 November, 2003.
    [38] C.H.Xing, Y.Qian, X.H.Wen, et al., Physical and Biological Characteristics of a Tangential-Flow MBR for Municipal Wastewater Treatment. Journal of Membrane Science, 2001. 191,: p. 31-42,.
    [39] K.Parameshwaran, C.Visvanathan, and R.Ben Aim, Membrane as Solid/Liquid Separator and Air Diffuser in Bioreactor. Journal of Environmental Engineering, 1999. 9: p. 825-834.
    [40] J.Lee, W-Y.Ahn, and C-H.Lee, Comparison of the Filtration Characteristics Between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor. Water Research, 2001. 35: p. 2435-2445.
    [41] E.B.Muller, A.H.Stouthamer, H.W.van Verseveld, et al., Aerobic Domestic Waste Water Treatment in a Pilot Plant with Complete Sludge Retention by Cross-Flow Filtration. Water Research, 1995. 29: p. 1179-1189.
    [42] S.Churchouse, Membrane Bioreactors for Wastewater Treatment - Operating Experiences with the Kubota Submerged Membrane Activated Sludge Process. Membrane Technology, 1997. 83: p. 5-9.
    [43] B.Gunder and K.Krauth, Replacement of Secondary Clarification by Membrane Separation - Results with Plate and Hollow Fibre Modules. Water Science and Technology, 1998. 38: p. 383-393.
    [44] J-S.Kim, C-H.Lee, and I-S.Chang, Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor. Water Research, 2001. 35: p. 2137-2144.
    [45] T.Ueda, K.Hata, and Y.Kikuoka, Treatment of Domestic Sewage From Rural Settlements by a Membrane Bioreactor. Water Science and Technology, 1996. 34: p. 189-196.
    [46] T.Ueda and K.Hata, Domestic Wastewater Treatment by a Submerged Membrane Bioreactor with Gravitational Filtration. Water Research, 1999. 33: p. 2888-2892.
    [47] L.v.Dijk and G.C.G.Roncken, Membrane Bioreactors for Wastewater Treatment: The State of the Art and New Developments. Water Science and Technology, 1997. 35: p. 35-41.
    [48] H.Thomas, S.Judd, and J.Murrer, Fouling Characteristics of Membrane Filtration in Membrane Bioreactors. Membrane Technology,, 2000. 122: p. 10-13.
    [49] G.Owen, M.B, J.A.Howell, et al., Economic Assessment of Membrane Processes for Water and Waste Water Treatment. Journal of Membrane Science,, 1995. 102: p. 77-91,.
    [50] L.Defrance, M.Y.Jaffrin, B.B.Gupta, et al., Contribution of Various Constituents of Activated Sludge to Membrane Bioreactor Fouling. Bioresource Technology, 2000. 73: p. 05-112.
    [51] C.Wisniewski and A.Grasmick., Floc Size Distribution in a Membrane Bioreactor and Consequences for Membrane Fouling Colloids and Surfaces A. Physicochemical and Engineering Aspects, 1998. 138: p. 403-411.
    [52] E.H.Bouhabila, R.B.Aim and H.Buisson., Fouling Characterisation in Membrane Bioreactors. Separation and Purification Technology,, 2001. 22-23: p. 123-132.
    [53] I-S.Chang and C.-H.L., Membrane Filtration Characteristics in Membrane-Coupled Activated Sludge System - The Effect of Physiological States of Activated Sludge on Membrane Fouling. Desalination, 1998. 120:p. 221-233.
    [54] W.Lee, S.Kang and H.Shin, Sludge Characteristics and their Contribution to Microfiltration in Submerged Membrane Bioreactors. Journal of Membrane Science, 2003. 216: p. 217-227.
    [55] S.Rosenberger and M.Kraume, Filterability of Activated Sludge in Membrane Bioreactors. Desalination, 2002: p. 195-200.
    [56] E.Tardieu, A.Grasmick, V.Geaugey, et al., Hydrodynamic Control of Bioparticle Deposition in a MBR Applied to Wastewater Treatment. Journal of Membrane Science, 1998. 147: p. 1-12.
    [57] Y.Shimizu, K.Uryu, Y.Okuno, et al., Cross-Flow Microfiltration of Activated Sludge Using Submerged Membrane with Air Bubbling. Journal of Fermentation and Bioengineering, 1996. 81:: p. 55-60.
    [58] Y.Shimizu, Y.Okuno, K.Uryu, et al., Filtration Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment. Water Research, 1996. 30: p. 2385-2392.
    [59] S.S.Madaeni, A.G.Fane, and D.E.Wiley., Factors Influencing Critical Flux in Membrane Filtration of Activated Sludge. Journal of Chemical Technology and Biotechnology, 1999. 74: p. 539-543.
    [60] A.Beaubien, M.Baty, F.Jeannot, et al., Design and Operation of Anaerobic Membrane Bioreactors: Development of a Filtration Testing Strategy. Journal of Membrane Science, 1996. 109: p. 173-184.
    [61] L.Defrance and M.YJaffrin, Reversibility of Fouling Formed in Activated Sludge Filtration. Journal of Membrane Science, 1999.157: p. 73-84.
    [62] C.Wisniewski and A.Grasmick, Influence of Shear Stresses on Biokinetics and Suspension Filterability in a Membrane Bioreactor (MBR). 4th International Symposium on Bioreactor and Bioprocess Fluid Dynamics, 1997.
    [63] J.S.Kim, C-H.Lee, and I-S.Chang, Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor. Water Research, 2001. 35: p. 2137-2144.
    [64] K.H.Choo and C-H.Lee., Hydrodynamic Behaviour of Anaerobic Biosolids During Crossflow Filtration in the Membrane Anaerobic Bioreactor. Water Research, 1998. 32: p. 3387-3397.
    [65] J.G.Choi, T-H.Bae, J-H.Kim, et al., The Behaviour of Membrane Fouling Initiation on the Crossflow Membrane Bioreactor System. Journal of Membrane Science, 2002. 203: p. 103-113.
    [66] H.Nagaoka, S.Ueda, and A.Miya, Influence of Bacterial Extracellular Polymers on the Membrane Separation Activated Sludge Process. Water Science and Technology, 1996. 34: p. 165-172.
    [67] R.Liu, X.Huang, Y.F.Sun, et al., Hydrodynamic Effect on Sludge Accumulation Over Membrane Surfaces in a Submerged Membrane Bioreactor. Process Biochemistry, 2003. 39: p. 157-163.
    [68] H.S.Shin and S-T.Kang, Characteristics and Fates of Soluble Microbial Products in Ceramic Membrane Bioreactor at Various Sludge Retention Times. Water Research, 2003. 37: p. 121-127.
    [69] I.S.Chang, S-O.Bag, and C-H.Lee, Effects of Membrane Fouling on Solute Rejection During Membrane Filtration of Activated Sludge. Process Biochemistry, 2001. 36: p. 855-860.
    [70] H.Nagaoka, S.Yamanishi, and A.Miya, Modeling of Biofouling by Extracellular Polymers in a Membrane Separation Activated Sludge System. Water Science and Technology, 1998. 38: p. 497-504.
    [71] H.Nagaoka, S.Kono, S.Yamanishi, et al., Influence of Organic Loading Rate on Membrane Fouling in Membrane Separation Activated Sludge Process. Water Science and Technology, 2000. 41: p. 355-362.
    [72] S.Chang and A.G.Fane., Characteristics of Microfiltration of Suspensions with Inter-fibre Two-Phase Flow. Journal of Chemical Technology and Biotechnology, 2000. 75: p. 533-540.
    [73] S.Laborie, C.Cabassud, L.Durand-Bourlier et al, Flux Enhancement by a Continuous Tangential Gas Flow in Ultrafiltration Hollow Fibres for Drinking Water Production: Effects of Slug Flow on Cake Structure. 7th World Filtration Congress in Budapest, Hungary, 1996.
    [74] C.Cabassud, S.Laborie, L.Durand-Bourlier et al., Air Sparging in Ultrafiltration Hollow Fibres: Relationship Between Flux Enhancement, Cake Characteristics and Hydrodynamic Parameters. Journal of Membrane Science, 2001. 181: p. 57-69.
    [75] M.Mercier, C.Maranges, C.Fonade, et al., Yeast Suspension Filtration: Flux Enhancement Using an Upward Gas/Liquid Slug Flow Application to Continuous Alcoholic Fermentation with Cell Recycle. Biotechnology and Bioengineering, 1998. 58: p. 47-57.
    [76] S.Chang and A.G.Fane, Filtration of Biomass with Axial Inter-fibre Upward Slug Flow: Performance and Mechanisms. Journal of Membrane Science, 2000. 180: p. 57-68.
    [77] Z.F.Cui and K.I.T.Wright, Gas-Liquid Two-Phase Cross-flow Ultrafiltration of BSA and Dextran Solutions. Journal of Membrane Science, 1994. 90: p. 193-189.
    [78] Z.F.Cui, S.R.Bellara, and P.Homewood, Airlift Crossflow Membrane Filtration - A Feasibility Study with Dextran Ultrafiltration. Journal of Membrane Science, 1997. 128: p. 83-91.
    [79] Z.F.Cui and K.I.T.Wright, Flux Enhancements with Gas Sparging in Downwards Crossflow Ultrafiltration: Performance and Mechanism. Journal of Membrane Science, 1996. 117: p. 109-116.
    [80] M.Mercier, C.Maranges, C.Fonade, et al., Yeast Suspension Filtration: Flux Enhancement Using an Upward Gas/Liquid Slug Flow - Application to Continuous Alcoholic Fermentation with Cell Recycle. Biotechnology and Bioengineering, 1998. 58: p. 47-57.
    [81] S.R.Bellara, Z.F.Cui, and D.S.Pepper., Gas Sparging to Enhance Permeate Flux in Ultrafiltration Using Hollow Fibre Membranes. Journal of Membrane Science,, 1996. 121: p. 175-184.
    [82] L.Vera, R.Villarroel, S.Delgado, et al., Enhancing Microfiltration Through an Inorganic Tubular Membrane by Gas Sparging. Journal of Membrane Science, 2000. 165: p. 47-57.
    [83] C-K.Lee, W-G.Chang, and Y-HJu, Air Slugs Entrapped Cross-flow Filtration of Bacterial Suspensions. Biotechnology and Bioengineering,, 1993(41): p. 525-530.
    [84] T.Ueda, K.Hata, Y.Kikuoka, et al., Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor. Water Research, 1997. 31: p. 489-494.
    [85] WJ.Davies, M.S.Le and C.R.Heath, Intensified Activated Sludge Process with Submerged Membrane Microfiltration. Water Science and Technology, 1998. 38: p. 21-27.
    [86] M.Mercier-Bonin, C.Lagane and C.Fonade., Influence of a Gas/Liquid Two-Phase Flow on the Ultrafiltration and Microfiltration Performances: Case of a Ceramic Flat Sheet Membrane. Journal of Membrane Science, 2000. 180: p. 93-102.
    [87] Q.Y.Li, R.Ghosh, S.R.Bellara et al, Enhancement of Ultrafiltration by Gas Sparging with Flat Sheet Membrane Modules. Separation and Purification Technology, 1998. 14: p. 79-83.
    [88] C.Cabassud, S.Laborie and J.M.Laine, How Slug Flow Can Improve Ultrafiltration Flux in Organic Hollow Fibres. Journal of Membrane Science, 1997. 128: p. 93-101.
    [89] I-S.Chang and SJudd, Air Sparging of a Submerged MBR for Municipal Wastewater Treatment. Process Biochemistry, 2002. 37: p. 915-920.
    [90] JA.Howell, Sub-Critical Flux Operation of Microfiltration. Journal of Membrane Science, 1995. 107: p. 165-171.
    [91] D.Si-Hassan, A.Ould-Dris, M.Y.Jaffrin et al., Optimisation of an Intermittent Cross-Flow Filtration Process of Mineral Suspensions. Journal of Membrane Science, 1996. 118: p. 185-198.
    [92] T.Tanaka, H.Itoh, K.Itoh et al., Crossflow Filtration of Baker's Yeast with Periodical Stopping of Permeation Flow and Bubbling. Biotechnology and Bioengineering,, 1995. 47: p. 401-404.
    [93] J.N.Kuruzovich and P.R.Piergiovanni., Yeast Cell Microfiltration: Optimization of Backwashing for Delicate Membranes. Journal of Membrane Science, 1996. 112: p. 241-247.
    [94] V.T.Kuberkar and R.H.Davis, Microfiltration of Protein-Cell Mixtures with Crossflushing or Backflushing. Journal of Membrane Science, 2001. 183: p. 1-14.
    [95] H.Kishino, H.Ishida, H.lwabu, et al., Domestic Wastewater Reuse Using a Submerged Membrane Bioreactor. Desalination, 1996. 106: p. 115-119.
    [96] K-H.Ahn and K-G.Song, Application of Microfiltration with a Novel Fouling Control Method for Reuse of Wastewater from a Large-Scale Resort Complex. Desalination, 2000. 129: p. 207-216.
    [97] R.W.Field, D.Wu, J.A.Howell, et al., Critical Flux Concept for Microfiltration Fouling. Journal of Membrane Science, 1995. 100: p. 259-272.
    [98] V.Chen, A.G.Fane, S.Madaeni, et al., Particle Deposition During Membrane Filtration of Colloids: Transition Between Concentration Polarization and Cake Formation. Journal of Membrane Science, 1997. 125: p. 109-122.
    [99] D.Y.Kwon, S.Vigneswaran, H.H.Ngo, et al., An Enhancement of Critical Flux in Crossflow Microfiltration With a Pretreatment of Floating Medium Flocculator/Prefilter. Water Science and Technology, 1997. 36: p. 267-274.
    [100] S.S.Madaeni, The Effect of Operating Conditions on Critical Flux in Membrane Filtration of Latexes. Trans IchemE, 1997. 75: p. Part B.
    [101] S.S.Madaeni, An Investigation of the Mechanism of Critical Flux in Membrane Filtration Using Electron Microscopy. ournal of Porous Materials, 1997. 4: p. 239-244.
    [102] D.Y.Kwon and S.Vigneswaran., Influence of Particle Size and Surface Charge on Critical Flux of Crossflow Microfiltration. Water Science and Technology, 1998. 38: p. 481-488.
    [103] D.Wu, J.A.Howell, and R.W.Field, Critical Flux Measurement for Model Colloids. Journal of Membrane Science, 1999. 152: p. 89-98.
    [104] B.Fradin and R.W.Field, Crossflow Microfiltration of Magnesium Hydroxide Suspensions: Determination of Critical Fluxes, Measurement and Modelling of Fouling. Separation and Purification Technology, 1999. 16: p. 25-45.
    [105] M.Manttari and M.Nystrom, Critical Flux in NF of High Molar Mass Polysaccharides and EffluentsFrom the Paper Industry. Journal of Membrane Science, 2000. 170: p. 257-273.
    [106] S.Metsamuuronen, J.A.Howell, and M.Nystrom, Critical Flux in Ultrafiltration of Myoglobin and Baker's Yeast. Journal of Membrane Science, 2002. 196,: p. 13-25.
    [107] H.K.Vyas, RJ.Bennet, and A.D.Marshall, Performance of Crossflow Microfiltration During Constant Transmembrane Pressure and Constant Flux Operations. nternational Dairy Journal, 2002. 12: p. 473-479.
    [108] D.Y.Kwon, S.Vigneswaran, A.G.Fane, et al., Experimental Determination of Critical Flux in Crossflow Microfiltration. Separation and Purification Technology, 2000. 19: p. 169-181.
    [109] V.Chen, Performance of Partially Permeable Microfiltration Membranes Under Low Fouling Conditions. Journal of Membrane Science, 1998. 147: p. 265-278.
    [110] H.Li, A.G.Fane, H.G.L.Coster, et al., Direct Observation of Particle Deposition on the Membrane Surface During Crossflow Microfiltration. Journal of Membrane Science,, 1998. 149: p. 83-97.
    [111] H.Li, A.G.Fane, H.G.L.Coster, et al., An Assessment of Depolarisation Models of Crossflow Microfiltration by Direct Observation Through the Membrane. Journal of Membrane Science, 2000. 172(135-147).
    [112] S.Vigneswaran, D.Y.Kwon, H.H.Hgo, et al., Improvement of Microfiltration Performance in Water Treatment: Is Critical Flux a Viable Solution? Water Science and Technology, 2000. 41: p. 309-315.
    [113] L.Defrance and M.Y.Jaffrin, Comparison Between Filtrations at Fixed Transmembrane Pressure and Fixed Permeate Flux: Application to a Membrane Bioreactor Used for Wastewater Treatment. Journal of Membrane Science, 1999.152: p. 203-210.
    [114] L.Vera, R.Villarroel-Lopez, S.Delgado, et al., Cross-Flow Microfiltration of Biologically Treated Wastewater. Desalination, 1997. 114: p. 65-75.
    [115] S.Elmaleh, L.Vera, R.Villarroel-Lopez, et al., Dimensional Analysis of Steady State Flux for Microfiltration and Ultrafiltration Membranes. Journal of Membrane Science, 1998.139: p. 37-45.
    [116] B.D.Cho and A.G.Fane, Fouling Transients in Nominally Sub-critical Flux Operation of a Membrane Bioreactor. Journal of Membrane Science, 2002. 209: p. 391-403.
    [117] K.Krauth., B.G.a., Replacement of Secondary Clarification by Membrane Separation - Results with Tubular, Plate and Hollow Fibre Modules. Water Science and Technology, 1999. 40: p. 311-320.
    [118] H.Ishida, Y.Yamada, M.Tsuboi et al., Submerged Membrane Activated Sludge Process (KSMASP) - Its Application into Activated Sludge Process with High Concentration of MLSS. Int 2nd Conf on Advances in Water and Effluent Treatment, 1993: p. 321-330.
    [1] X.Zhang, P.L.Bishop and B.K Kinkle, Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Science and Technology, 1999. 39(7): p. 211-218.
    [2] H.Liu and H.H.P.Fang, Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 2002. 95(3): p. 249-256.
    [3]L.S.Clesceri, A.E.Greenberg and A.D Eaton, Standard Methods for the Examination of Water and Wastwater 20th Edition (APHA). 1998.
    [4]K.Watanabe, M.Teramoto, H.Futamata etal, Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge. Appl. Environ. Microbiol, 1998. 64(11): p. 4396-4402.
    [5] B.S.Luxmy, F.Nakajima, and K.Yamamoto, Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Science and Technology, 2000. 41(10): p. 259-268.
    [1] W.ang, N.Cicek and J.Ilg, State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. Journal of Membrane Science, 2006. In Press, Corrected Proof.
    [2] S.Rosenberger, H.Evenblij, S.te Poele et al., The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes--six case studies of different European research groups. Journal of Membrane Science, 2005.263(1-2): p. 113-126.
    [3] L. Defrance, M.Y. Jaffrin, B. Gupta, et al., Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresource Technology, 2000.73(2): p. 105-112.
    [4] P. Le-Clech, B. Jefferson, and S.J. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. Journal of Membrane Science, 2003. 218(1-2): p. 117-129.
    [5] J. Lee, W.-Y. Ahn, and C.-H. Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001.35(10): p. 2435-2445.
    [6] W. Lee, S. Kang, and H. Shin, Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. Journal of Membrane Science, 2003.216(1-2): p. 217-227.
    [7] F. Meng, H. Zhang, F. Yang, et al., Effect of filamentous bacteria on membrane fouling in submerged membrane bioreactor. Journal of Membrane Science. In Press, Corrected Proof.
    [8] E.H. Bouhabila, R. Ben Aim, and H. Buisson, Fouling characterisation in membrane bioreactors. Separation and Purification Technology, 2001.22-23: p. 123-132.
    [9] S.S. Han, T.H. Bae, G.G. Jang, et al., Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry, 2005.40(7): p. 2393-2400.
    [10] X. Huang, P. Gui, and Y. Qian, Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 2001.36(10): p. 1001-1006.
    [11] C. Nuengjamnong, J.H. Kweon, J. Cho, et al., Membrane fouling caused by extracellular polymeric substances during microfiltration processes. Desalination, 2005. 179(1-3): p. 117-124.
    [12] S. Ognier, C. Wisniewski, and A. Grasmick, Influence of macromolecule adsorption during filtration of a membrane bioreactor mixed liquor suspension. Journal of Membrane Science, 2002. 209(1): p. 27-37.
    [13] C. Wisniewski and A. Grasmick, Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 138(2-3): p. 403-411.
    [14] Y. Ye, P. Le Clech, V. Chen, et al., Fouling mechanisms of alginate solutions as model extracellular polymeric substances. Desalination, 2005. 175(1): p. 7-20.
    [15] B. Zhang, K. Yamamoto, S. Ohgaki, et al., Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation. Water Science and Technology, 1997. 35(6): p. 37-44.
    [16] K.H. Carlson and G.L. Amy, The importance of soluble microbial products (SMPs) in biological drinking water treatment. Water Research, 2000. 34(4): p. 1386-1396.
    [17] I.S. Chang, S.O. Bag, and C.H. Lee, Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochemistry, 2001. 36(8-9): p. 855-860.
    [18] H.-C. Flemming, G. Schaule, T. Griebe, et al., Biofouling-the Achilles heel of membrane processes. Desalination, 1997.113(2-3): p. 215-225.
    [19] B.Q. Liao, D.G. Allen, G.G. Leppard, et al., Interparticle Interactions Affecting the Stability of Sludge Flocs. Journal of Colloid and Interface Science, 2002. 249(2): p. 372-380.
    [20] R. Liu, X. Huang, J. Xi, et al., Microbial behaviour in a membrane bioreactor with complete sludge retention. Process Biochemistry, 2005. 40(10): p. 3165-3170.
    [21] R. Bura, M. Cheung, B. Liao, et al., Composition of extracellular polymeric substances in the activated sludge floc matrix. Water Science and Technology, 1998. 37(4-5): p. 325-333.
    [22] Y.-Z. Li, Y.-L. He, Y.-H. Liu, et al., Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors. Desalination, 2005. 174(3): p. 305-314.
    [23] X. Li, F. Gao, Z. Hua, et al., Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Separation and Purification Technology, 2005. 46(1-2): p. 19-25.
    [24] H.H.P. Fang and X. Shi, Pore fouling of microfiltration membranes by activated sludge. Journal of Membrane Science, 2005. 264(1-2): p. 161-166.
    [25] H. Thomas, S. Judd, and J. Murrer, Fouling characteristics of membrane filtration in membrane bioreactors. Membrane Technology, 2000. 2000(122): p. 10-13.
    [26] C.-H. Xing, E. Tardieu, Y. Qian, et al, Ultrafiltration membrane bioreactor for urban wastewater reclamation. Journal of Membrane Science, 2000. 177(1-2): p. 73-82.
    [27] J.-H. Choi, S. Dockko, K. Fukushi, et al, A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment. Desalination, 2002. 146(1-3): p. 413-420.
    [28] T.-H. Bae and T.-M. Tak, Interpretation of fouling characteristics of ultrafiltration membranes during the filtration of membrane bioreactor mixed liquor. Journal of Membrane Science, 2005. 264(1-2): p. 151-160.
    [29] Y. He, P. Xu, C. Li, et al., High-concentration food wastewater treatment by an anaerobic membrane bioreactor. Water Research, 2005. 39(17): p. 4110-4118.
    [30] S. Zhang, Y. Qu, Y. Liu, et al., Experimental study of domestic sewage treatment with a metal membrane bioreactor. Desalination, 2005. 177(1-3): p. 83-93.
    [31] L. Defrance and M.Y. Jaffrin, Reversibility of fouling formed in activated sludge filtration. Journal of Membrane Science, 1999. 157(1): p. 73-84.
    [32] T.-H. Bae and T.-M. Tak, Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. Journal of Membrane Science, 2005. 266(1-2): p. 1-5.
    [33] R. Liu, X. Huang, Y.F. Sun, et al., Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Process Biochemistry, 2003. 39(2): p. 157-163.
    [34] A. Pollice, A. Brookes, B. Jefferson, et al., Sub-critical flux fouling in membrane bioreactors -- a review of recent literature. Desalination, 2005.174(3): p. 221-230.
    [35] B.D. Cho and A.G. Fane, Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science, 2002.209(2): p. 391-403.
    [36] H. Li, A.G. Fane, H.G.L. Coster, et al., Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 1998.149(1): p. 83-97.
    [37] H.C. Chua, T.C. Arnot, and J.A. Howell, Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination, 2002. 149(1-3): p. 225-229.
    [38] C. Psoch and S. Schiewer, Long-term study of an intermittent air sparged MBR for synthetic wastewater treatment. Journal of Membrane Science, 2005. 260(1-2): p. 56-65.
    [39] I.-S. Chang and S.J. Judd, Air sparging of a submerged MBR for municipal wastewater treatment. Process Biochemistry, 2002. 37(8): p. 915-920.
    [40] F.I. Hai, K. Yamamoto, and K. Fukushi, Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination, 2005. 180(1-3): p. 89-97.
    [41] P. Le Clech, V. Chen, and A. Fane, A review of membrane fouling in MBRs. Journal of Membrane Science, 2005. (submitted).
    [42] W. Lee, S.K. Kang, and H.S. Shin, Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors Journal of Membrane Science. Journal of Membrane Science, 2003. 216: p. 217-227.
    [43] B. Frolund, R. Palmgren, K. Keiding, et al, Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 1996. 30(8): p. 1749-1758.
    [44] I.-S. Chang and C.-H. Lee, Membrane filtration characteristics in membrane-coupled activated sludge system - the effect of physiological states of activated sludge on membrane fouling. Desalination, 1998. 120(3): p. 221-233.
    [45] H. Liu and H.H.P. Fang, Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 2002. 95(3): p. 249-256.
    [46] M.E. Hernandez Rojas, R. Van Kaam, S. Schetrite, et al., Role and variations of supernatant compounds in submerged membrane bioreactor fouling. Desalination, 2005. 179(1-3): p. 95-107.
    [47] X. Huang, R. Liu, and Y. Qian, Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000. 36(5): p. 401-406.
    [48] H.S. Shin and S.T. Kang, Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Research, 2003. 37(1): p. 121-127.
    [49] L. Ma, X. Li, G. Du, et al., Influence of the filtration modes on colloid adsorption on the membrane in submerged membrane bioreactor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005. 264(1-3): p. 120-125.
    [50] K.J. Kim, V. Chen, and A.G. Fane, Characterization of clean and fouled membranes using metal colloids. Journal of Membrane Science, 1994. 88: p. 93-101.
    [51] Y. Wang, X. Huang, and Q. Yuan, Nitrogen and carbon removals from food processing wastewater by an anoxic/aerobic membrane bioreactor. Process Biochemistry, 2005. 40(5): p. 1733-1739.
    [52] S. Fukuzaki, N. Nishio, and S. Nagai, High rate performance and characterization of granular methanogenic sludges in upflow anaerobic sludge blanket reactors fed with various defined substrates. Journal of Fermentation and Bioengineering, 1995. 79(4): p. 354-359.
    [53] A. Beaubien, M. Baty, F. Jeannot, et al., Design and operation of anaerobic membrane bioreactors: development of a filtration testing strategy. Journal of Membrane Science, 1996. 109(2): p. 173-184.
    [54] H. Kishino, H. Ishida, H. Iwabu, et al., Domestic wastewater reuse using a submerged membrane bioreactor. Desalination, 1996. 106(1-3): p. 115-119.
    [55] Y. Ye, P.L. Clech, V. Chen, et al, Evolution of fouling during crossflow filtration of model EPS solutions. Journal of Membrane Science, 2005. 264(1-2): p. 190-199.
    [56] K.-H. Choo and C.-H. Lee, Effect of anaerobic digestion broth composition on membrane permeability. Water Science and Technology, 1996. 34(9): p. 173-179.
    [57] S. Elmaleh and L. Abdelmoumni, Experimental test to evaluate performance of an anaerobic reactor provided with an external membrane unit. Water Science and Technology, 1998. 38(8-9): p. 385-392.
    [58] M. Mercier-Bonin, I. Daubert, D. Leonard, et al., How unsteady filtration conditions can improve the process efficiency during cell cultures in membrane bioreactors. Separation and Purification Technology, 2001. 22-23: p. 601-615.
    [59] S.P. Hong, T.H. Bae, T.M. Tak, et al., Fouling control in activated sludge submerged hollow fiber membrane bioreactors. Desalination, 2002. 143(3): p. 219-228.
    [60] M. Pontie, S. Rapenne, A. Thekkedath. et al.. Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination, 2005. 181(1-3): p. 75-90.
    [61] H. Choi, K. Zhang, D.D. Dionysiou, et al., Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. Separation and Purification Technology, 2005. 45(1): p. 68-78.
    [62] H.-Y. Yu, M.-X. Hu, Z.-K. Xu, et al., Surface modification of polypropylene microporous membranes to improve their antifouling property in MBR: NH3 plasma treatment. Separation and Purification Technology, 2005. 45(1): p. 8-15.
    [63] E. Tardieu, A. Grasmick, V. Geaugey, et al., Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment. Journal of Membrane Science, 1998. 147(1): p. 1-12.
    [64] E.H. Bouhabila, R. Ben Aim, and H. Buisson, Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment). Desalination, 1998. 118(1-3): p. 315-322.
    [65] L. Defrance and M.Y. Jaffrin, Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. Journal of Membrane Science, 1999. 152(2): p. 203-210.
    [66] J.K. Shim, I.-K. Yoo, and Y.M. Lee, Design and operation considerations for wastewater treatment using a flat submerged membrane bioreactor. Process Biochemistry, 2002. 38(2): p. 279-285.
    [67] S. Ognier, C. Wisniewski, and A. Grasmick, Membrane fouling during constant flux filtration in membrane bioreactors. Membrane Technology, 2002. 2002(7): p. 6-10.
    [68] P. Le Clech, B. Jefferson, I.S. Chang, et al., Critical flux determination by the flux-step method in a submerged membrane bioreactor. Journal of Membrane Science, 2003. 227(1-2): p. 81-93.
    [69] K.-H. Choo and C.-H. Lee, Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Research, 1998. 32(11): p. 3387-3397.
    [70] K.-M. Yeon, J.-S. Park, C.-H. Lee, et al., Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment. Water Research, 2005. 39(10): p. 1954-1961.
    [71] L. Ji and J. Zhou, Influence of aeration on microbial polymers and membrane fouling in submerged membrane bioreactors. Journal of Membrane Science. In Press, Corrected Proof.
    [72] P. Schoeberl, M. Brik, M. Bertoni, et al., Optimization of operational parameters for a submerged membrane bioreactor treating dyehouse wastewater. Separation and Purification Technology, 2005. 44(1): p. 61-68.
    [73] J.-H. Shin, S.-M. Lee, J.-Y. Jung, et al, Enhanced COD and nitrogen removals for the treatment of swine wastewater by combining submerged membrane bioreactor (MBR) and anaerobic upflow bed filter (AUBF) reactor. Process Biochemistry, 2005. 40(12): p. 3769-3776.
    [74] J.A. Howell, H.C. Chua, and T.C. Arnot, In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. Journal of Membrane Science, 2004. 242(1-2): p. 13-19.
    [75] S. Zhang, R. van Houten, D.H. Eikelboom, et al., Sewage treatment by a low energy membrane bioreactor. Bioresource Technology, 2003. 90(2): p. 185-192.
    [76] T. Jiang, M.D. Kennedy, W.G.J. van der Meer, et al., The role of blocking and cake filtration in MBR fouling. Desalination, 2003. 157(1-3): p. 335-343.
    [77] K. Yu, X. Wen, Q. Bu, et al., Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biologically treated wastewater. Journal of Membrane Science, 2003. 224(1-2): p. 69-79.
    [78] L. Seminario, R. Rozas, R. Borquez, et al., Pore blocking and permeability reduction in cross-flow microflltration. Journal of Membrane Science, 2002. 209(1): p. 121-142.
    [79] Marshall, Adhension and growth of bacteria at surfaces in oligotrophic habitats. Canadian Journal of Microbiology, 1988. 34(503-6).
    [80] D.G Allison and I.W. Sutherland, The role of expolysaccharides in adhesion of fresh water bacteria. Journal of General Microbiology, 1987. 133: p. 1319-1327.
    [81] Z. Lewandowski and H. Beyenal, Biofilm:their structure, activity and effect on membrane filtration. IWA Specialty Conference: Water Environmental Membrane Technology, Jun 7-10,2004. Seoul, Korea.
    [82] S. Chang, A.G. Fane, and T.D. Wake, Analysis of constant permeate flow filtration using dead-end hollow fiber membranes. Journal of Membrane Science. In Press, Corrected Proof.
    [83] S.W. Hermanowicz, Membrane filtration of biological solids: a unified framework and its application to membrane bioreactors. IWA Conference on Water Environment-Membrane Technology, Seoul, Korea.(2004): p. 205-212.
    [1] H.H.P. Fang and X. Shi, Pore fouling of microfiltration membranes by activated sludge. Journal of Membrane Science. 2005. 264(1-2): p. 161-166.
    [2] T. Jiang, M.D. Kennedy, W.G.J. van der Meer, et al., The role of blocking and cake filtration in MBR fouling. Desalination, 2003. 157(1-3): p. 335-343.
    [3] C. Wisniewski and A. Grasmick, Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998. 138(2-3): p. 403-411.
    [4] J.S. Zhang, H.C. Chua, J.T. Zhou, et al., Factors affecting the membrane performance in submerged Membrane Bioreactors. Journal of Membrane Science, 2006. in press.
    [5] K.J. Kim, V. Chen, and A.G. Fane, Characterization of clean and fouled membranes using metal colloids. Journal of Membrane Science, 1994. 88: p. 93-101.
    [6] B. Zhang, K. Yamamoto, S. Ohgaki, et al, Floc size distribution and bacterial activities in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation. Water Science and Technology, 1997. 35(6): p. 37-44.
    [7] L. Seminario, R. Rozas, R. Borquez, et al., Pore blocking and permeability reduction in cross-flow microfiltration. Journal of Membrane Science, 2002. 209(1): p. 121-142.
    [8] S. Rosenberger, H. Evenblij, S. te Poele, et al., The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups. Journal of Membrane Science, 2005. 263(1-2): p. 113-126.
    [9] I.S. Kim and N. Jang, The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR). Water Research, 2006. 40(14): p. 2756-2764.
    [10] Z. Lewandowski and H. Beyenal, Biofilnrtheir structure, activity and effect on membrane filtration. IWA Specialty Conference: Water Environmental Membrane Technology, Jun 7-10,2004. Seoul, Korea.
    [1] R.W.Field, D.Wu, J.A.Howell and B. B.Gupta,"Critical flux Concept for Microfiltration Fouling." J. Membr. Sci. 1995 100. 259-272.
    [2] B.D.Cho and A.G.Fane, "Fouling Transients in Nominally Sub-Critical Flux Operation of a Membrane Bioreactor," J. Membr. Sci. 2001. 209. 391-403.
    [3] L.Defrance and M.Y.Jaffrin, "Reversibility of Fouling Formed in Activated Sludge Filtration." J. Membr. Sci. 1999。157.73-84.
    [4] V.Chen, A. G.Fane, S.Madaeni et.al "Particle Deposition During Membrane Filtration of Colloids: Between Concentration polarization and Cake Formation." J. Membr. Sci.2002. 125.109-122
    [5] K.Yu, X.Wen, Q.Bu and X .Huang, "Critical Flux Enhancements with Air Sparging in Axial Hollow Fibers Cross-Flow Microfiltration of Biologically Treated Wastewater." J. Membr. Sci.2002 224.69-79.
    [6] K.H.Choo and C.H.Lee, "Membrane Fouling Mechanisms in the Membrane-Coupled Anaerobic Bioreactor." War. Res 1996.30. 1771-1780.
    [7] P.Le Clech, B.Jefferson, I.S Chang et.al "Critical Flux Determination by the Flux-Step Method in a Submerged Membrane Bioreactor." J. Membr. Sci. 2003.227.81-93.
    [8] E.H.Bouhabila, R.B.Aim and H.Buisson, "Fouling Characterisation in Membrane Bioreactors." Separation Purification Technology. 2001.22-23.123-132.
    [1] J.S. Zhang, H.C. Chua, J.T. Zhou, et al., Factors affecting the membrane performance in submerged Membrane Bioreactors. Journal of Membrane Science, 2006. in press.
    [2] P. Cote, H. Buisson, C. Pound, et al., Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination, 1997. 113(2-3): p. 189-196.
    [3] S.S. Han, T.H. Bae, G.G. Jang, et al., Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry, 2005. 40(7): p. 2393-2400.
    [4] Y. Lee, J. Cho, Y. Seo, et al., Modeling of submerged membrane bioreactor process for wastewater treatment. Desalination, 2002. 146(1-3): p. 451-457.
    [5] K. Kimura, N. Yamato, H. Yamamura, et al., Membrane Fouling in Pilot-Scale Membrane Bioreactors (MBRs) Treating Municipal Wastewater. Environ. Sci. Technol, 2005. 39(16): p. 6293-6299.
    [6] N. Cicek, H. Winnen, M.T. Suidan, et al., Effectiveness of the membrane bioreactor in the biodegradation of high molecular weight compounds. Water Research, 1998. 32(5): p. 1553-1563.
    [7] Y. Shimizu, Y. Okuno, K. Uryu, et al. Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Water Research, 1996. 30(10): p. 2385-2392.
    [8] L. Defrance and M.Y. Jaffrin, Reversibility of fouling formed in activated sludge filtration. Journal of Membrane Science, 1999. 157(1): p. 73-84.
    [9] J.M. Lee, W.Y. Ann, and C.H. Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001. 35(10): p. 2435-2445.
    [10] P. Le-Clech, B. Jefferson, and S.J. Judd, Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor. Journal of Membrane Science, 2003. 218(1-2): p. 117-129.
    [11] X. Huang, P. Gui, and Y. Qian, Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry, 2001. 36(10): p. 1001-1006.
    [12] T.M. LaPara, C.G. Klatt, and R. Chen, Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater. Journal of Biotechnology. 2006. 121(3): p. 368-380.
    [13] W. Lee, S.K. Kang, and H.S. Shin, Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors Journal of Membrane Science. Journal of Membrane Science, 2003. 216: p. 217-227.
    [14] C.H. Xing, Y. Qian, X.H. Wen, et al., Physical and biological characteristics of a tangential-flow MBR for municipal wastewater treatment. Journal of Membrane Science, 2001. 191(1-2): p. 31-42.
    [15] S. Rosenberger and M. Kraume, Filterability of activated sludge in membrane bioreactors. Desalination, 2002. 146(1-3): p. 373-379.
    [16] H. Hasar, C. Kinaci, A. Unlu, et al, Rheological properties of activated sludge in a sMBR. Biochemical Engineering Journal. 2004. 20(1): p. 1-6.
    [17] X. Huang, R. Liu, and Y. Qian, Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry, 2000. 36(5): p. 401-406.
    [18] H.S. Shin and S.T. Kang, Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times. Water Research, 2003. 37(1): p. 121-127.
    [19] I.S. Chang, S.O. Bag, and C.H. Lee, Effects of membrane fouling on solute rejection during membrane filtration of activated sludge. Process Biochemistry, 2001. 36(8-9): p. 855-860.
    [20] H. Li, A.G. Fane, H.G.L. Coster, et al., Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 1998. 149(1): p. 83-97.
    [1] G. Tchobanoglous, F.L. Burton, and H.D. Stensel, Wastewater Engineering Treatment and Resuse. Fourth Edition.
    [2] C. Nuengjamnong, J.H. Kweon, J. Cho, et al., Membrane fouling caused by extracellular polymeric substances during microfiltration processes. Desalination (Membranes in Drinking and Industrial Water Production), 2005. 179(1-3): p. 117-124.
    [3] S. Rosenberger, C. Laabs, B. Lesjean, et al., Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Research, 2006. 40(4): p. 710-720.
    [4] H.Nagaoka, S.Kono, S.Yamanishi, et al., Influence of Organic Loading Rate on Membrane Fouling in Membrane Separation Activated Sludge Process. Water Science and Technology, 2000. 41(10-11): p. 355-362.
    [5] W. Lee, S.K. Kang, and H.S. Shin, Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors Journal of Membrane Science. Journal of Membrane Science, 2003. 216: p. 217-227.
    [6] S.S. Han, T.H. Bae, G.G. Jang, et al., Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system. Process Biochemistry, 2005.40(7): p. 2393-2400.
    [7] J.S. Zhang, H.C. Chua, J. Zhou, et al., Effect of sludge retention time on membrane bio-fouling intensity in a submerged membrane bioreactor. Separation and Science Technology, 2006. in press.
    [8] Y.P. Zhang, A.G. Fane, and A.W.K. Law, Critical flux and particle deposition of bidisperse suspensions during crossflow microfiltration. 2006 in press.
    [9] P. Roslev, N. Iversen, and K. Henriksen, Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis. Journal of Microbiological Methods, 1998. 31(3): p. 99-111.
    [1] J.S.Zhang, H.C.Chua, J.T.Zhou, et al., Factors affecting the membrane performance in submerged Membrane Bioreactors. Journal of Membrane Science, 2006. in press.
    [2] H.Li, A.G.Fane, H.G.L.Coster, et al., Direct observation of particle deposition on the membrane surface during crossflow microfiltration. Journal of Membrane Science, 1998. 149(1): p. 83-97.
    [3] B.D.Cho and A.G.Fane, Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. Journal of Membrane Science, 2002. 209(2): p. 391-403.
    [4] J.H.Collins, S.-H.Yoon, D.Musale, et al., Membrane performance enhancer evaluations on pilot- and full-scale membrane bioreactors. Water and Environment Journal, 2006. 20: p. 43-47.
    [5] C.Nuengjamnong, J.H.Kweon, J.Cho et al., Membrane fouling caused by extracellular polymeric substances during microfiltration processes. Desalination (Membranes in Drinking and Industrial Water Production), 2005. 179(1-3): p. 117-124.
    [6] S.Rosenberger, C.Laabs, B.Lesjean et al, Impact of colloidal and soluble organic material on membrane performance in membrane bioreactors for municipal wastewater treatment. Water Research, 2006. 40(4): p. 710-720.
    [7] X.Li, F.Gao, Z.Hua et al., Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Separation and Purification Technology, 2005. 46(1-2): p. 19-25.
    [8] J.M.Lee, W.Y.Ahn, and C.H.Lee, Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor. Water Research, 2001. 35(10): p. 2435-2445.
    [9]M.M.Peuchot and R. Ben Aim, Improvement of cross flow microfiltration performances with flocculation, Journal of Membrane Science, 1992. 68(3): p. 241-248.
    [10] J.S.Kim, S.Akeprathumchai, and S.R.Wickramasinghe, Flocculation to enhance microfiltration. Journal of Membrane Science, 2001.182(1-2): p. 161-172.
    [11] S.R.Wickramasinghe, B.Han, S.Akeprathumchai et al, Improved permeate flux by flocculation of biological feeds: comparison between theory and experiment. Journal of Membrane Science, 2004. 242(1-2): p. 57-71.
    [12] J.C. Lee, J.S. Kim, I.J. Kang, et al., Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor. Water Science and Technology, 2001. 43(11): p. 59-66. [13] S.-H.Yoon, J.H.Collins, D.Musale et al, Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process. Water Science & Technology, 2005. 51(6-7): p. 151-157. [14] H.Y.Seong, J.Collins, D.Musale et al., Improving Throughput of MBR Using Polyelectrolytes. International Desalination Association World Congress On Desalination and Water Reuse, Singapore September 11-16, 2005.
    [1] P.Gui, X.Huang, Y.Chen et.al Effect of Operational Parameters on Sludge Accumulation on Membrane Surfaces in a Submerged Membrane Bioreactor. Desalination, 2002.151: p. 185-194.
    [2] J.A.Howell, H.C.Chua, and.T.C.Arnot, In situ manipulation of critical flux in a submerged membrane bioreactor using variable aeration rates, and effects of membrane history. Journal of Membrane Science, 2004.242(1-2): p. 13-19.
    [3] H.C.Chua, T.C.Arnot and J.A.Howell, Controlling Fouling in Membrane Bioreactor Operated with a Variable Throughput, Desalination., 2002. 149: p. 225-229.
    [4] T.Ueda, K.Hata, Y.Kikuoka et. al, Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor. Wat. Res, 1996.31: p. 489-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700