发酵饲料“益生Ⅰ号”替代豆粕对奶牛瘤胃代谢及生产性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以奶牛为研究对象,研究不同水平益生Ι号替代日粮中的豆粕对奶牛瘤胃发酵、日粮降解率、日粮表观消化率和血液生化指标的影响,筛选出最适替代水平,并验证最适替代水平对奶牛生产性能的影响,为后续的科学研究与实际生产应用提供一定的理论依据。
     本试验选用4头安装永久性瘤胃瘘管的健康的荷斯坦奶牛。采用4×4拉丁方试验设计,用益生Ι号对日粮中的豆粕分别进行20%、40%和60%的替代,同时设立对照组。其处理为:A组为基础日粮;B处理组为益生Ι号替代基础日粮中20%豆粕;C处理组为益生Ι号替代基础日粮中40%豆粕;D处理组为益生Ι号替代基础日粮中60%豆粕。试验分4期进行,每期预饲期15 d,正试期10 d。研究不同水平益生Ι号替代日粮中的豆粕对瘤胃内环境和发酵产物、日粮营养物质降解率、日粮表观消化率及血液生化指标的影响。结果表明:
     (1)不同水平益生Ι号替代日粮中的豆粕对奶牛瘤胃pH值没有显著影响(p>0.05);C处理组较A组和B处理组降低了奶牛瘤胃NH3–N浓度,但差异不显著(p>0.05);较D处理组显著降低了奶牛瘤胃NH3–N浓度(p<0.05);C处理组的总挥发性脂肪酸、乙酸、乙酸/丙酸均高于其他各处理组,但差异均不显著(p>0.05),且乙酸/丙酸值均大于3,说明日粮发酵类型为乙酸发酵类型。
     (2)C处理组与其他各处理组比较,显著提高了日粮DM、CP、NDF和ADF的降解率(p<0.05);且显著提高了CP、NDF和ADF的表观消化率(p<0.05)。B处理组与A组比较提高了日粮DM、CP、NDF和ADF的有效降解率和表观消化率,但差异不显著(p>0.05);D处理与A组比较未能提高日粮DM、CP、NDF和ADF的有效降解率和表观消化率。
     (3)不同水平益生Ι号替代日粮中的豆粕提高了奶牛血浆中葡萄糖、总蛋白、总胆固醇、甘油三酯、谷草转氨酶和谷丙转氨酶的浓度,降低了奶牛尿素氮的浓度,但差异均不显著(p>0.05),即益生Ι号对奶牛无不良影响。
     综合上述结果分析表明,C处理组为最适替代组。根据选择出最适替代比例:益生Ι号40%替代日粮中的豆粕。采用对比试验方法,选择的30头健康的荷斯坦奶牛,按体重、胎次、泌乳天数和产奶量相同或相近的原则进行配对,分为对照组和试验组,每组15头。试验期为55 d。试验结果表明:
     试验组的日均产奶量、乳脂率和乳蛋白率显著高于对照组(p<0.05),分别提高了7.75%、4.09%和3.93%;试验组体细胞数显著低于对照组(p<0.05),降低了12.28%;乳糖率和非脂固形物试验组和对照组相比较差异不显著(p>0.05)。
The study focused on evaluating the effects of different levels of probioticsΙto replace the soybean meal in diets on rumen fermentation, diet digestionand blood parameters of dairy cows. The purpose was to select the best ratio of probioticsΙto replace the soybean meal in diets. The effects of the best ratio on the performance of dairy cows were vertified. Some theoretical basis for the future research and practical application were provided.
     Four cows fitted permanent rumen fistula were chosen. This test used 4×4 Latin Square of design. While setting the control group, using different levels of probioticsΙto replace the soybean meal in diets, 20%, 40% and 60%, respectively. The treatments were basal diet (A), the probioticsΙto replace the Soybean Meal in diets by 20% (B), the probioticsΙto replace the Soybean Meal in diets by 40% (C), the probioticsΙto replace the soybean meal in diets by 60% (D). The test was divided into 4 phases. Each pre–trial period was 15 d and the formal period of 10 d, and then studied the effects of different levels of probioticsΙto replace the soybean meal in diets on the degradation rate of dietary nutrients, diet apparent digestibility, rumen fermentation and blood biochemical parameters. The results showed that:
     (1) The different levels of probioticsΙto replace the soybean meal in diets had no significant effect on rumen pH(p>0.05). the concentration of rumen NH3–N of C reduced than A and B, but the difference was not significant (p>0.05), the concentration of rumen NH3–N of C significantly reduced than D(p<0.05). The total volatile fatty acids, acetic acid, acetic acid/propionic acid of C was higher than the other treatment groups, but the difference was not significant (p>0.05). The acetic acid/propionic acid values were greater than 3, so the type of dietary fermentation was acetic acid fermentation.
     (2) The degradation rate by DM, CP, ADF and NDF of C was significantly higher than the other treatment groups (p<0.05), and the apparent digestibility by CP, ADF and NDF of C was significantly higher than the other treatment groups (p<0.05). The apparent digestibility by CP, ADF and NDF of B was higher than A and D, but he difference was not significant (p>0.05), and the apparent digestibility by DM, CP, ADF and NDF of D was not increased.
     (3) The different levels of probioticsΙto replace the soybean meal in diets increased the blood plasma glucose, plasma total protein, plasma total cholesterol, plasma triglycerides, serum aspartate aminotransferase and serum alanine aminotransferase concentration, and reduced the concentration of blood plasma urea nitrogen, but the difference was not significant (p>0.05).
     The Comprehensive results of analysis showed that C treatment group was the best replacement group. According to the test choose of the best alternative to the ratio: the optimal replacement ratio of soybean meal was 40%. Using the comparison methods and the trial period of 55 d, 30 healthy Holstein cows were selected. According to the weight, parity, lactation length and milk yield at the same or similar principle, divided into control and experimental groups, each group had 15. The results showed that:
     The average daily milk yield, milk fat and milk protein of experimental group was significantly higher than the control groups (p<0.05), respectively increased by 7.75%, 4.09% and 3.93%. The somatic cell count of experimental group was significantly lower than the control group (p<0.05), reduced by 12.28%. The Lactose and milk fat solids of experimental group and control group had no significantly difference (p>0.05).
引文
[1]郭维烈,郭庆华.新型发酵蛋白饲料[M].北京:科学技术文献出版社,2000,6.
    [2]余伯良.发酵饲料生产与应用新技术[M].北京:中国农业出版社,1999.
    [3]班英杰.微生物饲料的制作与应用.粮食与饲料工业,1995,(7):23–25.
    [4]《饲料和饲料添加剂管理条例》释义,中国饲料,2001,6.
    [5] Tumola EM, Ouweland AC, and Salminen A. Adhension of some probiotic and dairy lactobacillus strains to caco-2 cell cultures [J]. INS J Food Microbiol, 1998, 41(1):45-51.
    [6] Andrew Chesson等著.任鹏摘译.反刍动物的微生物饲料添加剂.国外畜牧科技,1992,24(6):21–23.
    [7] Frank T J. Use of Direct-fed Microbials Not New Way they Work Still Not Clea r [J]. Feed Stuffs, 1991, 63 (4) :31-33.
    [8]陶德录,韩宁,蒋安文.微生态饲料菌株和成套设备的研究[J].饲料工业,2000,21(12):31–33.
    [9]王初升,林建云,方琦.固体发酵技术生产蛋白饲料的新进展.台湾海峡,1998,(17):84–88.
    [10]赵德英,张景宏,等.固态发酵及其在饲料工业中的应用[J].中国饲料,2000,10:28–29.
    [11]黄庆生,王加启.微生物饲料添加剂安全性问题的探讨[J].中国农业科技导报,2002,3(5):62–65.
    [12]周德庆,郭杰炎.我国微生态制剂的现状和发展设想.工业微生物,1999,29(1):34–43.
    [13]胡东兴,潘康成.微生态制剂及其作用机理[J ].中国饲料,2001,3:14–16.
    [14]何国庆,丁立孝,等.益生菌的功效与潜在危害[J].食品科技,2004,1:12–l5.
    [15] MaqboolA, ShafiqMK, Khan I A. Studies on effeetive microorganism treated rice straw on Deg Nala disease in Buffaloes [J].Indian Journal of Dairy Seience, 1999, (6):389一392.
    [16] Sandhu EX and Waraieh M. K. Conversion of cheese whey to singl–cell protein. Biotechnol Bioeng.1983, (27):797–808.
    [17] Ek. M and Eriksson. K. E. Utilization of the White–rot fungus Sporotriehum pulverulentum for water purifieation and Protein Produetion on mixed liginocellulosic wate waters. Bioteehnol Bioeng. 1980, 22:2237–2248.
    [18]徐姗楠,邱宏端.微生物发酵生产蛋白饲料的研究进展[J].福州大学学报(自然科学版),2002,30:709–713.
    [19] Durand A, Chereau D.A new pilot reactor for solid–state fermentation: application to the protein enrichment of sugar beet pulp. Biotechnol Bioeng.1988, 31(5):476–456.
    [20] Xue Maojie, LiuDeming. A Pilot process of solid state fermentation from sugar–beet pulp for the production of microbial protein. J. Ferment Bioeng.1992, 73(3):203–205.
    [21]卢德勋.系统动物营养学导论[M].北京:中国农业出版社,2004:76,325-327.
    [22] Enjalberta.F, J.E.Garrettb, R.Moncoulone, etc. Eeffets of yeast culture (Saccharomyces cerevisiae) on ruminal digestion in non–laetating dairy cows. Animal Feed Science and Technology 76(1999)195–206.
    [23] Yoon, I.K., Garrett,J.E.,Cox,D.J.,1997.Effect of yeast culture supplementation to alfalfa–grass hay diet on microbial fermentation in continuous culture of rumen contents,J.Anim.Sci.,75,Suppl.l:98(Abstr.).
    [24] Mutsvnagwa,.T.,Edwards,I.E.,Topps,J.H.,Paterson,G.F.M.1992.The effect of dietary inclusion of yeast culture on patterns of rumen fermentation,food intake and growth of intensively fed bulls. Anim. Prod. 55, 35–40.
    [25]韩正康,陈杰.反刍动物瘤胃的消化和代谢[M].北京,科学出版社,1988.
    [26]史清河,韩友文等.全混合日粮对羔羊瘤胃代谢产物浓度变化的影响[J].动物营养学报,1999a,11(3):51–57.
    [27] Chaucheyras E, G. Fonty, G. et al. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth and cellulolytic activity of the rumen anaerobic fungus, Neocallimatix frantalis MCH3 [J].Current Microbiology.1996, 31:201.
    [28] Jounay J P, Mathieu F, Senaud J, et al. Effect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion of nitrogen in the rumen of defaunated and refaunated sheep. Animal Feed Science and Technology, 75(1998): l–13.
    [29] Bloomfield,R A ,CB.GamerandM E.Muhre.Kinetie of urea metabolism in sheep.J Alllm.Sci,1996, 19:1248.
    [30] Griswold K E, Hoover W H, Miller T K, et al. Effect of form of nitrogen on growth of ruminal microbes in continuous culturre.Anim. Sci, 1996, 74, 74: 483–491.
    [31] Murphy J J,Kennelly J J.Effect of protein concentrate and protein source on the degradability of dry matter and protein in situ[J].Dairy Sei,1987,70: 1841-1849.
    [32] Newbold C J, Wallace R J , Mclntosh F M , et al.1996. Model of action of the yeast Saccharom- yces cerevisiae as a feed additives of ruminants.Br J.76, 249–261.
    [33] Martin SA, D J Nisbet, and R G Dean. Influence of a commercial yeast supplement on the in vitro ruminal fermentation [J]. Nutr Rep Int.1989.40:395.
    [34] Kumar U, V K. Sareen and S Singh. Effect of yeast culture supplement on ruminal microbial populations and metabolism in buffalo calves given a high concentrate diet [J].J. Sci. Food Agric.1997, 73: 231.
    [35]杨胜.饲料分析及饲料质量监测技术[M].北京:北京农业人学出版社.1993.
    [36] Maynard, L A, J K Loosli, et al. [M]. Animal Nutrition 7th edition. Me Graw Hill Book Company New York. 1979.
    [37]林春健,冯仰廉.尼龙袋法评定饲料于反刍动物瘤胃内蛋白质降解率.北京农业大学学报, 1987,13(3):375–380.
    [38]魏全意,莫放.几种能量饲料在瘤胃内的干物质降解率的研究.饲料研究,1998,4:1–2.
    [39]冯仰廉.用尼龙袋法测定几种中国精饲料在瘤胃中的降解率及该方法稳定性的研究.中国畜牧兽医杂志,1984,5:2–5.
    [40] Hong, S H ,Lee,B K ,Choi, N J ,et al. Effects of Enzyme Application, Method, and levels and pretreatment times on rumen fermentation nutrient degradation and digestion in goats and steers asian–aust.J. Anim. Sci, 2003, 16(3): 389–393.
    [41] Cherney, D J R, Patterson, J A ,Lemenager,R P. Influence of in situ bag rinsing technique on determination of dry matter disappearance. J Dairy Sci, 1990, 73:391–397.
    [42]北京农业大学主编.家畜饲养实验指导[M].北京:农业出版社,1988.
    [43] Grummer RR, Skaar TC, et al. Seasonal effects of preparation and postpartum fatand niacin feeding on lactation performance and lipid metabolism. J Dairy Sci.1989, 72(8):2028–2038.
    [44]那日苏,桂荣,赵青余等.牛用益生素的研究与应用[J].饲料研究,2003(12):10–13.
    [45] Bray A C and Till A R. Metabolism of sulfur in the gastrointestinal tract. In: Digestion and Metabolism in Ruminants [M]. McDonald I W and Warner A C I. The University of New England, Armidale, NSW, Australia. 1975:245.
    [46] Shabi, Z., Arieli, A., Bruckental, Y., Aharnoni, Y., Zamwel, S., Bor, A. and Tagari, H. Effect of synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows[J]. Journal of Dairy Science 1991,81: 1991–2000.
    [47] Shabi, Z , Arieli, A , Bruckental, Y , et al. Effect of synchronization of the degradation of dietary crude protein and organic matter and feeding frequency on ruminal fermentation and flow of digesta in the abomasum of dairy cows[J]. Journal of Dairy Science 1991, 81:1991–2000.
    [48]Φrskov E R ,McDonald, L. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. Journal of Agricultural Science Cambridge, 1979,
    [49] Willimas P E V, Walker A ,et al. Effects of the inclusion of yeast culture in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers [J]. J Anim Sci, 1991, 69: 3016–3026.
    [50] Carro. M. D, Lebzien. P, Rohr K, 1992b. Effects of yeast culture on rumen fermentation digestibility and duodenal flow in dairy fed a silage–based diet. Live Prod. Sci. 32, 219–229.
    [51] Dawson, K A, Hopkins, 0 M 1991.Differential effeets of live yeast on the cellulolytic activities of anaerobic ruminal bacteria[J]. J Anim. Sci., 69:531.
    [52] Wallace, R. M, Kattnig, J A, et al. 1993. Evaluation of biological efficiency of free–grazing beef cows under semi–desert conditions [J]. J Anim. Sci, 71: 2601–2607.
    [53] Erasmus L J, P M Botha, and A Kistner.Effect of yeast culture supplement on production, rumen fermentation, and duodenal nitrogen flow in dairy cows[J].J Dairy Sci.1992,75:3056–3065.
    [54]Wiedmeier R D, M J Arambel, and J L Walters.Effects of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestion[J].J Dairy Sci.1987.70:2063–2068.
    [55] Edwards I E, T Mutsvangwa, J H Topps, M. The response of Limousine Friesian steers fed silage El Sheikh and G.F.M.Paterson.and concentrates to the addition of supplemental yeast culture and/or an antibiotic additive [J]. Anim Prod 1991, 51: 588(Abstr.).
    [56]卢德勋.发展反刍动物绿色营养技术[J].动物营养学报.1999,11(增刊):1–16.
    [57]王志,肖定汉.奶牛饲养管理与营养代谢性疾病[M].北京.农业大学出版社,1989.
    [58] Piva G., S Belladonna, et al. Effects of yeast on dairy cowperformance, ruminal fermentation, blood components, and milk manufacturing properties [J]. J. Dairy Sci.1993.76:2717–2722.
    [59] Lewis D. Blood-urea concentration in relation to protein utilization in the ruminant [J]. Agri Sci.1957, 48:438–446.
    [60] Hahn J D and D H Baker. Growth and plasma zinc responses of young pigs fed pHarmacologic levels of zinc [J].J.Anim.Sci.1993, 71:3020.
    [61] De Peters E J , J D Ferguson. Nonprotein nitrogen and protein distribution in milk of cows [J].J Dairy Sci, 1992, 75(11): 3192–3209
    [62] Witt M W, Sinclair, L A, et al. The effects of synchronizing the rate of dietary energy and nitrogen supply to the rumen on the production and metabolism of sheep: food characteri-zation and growth and metabolism of ewe lambs given food ad libitum [J].Animal science.1999.69:223–235.
    [63] Scott ML, et al. Nutrition of the chicken [M].3rd.ed.1982.
    [64] ZHANG Ai-z hon g, LU De-xun. Effects of Yeast Culture on Immune Indices of Cashmere Goats. Chinese Journal of Animal Nutrition, 2008, 20 (2): 163– 169.
    [65]乔国华,单安山.直接饲喂微生物培养物对奶牛瘤胃发酵产甲烷及生产性能的影响[J].中国畜牧兽医,2006,5:11–13.
    [66] Holter, J b and A J Young.Methane production in dry and lactating Holstein cows [J].J Dairy Sci. 1992, 72: 21–65.
    [67] Stewart c s.Factors affecting the cellulolytic activity of rumen contents [J].App.Environ.Microbiol. 1997, 33: 497–502.
    [68] Czerkawski, J W. Methods for determining 2–6–diaminopimelic acid and2–aminoethylpHospHonic acid in gut contents [J].J Sci Food Agric.1974, 5:45–55.
    [69] Church, D C. The ruminant animal digestive physiology and nutrition [J].New York Press,1988, 2–11.
    [70] Dawson K.A.Current and future role of yeast culture in animal production:a review of research over the past seven years [C]. In: BiotechnologyintheFeedIndustry. Proceeding of the 9th symposium .T P Lyons, Alltech Technical Publication Nicholasville.KY 1993.
    [71] Dawson K A, Newman K.E.and Boling I A.Effects of microbial supplements containing yeast and lactobacilli on roughage fed ruminal microbial actives [J].J.Anim.Sci.1990,68(3):392–398.
    [72] Harrison G A, et al.Influence of addition of yeast culture supplement to diets of lactating dairy cows on ruminal function and microbial populations [J].J.dairy Sci.1988,71(2):967–975.
    [73]Wohlt, J E,A D Finkelstein,and C H Chung.Yeast culture to improve intake, nutrient digestibility and performance by dairy cattle during early lactation[J].J Dairy Sci.1991,74:1395–1407.
    [74]岳寿松,尤升波等.微生态制剂对奶牛增奶的实验研究[J].中国奶牛,2003(3):20-21.
    [75]李胜利,冯仰廉等.饲料中添加康贝对荷斯坦乳牛产奶量及乳成分的影响[J] .中国奶牛,2001,(6):15–17.
    [76] Komari R K, Reddyykl, Suresh J, et al. Effect of Feeding Yeast Culture and Lactobacillus Acidop Hilus on Production Performance of Crossbred Dairy Cows [J]. J Dairy Sci, 1999, 82(1):128.
    [77]刘凯,李胜利,魏永刚,等.益康XP对奶牛产后日粮适应性及生产性能影响的研究[J].中国奶牛,2005(1):24–27.
    [78]郑晓中.酵母培养物对反刍家畜营养作用的研究[J].饲料研究,1996(11):2–3.
    [79]王聪,黄应祥,刘强.酵母及其培养物在奶牛业中的应用研究进展.江西畜牧兽医杂志,2005 (1):25–26.
    [80] Sune R W, Muhlbach P R F. Effect of Yeast Culture Strain 1026 Addition on Milk Yield and Milk Quality of Holstein Cows in Pasture [J]. Revista Brasileira de Zootecnia, 1998, 27(6):1248–1252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700