生物质对大豆双共生系统的影响及效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以黑钙土为供试土壤,采用室外盆栽试验、田间小区试验、室内检验分析的方法研究了几种不同生物质对土著根瘤菌、丛枝菌根真菌与大豆双共生体系及相关指标的影响。主要试验结果如下:
     1.通过考查秸秆、土豆皮、食用菌废弃料、大豆浸出液四种生物质的施入对大豆双共生影响的田间试验,秸秆处理在四种生物质中效果最好。秸秆处理在V5期显著增加了土壤中AMF孢子数量和根际土壤真菌数量,到R3期,土壤中AMF孢子数量、根际土壤真菌数量、AMF侵染率、根可溶性糖含量均达最大值且高于其它处理,R6期有效根瘤数大幅增加且达最大值,根际土壤细菌数量增加,植株干物质积累也较多,同时显著提高了大豆产量。大豆浸出液处理在整个生育期有效根瘤数量、根系AMF侵染率、土壤中AMF孢子数、土壤微生物都显著高于对照,但由于播种前浸种导致产量相对较低。食用菌废弃料和土豆皮处理仅在R6期AMF侵染率显著高于其它处理。
     2.通过田间试验研究秸秆和不同施肥量对大豆双共生的影响发现,有秸秆组有效根瘤数、有效根瘤重、根系AMF侵染率和土壤中AMF孢子数均显著高于无秸秆组,表明秸秆对双共生系统十分有利。施肥量因素表现为中肥处理较低肥、高肥处理更有利于有效根瘤数、有效根瘤重、AMF侵染率,土壤中AMF孢子数的提高,因此适量的施肥有助于双共生系统的建立。6个处理中,无秸秆中肥对大豆双共生及大豆产量的影响要明显好于无秸秆低肥和无秸秆高肥。中肥有秸秆处理对整个生育期根瘤的形成均有显著促进作用,对有效根瘤重、AMF侵染率、土壤中AMF孢子数、可溶性糖含量均有一定促进作用。高肥有秸秆处理对有效根瘤重和AMF孢子数有一定抑制作用。
     3.通过室外盆栽试验,考查秸秆、吸胀萌动温度、处理液(清水、DHG、DHG粗提液、染料木素)三因素对大豆双共生系统的影响及效应。我们发现,有秸秆处理在有效根瘤数、AMF侵染率、土壤中AMF孢子数、土壤细菌、土壤真菌、植株氮、磷含量、株高、单株粒数以及单株产量[0]各项指标都显著或极显著高于无秸秆处理。吸胀萌动期低温处理对根瘤的形成、土壤中AMF孢子数量、植株中氮、磷含量有一定抑制作用,但对有效根瘤干重、AMF侵染率、土壤微生物数量、植株中钾含量、单株粒数、百粒重、单株产量无显著影响。四种处理液中DHG、DHG粗提液和纯品对双共生都有一定促进作用,显著增加了有效根瘤数量、AMF侵染率、土壤中AMF孢子数进而提高了产量,考虑纯品价格昂贵,DHG粗提液制备繁琐成本高,建议利用即经济又有效的DHG与秸秆配施来提高大豆性状及产量。
In this experiment, as tested chernozem soil, using outdoor pot experiment, field experiment, the analysis method of indoor testing several different biomass of indigenous rhizobia, arbuscular mycorrhizal fungi in symbiosis with the soybean and related indicators effects. Main results are as follows:
     1. By looking at straw, potato skins, edible waste material, soybean extract liquid was applied to four types of biomass effects on soybean field experiment double symbiosis, we found that in V5 of straw significantly increased the number of AMF spores and fungi in rhizosphere soil number, to the R3 phase, AMF spore number of rhizosphere soil fungi, AMF infection rate, root soluble sugar content reached the maximum and higher than others, R6 significant increase in the number of effective nodules and reached its maximum rhizosphere soil increase in the number of bacteria, plant dry matter accumulation of more and also significantly increased soybean yield, biomass at the four best.Extracts of soybean processing in the whole growing number of effective nodules, root AMF colonization rate, AMF spores were significantly higher than the control soil, but the output is not high, indicating that the double symbiosis of soybean leachate have stimulated a relatively low yield is due to seed soaking before sowing lead. Mushroom potato skin waste material handling and processing only in the R6 of AMF infection rate was significantly higher than other treatments.
     2. A field experiment of straw and different fertilizer effects on soybean double symbiosis found that straw group effective nodule number, effective nodules, root AMF colonization rate and the AMF spores in soil were significantly higher than those without straw group, that straw on the dual symbiotic system is very beneficial. Fertilization factors reflected in the low fertilizer fertilizer, high fertilizer more conducive to effective nodules, nodule weight effectively, AMF colonization rate, AMF spore numbers increase, so the right amount of fertilizer will help double the establishment of the symbiotic system. Six treatments, without straw group, double symbiosis and fertilizer on soybean yield of soybean is significantly better than low-fat and high fat.the fertilizer with straw on the growth of nodule formation was significantly stimulated.Effective nodule weight, AMF colonization rate, spore, soluble sugar content, have a certain role in promoting. High fertilizer treatment on the effective nodules with straw weight and number of AMF spores are inhibited, which is due to the high nitrogen fertilizer than the fixed limit of straw to inhibit soybean symbiotic development and function of the play, thereby affecting the yield increase.
     3. Through the outdoor pot experiment, examine the straw, imbibed germinating temperature, processing liquid (water, DHG, DHG crude extract, pure genistein) three factors on soybean symbiotic system of double and effect. We found that straw in effective nodules, AMF infection rate of AMF spores in soil, soil bacteria, soil fungi, nitrogen, phosphorus content, plant height, seed number per plant and yield per plant were significant indicators or very significantly higher than those without straw.Imbibition of low temperature on soybean germination growth, nodule formation, AMF spore number in soil, plant nitrogen, phosphorus, plant traits and yield are inhibited, but the number on the soil, can promote the role of potassium. Four kinds of treatment solution and pure DHG and the role of double symbiotic best, significantly increased the number of effective nodules, AMF infection rate of AMF spores in soil and thus increase the number of grains per plant, yield, consider the pure expensive propose to use the economical and effective to improve soybean traits DHG and yield.
引文
[1] Quatrini P , Scaglione G, Incannella G, et al. Microbial inoculants on woody legumes to recover a municipal landfill site[J]. Water Air Soil Poll , 2003, 3: 189-199.
    [2] Requena N , Perez-Solis E , Azcón-Aguilar C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems [J]. Environ. Microb. 2001, 67: 495-498.
    [3] Kormanik PP. The influence of VAM on the growth and development of eight hardwood tree species[J]. Forest Sci, 1982, 28(3): 531-539.
    [4]张旭红.丛枝菌根真菌在不同土壤环境因子下的适应性研究[D].河北:河北农业大学,2003.
    [5] Rhodes LH, Gerdemann JW. Hyphal translocation and uptake of sulfur by VAM of onion[J]. Soil Biology and Biochemistry, 1978, 10(5): 355-360.
    [6]王幼珊,张美庆. VA菌根对植物耐旱性研究及菌株筛选[J].北京:北京农业大学出版社,1992, 366-369.
    [7] Bowen GD. Zinc uptake by mycorrhizal and uninfected roots of Pinus radiata and Araucaria cunning-hamii[J]. Soil Biol, Biochem, 1974, 6: 141-144.
    [8]盛敏. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究[D].陕西:西北农业科技大学,2008.
    [9]申鸿.丛枝菌根(AM)对重金属污染耐受性机理研究[D].江苏:西南农业大学,2004.
    [10]汪洪钢,吴观以,李慧荃. VA菌根对绿豆(Phaseolus aureus)生长及水分利用的影响[J].土壤学报,1989, 26(4): 393-400.
    [11]林先贵,郝文英,施亚琴. VA菌根对植物耐早、涝能力的影响[J].土壤,1992, 24(3): 142-145.
    [12]汪洪钢,吴观以,李慧荃. VA菌根与根瘤菌的相互关系及对花生生长的影响[J].微生物学通报,1985, 12(2): 49-51.
    [13] Estaun V, Save R. Salt stress and VAM interactions on pistacia vera water relations[J]. In: Allen MF, eds. Abstracts of 8th NACOM, 1990, 96.
    [14]王艳铃,胡正嘉. VA菌根真菌对蕃茄线虫病的影响[J].华中农业大学学报,2000, 19(1): 25-28.
    [15] Furlan V. Large scale application of endomycorrhizal fungi and technology transfer to the farmer[J]. In: Pe-terson L, eds. Abstracts of the 9th NACOM, 1993, 77.
    [16]冯固,白灯莎,杨茂秋,等.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐的效应[J].应用生态学报,1999, 10(1): 79-82.
    [17]倪才英,陈英旭,骆永明,等.紫云英(Astragalus siniucus L.)对重金属胁迫的响应[J].中国环境科学,2003, 23(5): 503-508.
    [18]唐明. VA菌根提高植物抗盐碱和抗重金属能力的研究进展[J].土壤,1998, 30(5): 251-254.
    [19]武志杰,张海军,许广山,等.玉米秸秆还田培肥土壤的效果[J].应用生态学报,2002, 13(5): 539-542.
    [20]劳秀荣,吴子一,高燕春.长期秸秆还田改土培肥效应的研究[J].农业工程学报,2002, 18(2): 49-52.
    [21]陈世正.稻草还田对土壤肥力与作物产量的影响[J].土壤肥料,1995, 4: 13-17.
    [22]陈德章.稻草还田对土壤理化性质及产量的影响[J].土壤肥料,2000, 5: 24-27.
    [23]于占东,宋述尧.非腐解有机物配施生物菌剂对设施土壤理化性质的影响[J].吉林农业大学学报,2001, 23(4): 69-71.
    [24]蔡晓布,钱成,张元等.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004, 15(3): 463-168.
    [25]刘建胜.我国秸秆资源分布及利用现状的分析[D].北京:中国农业大学,2005.
    [26]李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南昌:江西科学技术出版社,1998, 112-119.
    [27]洪庆慈.几类天然植物中抗氧化物的研究[J].粮食与饲料工业2000, 2: 45-47.
    [28]李志超.香菇.中国展望出版社[M]. 1986, 89-90.
    [29]李月秀,王会川.豆制品厂“废水”的治理与综合利用[J].云南师范大学学报,1999, 19(3): 40-42.
    [30]张永忠,孙艳梅.纳滤膜及其在食品工业中的应用[J].食品工业,2002, 2: 48-49.
    [31] Hirsch AM, Lum MR, Downie JA. What makes the rhizorbiar legume symbiosis so special [J]. Plant Physiol, 2001, 127: 1484-1492.
    [32]李泽禹.根瘤与菌根[J].生物学通报,1998, 33 (1): 11-12.
    [33]李新民,谷思玉,窦新田,等.不同土壤大豆接种根瘤菌剂反应的研究[J].黑龙江农业科学,1998, 4: 1-5.
    [34]胡振宇,黄怀琼,刘世全.快生型花生根瘤菌株与土著性根瘤菌竞争结瘤能力的探讨[J].四川农业大学学报,1994, 12: 12-18.
    [35]汤树德.作物秸秆直接还田的土壤生物学效应[J].土壤学报,1980, 17(2): 172-181.
    [36]汤树德,石晶波.秸杆还田对大豆结瘤状况、固氮活性和生育产量的影响[J].黑龙江八一农垦大学学,1986, 1: 9-16.
    [37]季立声,贾君永,张圣武等.秸秆直接还田的土壤生物学效应[J].山东农业大学学报,1992, 23(4): 375-379.
    [38]赵丽珍,刘振钦,郑怀训等.施用菌糠对大豆生育和产量的影响[J] .吉林农业大学学报,1994, 16(2): 40-44.
    [39]李小为.大豆生长中土壤与肥料的功能作用[J].大豆通报,2004, 4: 35-56.
    [40] EAGLESHAM A R J. Acrial stem nodules on Aeschynomene spp.[J]. Plant Sci. 1983, 29: 265 - 273.
    [41]刘丽君,孙聪姝,刘艳等.氮肥对大豆结瘤及叶片氮素积累的影响[J].东北农业大学学报, 2005, 36(2): 133-137.
    [42] Sanginga N. Role of biological nitrogen fixation in legume based cropp ing systems: a case study of West Africafarming systems[J]. Plant and Soil, 2003, 252: 25 - 39.
    [43]陈际型.钾素营养对水稻根系生长和养分吸收的影响[ J ].土壤学报,1997, 34 (2): 182-187.
    [44]刘连全,张满堂.氮磷钾不同组配对蚕豆的效应研究[ J ].湖南农业科学,1991, (4): 47 - 48.
    [45]中国农业科学院科技情报研究所等.农作物冷害专辑.国外农业科技资料,1978,4.
    [46]张德荣、张学君.大豆低温冷害试验研究报告[J].大豆科学,1987, 2: 125-132.
    [47] Hume, D.J. and A. KH. Jackson Pod formation in soybeans at low tempertures[J]. Crop Sci. 1981, 21: 933-937.
    [48] Orr.W.et al. Imbibitional chilling injury in cultivars of soybeans differing in temperature sensitivity to pod formation and maturation periods[J]. Can.J. Bot. 1983, 61: 2996-2998.
    [49]郑光华,顾增辉,徐本美.大豆种子萌发过程中冷害问题的研究[J].中国农业科学,1981 , 2: 63-72.
    [50]李育军,赵玉田,常汝镇等.大豆萌发期对6℃低温的反应[J].大豆科学,1990, 9(2): 136-144.
    [51]张德荣,张学君,孟祥盟等.大豆低温冷害敏感时期试验研究报告[J].吉林农业科学, 1987, 1: 37-39.
    [52]张德荣.大豆低温试验研究报告[J].农业科学,1988, 11: 12-15.
    [53] Mes, M. G.: Nature, 184:1959-2032.
    [54]范云六.温度条件对紫云英根瘤形成及其共生固氮的影响[J].微生物学报,1965, 11(4): 480-487.
    [55]张文棠.土壤温度与紫花苜蓿根瘤菌的结瘤关系[J].草业科学,1989, 6(6): 51,52.
    [56] Ellis. W. R. , Ham. E. , and Schmidt, E. L. Persistence and recovery of Rhizobium japonicum inoculum in a field soil[J]. Agrononiy Journal, 1984, 76: 573-576.
    [57] Van Elsas, J. D. et al. Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots[J]. FEMS Microbiol. Ecol. 1986, 38: 446-453.
    [58] Pillai. S. D. and Pepper. I. D. Survival of Tn5 mutant bean rhizobia in desert soils. Phenotypic expression of Tn5 under moisture stress[J]. Soil Biol. Biochem. 1990, 22: 265-270.
    [59] DénariéJ, Cullimore J. Lipo-oligosaccharide nodulation factors: a new class of signaling molecules mediating recognition and morphogenesis[J]. Cell, 1993, 74: 951-954.
    [60] Ardourel M, Demont N, Debelle F. Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses[J]. Plant Cell, 1994, 6: 1357-1374.
    [61] Aoki T, Akashi T, Ayabe S. Flavonoids of leguminous plants: structure, biological activity and biosynthesis[J]. Journal of Plant Research, 2000, 113: 475-488.
    [62] Catford JG, Staehelin C, Larose G, Piche Y, Vierheilig H. Systemically suppressed isoflavonoids and their stimulatin effects on nodulation and mycorrhization in alfalfa split-root systems[J]. Plant&Soil, 2006, 285: 257-266.
    [63] Shaw LJ, Morris P, Hooker JE. Perception and modification of plant flavonoid signals by rhizosphere microorganisms[J]. Environmental Microbiology, 2006, 8: 1867-1880.
    [64] Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K.Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages[J].Agricultural and Food Chemistry, 2006, 54: 5797-5805.
    [65] Geurts R ,Federova E ,Bisseling T.Nod factor signalling genes and their function in the early stages of infection[J]. Current Opinion in Plant Biology, 2005, 8: 346-352.
    [66]梁滨,周青.UV-B辐射对植物类黄酮影响的研究进展[J].中国生态农业学报,2007, 15(3):191-194.
    [67] Hartwig,U.A., Maxwell, C. A., Joseph, C. M., and Phillips, D. A. Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 1990, 172: 2769-2773.
    [68] Bartsev AV, Deakin WJ, Boukli NM.NopL, an effector protein of Rhizobium sp. NGR234, thwarts activation of plant defence reactions[J]. Plant Physiology, 2004, 134: 871-879.
    [69] Mulder L, Hogg B, Bersoult A. Integration of signalling pathways in the establishment of the legume-rhizobia symbiosis[J]. Physiologia Plantarum, 2005, 123: 207-218.
    [70]许传俊,李玲,彭永宏.类黄酮调节生长素的极性运输[J].亚热带植物科学,2002, 31(增刊): 22-26.
    [71]吴强盛.丛枝菌根真菌对柑橘抗旱性的作用及其机理研究[D].华中农业大学2006.
    [72]王明元.丛枝菌根真菌对柑橘铁吸收的效应及其作用机理[D].华中农业大学2008.
    [73] Angela H.,C. D. CamPbell and A. H. Fitter. An arbuseular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(20): 297-299.
    [74]贺学礼,Yosef Steinberger.荒漠灌木根际AM真菌动态分布研究[J].西北农林科技大学学报,2001, 29(4): 24-28.
    [75]王冬梅.丛枝菌根真菌在不同土壤环境因子下的适应性研究[D].河北:河北农业大学2003.
    [76]冯海艳.土壤和宿主磷水平对AM真菌生长及ALP活性调控的研究[D].中国农业大学2003.
    [77]张旭红,朱永官,王幼珊,等.不同施肥处理对丛枝菌根真菌生态分布的影响[J].生态学报,2006, 26(9): 98-99.
    [78]林先贵.在非灭菌土壤条件下施用磷肥对VA菌根效应的影响[J].土壤学报,1989, 26(2): 179-185.
    [79]吴铁航.红壤中VA菌根中侵染力及接种效应的研究[J].应用生态学报,1993, 40(1): 53-58.
    [80]薛炳烨.高磷条件下VA菌根对桃生长和矿质元素的影响[J].山东农业大学学报,1990, 1: 58-62.
    [81]李晓林,曹一平.菌根和非菌根三叶草根际土壤磷钾养分变化[J].土壤学通报,1992, 23(4): 180-182
    [82]刘润进,高秋莲,孙东.根外施N、P、K对苹果菌根生育的影响[J].莱阳农学院学报,1996, 8(2): 132-134.
    [83]彭生斌,沈崇尧.北京地区大葱和玉米根际VA菌根的季节变化及其与环境因子之间的关系[J].植物学报,1990, 32(2): 141-145.
    [84] Anderson CP, Sucoff EI, Dixon RK. The influence of low soil temperature on the growth of vesicular-arbuscular mycorrhizal Fraxinus pennsylvanica[J]. Canadian Journal of Forest Research, 1987, 17: 951-956.
    [85] Wang B, Funakoshi DM, DalpéY, etal. 32P absorption and translocation to host plants by AM fungi at low root zone temperature[J]. Mycorrhiza, 2002, 12: 93-96.
    [86] Hawkes CV, Hartley IP, Ineson P, et al. Soil temperature affects carbon allocationwithinarbuscularmycorrhizal networks and carbon transport from plant to fungus[J]. Global Change Biology, 2008, 14: 1181-1190.
    [87] EI-Tohamy W, SchnitzlerWH, EI-Behairy U,et al. Effect of VA mycorrhiza on improving drought and chilling tolerance of bean plants (Phaseolus vulgaris) [J]. Journal of Applied Botany, 1999, 73: 178-183.
    [88] Hayman S. Plant growth responses to vesicular-arbuscular mycorrhiza.Ⅳ. Effectof lightand temperature[J]. New Phytologist, 1974, 73: 71-80.
    [89] Hetrick BAD, Bloom J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi[J]. Mycologia, 1984, 76: 953-956.
    [90] Baon JB, Smith SE, AlstonAM. Phosphorus uptake and growth ofbarley as affected by soil temperature and mycorrhizal infection[J]. Journal ofPlant Nutrition, 1994, 17: 479-491.
    [91] Liu A, Wang B, HamelC. Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature[J]. Mycorrhiza, 2004, 14: 93-101.
    [92] Volkmar KM, Woodbury W. Effects of soil temperatures and depth on colonization and root and shoot growth of barley inoculated with vesicular-arbuscular mycorrhizae indigenous to Canadian prairie soil[J]. Canadian Journal of Botany, 1989, 67: 1702-1707.
    [93] Charest C, DalpéY, Brown A. The effect of vesicular-arbuscular mycorrhizae and chilling on two hybrids of Zea mays L[J]. Mycorrhiza, 1993, 4: 89-92.
    [94] Borges R G , Chaney W R. Root temperature affects mycorrhiza efficacy in Fraxinus pensylvanica Marsh[J]. New Phytologist ,1989, 112(3): 411-417.
    [95] Schenck N C, Spain J L, Sieverding E. A new sporocarpic species of Acaulospora(Endogonacecae) [J]. Mycotaxon, 1986, 55: 111-117.
    [96] Mosse B, Hepper CE. Vesicular-arbuscular mycorrhizal infections in root organ cultures[J]. Physiological Plant Pathology, 1975, 5: 2015-2223.
    [97] Poulin MJ ,Simard J. Response of symbiotic endomycorrhizal fungi to estrogen and antiestrogens[J]. Molecular Plant-Microbe Interact, 1997, 10: 481-487.
    [98] Harrison MJ , Dixon RA. Spatial patterns of expression of flavonoid isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme[J]. Plant Journal, 1994, 6: 9-20.
    [99] Akiyama K,Matsuoka H. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots[J]. Molecular Plant-Microbe Interact, 2002, 15: 334-340.
    [100] Larose G, Larose R, Chênevert. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus[J]. Journal of Plant Physiology, 2002, 159: 1329-1339.
    [101] Simoneau P, Louisy-Louis N, Plenchette C. Accumulation of new polypetides in Ri-T-DNA-transformed roots of tomato (Lycopersicon esculentum)during the development of vesiculararbuscular mycorrhizae[J]. Applied and Environmental Microbiology, 1994, 60: 1810-1813.
    [102] Vierheilig H, PichéY. Signalling in arbuscular mycorrhiza:factors and hypotheses[J]. New YorkPlenum Press, 2002, 21: 23-39.
    [103] Crush J R. Plant growth responses to vesicular-arbuscular mycorrhizae VII. Growth and nodulation of some herbage legumes[J]. New Phytologist, 1974, 73: 743-745.
    [104] Salzer P, Corbière H, Boller T. Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhizal fungus Glomus intraradices[J]. Planta , 1999, 208: 319-325.
    [105] Boglárka Oláh, Christian Brière, Guillaume Bécard, et al. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling path way[J]. The Plant Journal, 2005, 44: 195-207.
    [106] Souleimanov A, Prithiviraj B, Smith DL. The major Nod factor of Bradyrhizobium japonicum promotes early growth of soybean and corn[J]. Journal of Experimental Botany, 2002, 53: 1929-1934.
    [107] Allen MF. The ecology of mycorrhizae[M]. New York: Cambridge University Press, 1991, 113-118.
    [108] Bhatia N P,Adholeya A,Sharma A.Biomass production and changes in soil productivity during long term cultivation of Prosopis juliflora(Swartz)DC inoculated with VA mycorrhiza and Rhizobium spp. in a semi-arid wasteland[J]. Biology and Fertility of Soils,1998, 26(3): 208-214.
    [109] Shockley F W, McGraw R L, Garrett H E. Growth and nutrient concentration of two native forage legumes inoculated with Rhizobium and mycorrhiza in Missouri[J]. USA Agroforestry Systems, 2004, 60(2): 137-142.
    [110] Hirsch A M, Kapulnik Y. Signal trandduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legumesymbiosis[J]. Fungal Genetics and Biology, 1999, 23(3): 205-212.
    [111] Olah B, Briere C, Becard G, et a1. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway[J]. Plant Journal, 2005, 44(2): 195-207.
    [112] Antunes PM, Rajcan I, Goss MJ. Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum(Kirchner)Jordan and soybean(Glycine max(L.)Merr.) [J]. Soil Biology and Biochemistry, 2006, 38: 533-543.
    [113] Rosa MT, Concepción AA, Juan S, Jose MB. Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation[J]. Applied Soil Ecology, 1996, 4: 15-21.
    [114] Tsimilli-Michael M, Eggenberg P, Biro B. Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa,probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P[J]. Applied Soil Ecology, 2000, 15: 169-182.
    [115] Antunes PM, Goss MJ. Communication in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, rhizobia and legume plants:a review.Chapter 11. In: Wright SF,Zobel RW(eds.)Roots and soil management:interactions between roots and the soil.Agronomy Monograph No 48. ASA, CSSA, and SSSA, Madison, WI, 2005,199-222.
    [116] Pedro MA, Amarilis V, Istvan R, Michael JG. Accumulation of specific flavonoids insoybean(Glycine max(L.)Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum(Kirchner) Jordan[J]. Soil Biology and Biochemistry, 2006, 38: 1234-1242.
    [117] Rao, Cooper JE. Soybean nodulation rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing acting activity[J]. Molecular Plant-Microbe Interactions, 1995, 8: 855-862.
    [118] Larose G, Larose R, Chênevert. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus[J]. Journal of Plant Physiology, 2002, 159: 1329-1339.
    [119] Galleguillos C, Aguirre C, Barea JM, et al. Growth promoting effect of two Sinorhizobium meliloti strains (a wildtype and itsgenetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhiza fungi[J]. PlantSci, 2000, 159: 57-63.
    [120] C.Coronado, JAS. Zuanazzi, CS. Allaud, J.C. Alfalfa Root Flavonoid Production Is Nitrogen Regulated[J]. Plant Physiol, 1995, 108(2): 533-542.
    [121] Mosse B. in Exploiting the Legume-Rhizobium symbiosis in tropical Agriculture Tropical[J]. Agriculture Miscellaneous Publication, 1977, 145: 275-292.
    [122] Mathesius U. Conservation and divergence of signalling pathways between roots and soil microbes-the Rhizobium-legume symbiosis compared to the development of lateral roots,mycorrhizal interactions and nematoder induced galls[J]. PlantSoil, 2003, 255: 105-119.
    [123] Parniske M. Intracellular accommodation of microbes by plants:a common development al program for symbiosis and disease.Curr.Opin[J]. Plant Biol., 2000, 3: 320-328.
    [124] Riely BK, Ane JM, Penmetsa RV, et al. Genetic and geNomic analysis in model legumes bring Nod-factor signaling to center stage. CurrOpin[J]. Plant Biol., 2004, 7: 408-413.
    [125]沈萍,陈向东.微生物实验[M].北京:高等教育出版社,2004, 69-81.
    [126]顾勇华. DHG中大豆异黄酮的提取方法.中国专利,CN 1769280A, 2006.
    [127]周建华,刘松艳,巩发永.两种分光光度法测定苦养中黄酮含量的比较[J].江苏农业科学,2008, 5: 247-251.
    [128]李阜棣,喻子牛.农业微生物实验技术[M].北京:中国农业出版社,1996, 34-36.
    [129] Phillips J M, Hayman D S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection [J]. Transactions of the British Mycological Society, 1970, 55 (1) : 158 -160.
    [130]弓明钦,陈应龙,仲崇禄.菌根研究及应用[M].北京:中国林业出版社,1997,139-141.
    [131] Tisserant B, Gianinazzi S, Gianinazzi-pearson V. Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia[J]. Can J Bot. 1996, 74: 1947-1955.
    [132]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000,192.
    [133] Daniels BA, Skipper HD. Methods for the recovery and quantitative estimation of propagules from soil[M]. St.Paul: The American Phytopathology Society Press, 1982, 29-35.
    [134]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004, 100-120.
    [135]郝建军,康宗利,于洋.植物生理与实验技术[M].北京:化学工业出版社,2007, 69-72.
    [136]鲍士旦.土壤农化分析[M].北京:中国农业出版社,1999, 39-101.
    [137]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2002, 124-126.
    [138]汤忠华.马铃薯皮对菌丝生长的影响[J].食用菌,1988, 4: 26.
    [139]陈翠微,刘长江.农作物秸秆在生态农业中的综合利用[J].中国农业科技导报,2000, 5: 45-48.
    [140]韩鲁佳,闫巧娟,刘向阳等.中国农作物秸秆资源及其利用现状[J].农业工程学报,2002, 18(3): 87-91.
    [141]隋文志,刘永春,吴魁斌.秸秆种类和用量对白浆土大豆根际微生物、结瘤固氮和产量的影响[J].现代化农业,1995, 10: 8-10.
    [142]王华.沙冬青与根瘤菌和丛枝菌根真菌(AMF)共生关系影响因素的研究[D].北京:北京林业大学,2008.
    [143]殷永娴,张春兰,姚慧琳.增施秸秆对蔬菜保护地土壤微生物的影响[J].土壤通报,1996, 27(5): 239-241.
    [144]蔡晓布,钱成,张元等.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004, 15(3): 463-468.
    [145]冯海艳.土壤和宿主磷水平对AM真菌生长及ALP活性调控的研究[D].北京:中国农业大学,2003.
    [146]赵士杰,李树林. VA菌根促进青椒生长的生理研究[J].华北农学报,1994, 9(1): 81-86.
    [147]陈宁,王幼珊,杨延杰等.宿主植物对真菌生长发育的影响[J].华北农学报,2006, 21(6): 103-106.
    [148]王永锐,李小林.水稻免耕栽培的生理基础[J].中山大学学报论丛,1989, 8(4): 96-98.
    [149]王幼珊,刘相梅,张美庆,等.盆栽基质及营养液对AM真菌接种剂繁殖的影响[J].华北农学报,2001, 16(4): 81-86.
    [150]范富,张庆国,张永亮等.施肥对紫花苜蓿根瘤的影响[J].农业科技通报,2006, 7.
    [151]李泽禹.根瘤与菌根[J].生物学通报,1998, 33(1): 11-12.
    [152]吕晓波.大豆保护性施氮技术及其应用前景[J].大豆科学,2001, 20(2): 138-140.
    [153]陈宁,王幼珊,杨延杰.不同氮磷比例营养液对AM真菌生长发育的影响[J].植物营养与肥料学报,2007, 13(1): 143-147.
    [154]侯彦林,王曙光,郭伟.尿素施肥量对土壤微生物和酶活性的影响[J].土壤通报,2004, 35(3): 304-307.
    [155]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社,2001.
    [156]李晓林.施磷水平与VA菌根效应的关系[J].北京农业大学学报,1990, 16(2): 177-180.
    [157] Hepper C M. The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce[J]. New Phytol., 1983, 92: 389-399.
    [158]史占忠.大豆植株全氮磷钾含量变化分析[J].大豆科学,1989, 8(4): 369-374.
    [159]王彦丰,王书恩.大豆高产综合农艺措施模拟和优化的研究[J].大豆科学,1992, 11(1):43-48.
    [160]王洪伦,张传珂,王侠礼,等.大豆高产高效施肥模式的研究[J].中国油料,1994, 16(2): 31-34.
    [161] Nanway J J N P and K. Percentages in soybean[J]. Plant Parts Agron, 1971, 63: 286-290.
    [162]董钻,谢甫绨.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996, 1: 89-95.
    [163]严晓明,何传龙,王道中,等.不同有机物料对砂姜黑土培肥改土的效果[J].安徽农业科学,1999, 1: 16-20.
    [164]陈世正,魏朝富,谢德体,等.长期施用有机肥料对紫色水稻土有机无机复合性状的影响[J].土壤学报,1995, 2: 159-166.
    [165]陈德章.植物动力2003对烟叶的肥效试验[J].福建农业,2000, 12: 24-27.
    [166]吴继光,林素桢.囊丛枝菌根菌应用技术手册[M].台湾:台湾省农业实验所,1998.
    [167] Mcarthur D A J, Knowles N R. Influnce of vesicular-arbuscular mycorrhizal fungi on the response of potato to phosphorus deficiency [J]. Plant Physiol., 1993, 101(1): 147-160.
    [168] Weaver RW, Frederick LR. Effect of inoculum rate on competitive nodulation of Glycine max L.Merrill, I: Greenhouse studies[J]. Agron.J, 1974, 66: 229-232.
    [169]郭涛,申鸿,彭思利,等.氮、磷供给水平对丛枝菌根真菌生长发育的影响[J].植物营养与肥料学报,2009, 15(3): 690-695.
    [170] Yuming Bai, Alfred Souleimanov and Donald L. Smith. An inducible activator produced by a Serratia proteamaculans strain and its soybean growth-promoting activity under greenhouse conditions[J]. Journal of Experimental Botany, 2002, 53(373): 1495-1502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700