基于遥感和地面实测水分数据的小流域土壤水分模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是制约黄土高原植被建设的关键自然因素,黄土高原土层深厚,地下水埋藏深,植物难以利用,所需水分主要来自土壤水,土壤水分作为水量平衡和水循环与土壤资源的重要因素已经受到了广泛的研究。土壤水分也决定了生态建设中植被类型和结构,它是植物生长、植被恢复、土壤侵蚀的主要影响因素。因此,监测和掌握土壤水分状况对于黄土高原的农业生产和土地的合理利用具有重要的指导意义。
     本论文以陕西安塞县沿河湾乡桑塌村为土壤水分采样区,借助遥感数字图像处理技术和GIS地形分析方法,首先根据遥感影像提取地表温度(Ts)和植被指数(NDVI),由Ts和NDVID组成的特征空间拟合干边和湿边方程,从而计算得到温度植被干旱指数(TVDI)。其次,根据野外实测土壤水分数据分析TVDI和土壤水分的相关性,建立TVDI模型反演土壤水分,利用未参与推演模型的野外实测数据进行模型检验。利用GIS的地形分析功能,对坡向和土地利用类型对土壤水分的影响做分析,利用DEM提取地形湿度指数。在已建立的TVDI模型的基础上,考虑地形因子对土壤水分的作用情况下加入坡向、土地利用类型和地形湿度指数作为土壤水分的影响因子,建立一个土壤水分反演的综合模型,以此方法反演土壤水分含量,再利用未参与推演模型的土壤水分实测数据进行检验。最后根据TVDI模型和综合模型对土壤水分的空间分布制作了预测图。为黄土高原地区快速获取土壤水分含量提供了可借鉴的方法,同时也为小流域土壤侵蚀模型提供了基础数据。
Water is the key natural factor to restricting the construction of the natural vegetation. The natural vegetation in the Loess Plateau mainly depends on soil moisture, because water is buried deep underground, which is difficult to use by the vegetation. As the important factor in water balance and cycle and soil resource, soil moisture has received extensive research. Meanwhile, soil moisture is the main factor affecting the plant growth, vegetation restoration and soil erosion. Therefore, monitoring soil moisture has an important significance to the agricultural production and the rational use of land for the Loess Plateau.
     In this paper, based on Sangta village soil moisture sampling experimental area in Ansai County of Shaanxi Province, using Remote sensing digital image processing and GIS methods. At first, extracts Surface temperature (Ts) and Normalized difference vegetation index (NDVI) based on remote sensing. We can calculate the Temperature Vegetation Dryness Index (TVDI) by equation formed by Ts and NDVI. Second, establishes soil moisture retrieval model according to the relevance of TVDI and soil moisture. Using the terrain analysis capabilities of GIS, analyses the slope and land influence on soil moisture and extracts the Topographic Wetness Index based on the Xiannangou DEM. Checks the TVDI model utilizing other data not involved model inference. Taking into account the topographic fators influence on soil moisture, establishes an integrated model to inverse the soil moisture. At last, products soil moisture distribution according to the TVDI model and integrated model. Provide a feasible method collecting soil moisture content quickly. Furthermore, supplies the basic data for the soil erosion model.
引文
1. 唐克丽,中国水土保持.2004,北京:科学出版社.
    2. 杨文治,马玉玺,黄土高原地区造林土壤水分生态分区研究.水土保持学报,1994.18(1):p.1-9.
    3. 李玉山,黄土区土壤水分循环待征及其对陆地水分循环的影响.生态学报,1983.3(2):p.91-101.
    4. 胡良军,邵明安,基于GIS的黄土高原水分生态环境区域空间格局研究[J].应用生态学报,2004.15(11):2132-2136.
    5. 吴钦孝,杨文治,黄土高原植被建设与持续发展[M].科学出版社,1998.42-68.
    6. 潘成忠,上官周平,黄土半干旱丘陵区陡坡地土壤水分空间变异性研究[J].农业工程学报,2003.19(6):5-9.
    7. 陈家宙,陈明亮等,各具特色的当代土壤水分测量技术[J].湖北农业科学,2001.3:25-28.
    8. 裴浩,范一大,乌日娜,利用气象卫星遥感监测土壤含水量[J].干旱区资源与环境,1999.13(1):73-76.
    9. 田国良,热红外遥感[M].电子工业出版社,2006.307-308.
    10.姚春生,使用MODIS数据反演土壤水分研究[D].中国科学院研究生院硕士学位论文,2003.
    11.刘昌明,李道峰,田英,郝芳华,杨桂莲,基于DEM的分布式水文模型在大尺度流域应用研究地理科学进展,2003.22(5):p.437-445.
    12.王中根,刘昌明等,基于DEM的分布式水文模型构建方法[J].地理科学进展,2002.21(5):430-439.
    13.郭方,刘新仁,任立良,以地形为基础的流域水文模型[J].水科学进展,2000.11(3):296-301.
    14.解河海,郝振纯,基于TOPMODEL的东江流域水文模拟[J].水科学研究,2008.2(1):56-62.
    15.邓慧平,地形指数的物理意义分析[J].地理科学进展,2002.21(2):103-109.
    16.赵立军,基于MODIS数据的北京地区土壤含水量遥感信息模型研究[D].中国农业大学硕士学位论文,2004.
    17. Carlson, T.N., Gillies, R., and Schmugge, T.J., An interpretation of methodologies for indirect measurement of soil water content[J]. Agricultural Meteorology,1995.77:191-205.
    18.胡相明,赵艳云等,云雾山自然保护区环境因素对土壤水分空间分布的影响[J].生态学报,2008.28(7):2964-2971.
    19.田良国,土壤水分的遥感监测方法[J].环境遥感,1991.6(2):89-98.
    20. Sandholt, I., Rasmussen, K, and Andersen, J A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J]. Remote Sensing Environment,2002.79:213-224.
    21.张仁华,改进的热惯量模式及遥感土壤水分[J].地理研究,1990.9(2):101-112.
    22.张仁华,孙晓敏等,以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验证[J].中国科学(D辑),2002.32(12):1041-1050.
    23.余涛,田国良,热惯量法在监测土壤表层水分变化中的研究[J].遥感学报,1997.1(1):24-31.
    24.杨宝钢,丁裕国等,考虑植被的热惯量法反演土壤湿度的一次实验[J].南京气象学院学报,2004.27(2):218-223.
    25.段建军,黄土高原地区土壤干层的分布状况与时空动态研究2006,中国科学院水利部水土保持研究所:陕西杨陵.
    26. Moore, I.D., Burch G J, etal, Topographic effects on the distribution of surface water and the location of ephemeral gullies[J]. Transactions of America Society of Agricultural Engineer,1988.31:1098-1107.
    27.傅伯杰,王军等,黄土丘陵区土地利用土壤水分的影响[R].中国科学基金,1999.第4期:225-227.28.王军,傅伯杰,黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报,2000.55(1):84-91.
    29.王洪明,杨勤科,姚志宏,小流域尺度土壤水分与地形湿度指数的相关性分析[J].水土保持通报,2009.29(4):110-113.
    30.姚志宏,杨勤科,区域尺度侵蚀产沙估算方案研究[J].中国水土保持科学,2007.5(4):13-17.
    31. Bowers S A, H.R.J., Reflection of radiant energy from soils[J]. Soil Science,1965.100(2):135-138.
    32. Watson K, P.H.A., Thermal Inertia Mapping from Satellites Discrimination of Geologie Units in Oman[J]. J Res Geol Suvr,1974.2(2):147-158.
    33. Kahle, A.B., A. R. Gillespie,etal, Thermal inertia mapping:A new geologic mapping tool[J]. Geophysical Research Letters,1975.3:26-28.
    34. C, P.J., On the Analysis of Thermal Infrared Imagery:The Limited Utility of Apparent Thermal Inertia[J]. Remote Sensing of Environment,1985.18:59-73.
    35. Pratt A, E.C.D., The Thermal Inertia Approach to Mapping of Soil Moistur and Geology[J]. Remote Sensing of Environment,1979.8:151-168.
    36. T, S., Remote sensing of surface soil moisture[J]. Appl.Metror,1978.17:1549-1557.
    37. Idso, S.B., R. D. Jackson, etal, Normalizing the Stress-Degree-Day Parameter for Environmental Variablity[J]. Agricultural Meteorology,1981.24:45-55.
    38. Jackson, R.D., Pinter, P.J Detection of water stress in wheat by measurement of reflected solar and emitted thermal IR radiation,in Spectral Signature of Objects in Remote Sensing[J]. Institut National de la Recherche Agronomique,Versailles, France,1981.399-406.
    39. Moran, M.S., Clarke,T.R etal, Estimating crop water deficit using the relation between surface air temperature and spectral vegetation index[J]. Remote Sensing of Enviroment,1994.49:246-263.
    40. Kogan, F.N., Application of vegetation index and brightness temperature for drought detection[J]. Advances in Space Research,1995.15:91-100.
    41. Nemani, R.R., and Running, S. W, Developing satellite-derived estimates of surface moisture status[J]. Journal of Applied Meteorology,1993.32(3):548-557.
    42. Goward, S.N., Xue, Y and Czajkowski, K.P, Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements:An exploration with the simplified simple biosphere model[J]. Remote Sensing of Enviroment,2002.79:225-242.
    43.隋洪智,田国良,热惯量方法监测土壤水分[C].科学出版社,1990.
    44.张可慧,刘芳圆等,河北省土壤水分遥测研究[J].地理学与国土研究,2002.18(3):101-104.
    45.刘良云,张兵,郑兰芬,利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002.21(4):269-273.
    46.刘丽,周颖,用遥感植被水指数监测贵州干旱[J].贵州气象,1998.22(6):17-21.
    47. Schmugge T J, G.P., Wilheit T,etal, Remote Sensing of Soil Moisture with Microwave Radiometers[J]. JGR, 1974.79(2):317-323.
    48. Njoku E G, L.L., Retrieval of land surface parameters using passive microwave measurements at 6-18GHz[J]. IEEE Trans Geosci Remote Sensing,1999.6(7):79-93.
    49. Choudhury B J, S.T.J., etal, Effect of Surface Roughness on the Microwave Emission from Soils[J]. JGR, 1979.84:5699-5706.
    50. Wang, J.R., Choudhury, B. J, Remote Sensing of Soil Moisture Content Over Bare Field at 1.4GHz Frequency[J]. JGR,1981.86(C2):5277-5282.
    51. Felde, G.W., The effect of soil moisture on the 37GHz microwave polarization difference index(MPDI)[J] Remote Sensing,1998.19(6):1055-1078.
    52. Schmugge T J, O.N.P.E., Wang J R, Passive Microwave Soil Moisture Research[J]. IEEE Trans Geosci Remote Sensing,1986.24(1):12-20.
    53.李杏朝,微波遥感监测土壤水分的研究初探[J].遥感技术与应用,1995.10(4):1-8.
    54.高峰等,微波遥感土壤湿度研究进展[J].遥感技术与应用,2001.16(2):97-102.
    55.李震,郭东华等,综合主动和被动微波数据监测地壤水分变化[J].遥感学报,2002.6(6):481-484.
    56.杨虎,植被覆盖地表土壤水分变化雷达探测模型和应用研究[D].中国科学院研究生院硕士学位论文,2003.
    57.张彩霞,基于DEM的地形湿度指数提取与应用研究[D].西北农林科技大学硕士毕业论文,2006.
    58. Beven, K.J., Kirkby,M.J, A physically based, variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin,1979.24:43-68.
    59. Wilson, J.p., Gallant,J.C., Terrrain analysis:Principal and application[M]. New York:Wiley and Sons, 2000.
    60.张彩霞,基于DEM的地形湿度指数提取与应用研究,in 资源环境学院.2006,西北农林科技大学:杨陵.p.77.
    61.周启鸣,刘学军,数字地形分析科学出版社,2006.
    62. Kim, S., Jung, S, Digital terrain analysis of the dynamic wetness pattern on the sulmachun watershed in Diffuse Pollution Conference. Dublin, Germany. Internation Water Association,2003.
    63. Woods, R.A., Sivapalan, M, Robinson, J. S, Modeling the spatial variability of subsurface runoff using a topographic index[J]. Water Resource Research,1997.33(5):1061-1073.
    64. Barling, R., D.Moore,I.D.Grayson,R.B, A quasi-dynamic wetness index for characterizing the spatial distribution of surface saturation and soil water content[J]. Water Resources Research,1994.30:1029-1044.
    65. Guntner, A., Seibert,J.,Uhlenbrook,S., Modeling spatial patterns of saturated areas:An evaluation of diffferent terrain indices[J]. Water Resource Research,2004.40(W05114).
    66. O Loughlin, E.M., Prediction of surface sateration zones in natural catchments by topographic analysis[J]. Water Resource Research,1986.22(5):794-804.
    67. Moore, I.D., Machay, S. M, Hydrologic characteristics and modeling of a small forested catchment in Southeastern New South Wales:Prelogging conditon[J]. Journal of Hydrology,1986.83:307-335.
    68. Moore, I.D., Thompson, J. C, Are water table variation in a shallow forest soil consistent with the Topmodel concept[J]. Water Resource Research,1996.32(3):663-669.
    69. Western, A.W., Grayson, R. B, etc, Observed spatial organization of soil moisture and its relation to terrain indices[J]. Water Resource Research,1999.35(3)797-810.
    70. Burt, T.P., Butcher, D. P, Topographic controls of soil moisture distribution[J]. Soil Science Society of America Journal,1985.36:469-486.
    71.郭方,刘新仁,任立良,以地形为基础的流域水文模型[J].水科学进展,2000.11(3):296-300.
    72.孔凡哲,芮孝芳,TOPMODEL中地形湿度指数计算方法的探讨[J].水科学进展,2003.14(1):41-45.
    73.余新晓,赵玉涛,基于地形湿度指数的Topmodel研究进展与热点跟踪[J].北京林业大学学报,2002.24(4):117-121.
    74.陈仁升,康尔泗,杨建平等,Topmodel模型在黑河干流出山径流模拟中的应用[J].中国沙漠,2003.23(4):428-434.
    75.杨勤科,张彩霞,李领涛,基于信息含量分析法确定DEM分辨率的方法研究[J].长江科学院院报,2006.23(5):21-23.
    76.张彩霞,杨勤科,段建军,高分辨率数字模型构建方法[J].水力学报,2006.37(8):1009-1014.
    77.杨勤科,McVicar, T.R., Van Niel, T. G., Hutchinson, M., Lingtao, L.,水文地貌关系正确的DEM建立方法的初步研究[J].中国水土保持科学,2007.5(4):1-6.
    78.张彩霞,杨勤科,李锐,基于DEM的地形温度指数及其应用研究进展[J].地理科学进展,2005.19(2):p.116-123.
    79. J.C, P., Using spatial context in satellite data to infer regional scale evapotranspiration[J]. Transactions on Geoscience and Remote Sensing,1990.28:940-948.
    80.张兆明,何国金等,利用TM6数据反演陆地表面地表湿度新算法研究[J].遥感技术与应用,2005.20(6):547-550.
    81. Weng Q, L.D.S., Schubring J, Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies[J]. Remote Sensing of Environment,2004.89(4):467-483.
    82. Jimenez-Munoz J C, S.J.A., A generalized single channel method for retrieving land surface temperature from remote sensing data[J] Journal of Geophysical Research,2003.108(D22):1-9.
    83.覃志豪,Z.M.,用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001.56(4):456-466.
    84. Markham B L, B.J.L., Landsat-MSS and TM post calibration dynamic range, atmospheric reflectance and at satelite temperature [J]. EOSAT Landsat Technical Notes,1986.1:3-8.
    85. Schneider K, M.W., Processing and accuracy of Landsat Thematic Mapper data for lake surface temperature measurement[J] International Journal of Remote Sensing,1996.17:2027-2041.
    86. Goetz S J, H.R.N., Hall F G, Surface temperature retrieval in a temperate grassland with multiresolution sensors[J]. Journal of Geophysical Research,1995.100:25397-25410.
    87. Sospendra F, C.V., Valor E, Effective wavenumber for thermal infrared bands application to Landsat TM[J]. International Journal of Remote Sensing,1998.19:2105-2117.
    88.覃志豪,李文娟等,陆地卫星TM6波段范围内地标的辐射率的估计[J].国土资源遥感,2004.3(61):28-32.
    89. Carlson, T.N., Gillies, R. R, and Perry, E. M., A method to make use of thermal infrared temperature and NDVI measurement to infer surface soil water content and fractional vegetation cover[J]. Remote Sensing Reviews,1994.9:161-173.
    90.宋小宁,赵英时,改进的区域缺水遥感监测方法[J].中国科学D辑地球科学,2006.36(2):188-194.
    91.刘伟东,Frederic,张兵等,高光谱遥感土壤湿度信息提取研究[J].土壤学报,2004.41(5):700-706.
    92.李建龙,蒋平等,利用遥感光谱法进行农田土壤水分遥感动态检测[J].生态学报,2003.23(8):1498-1504.
    93.白天路,杨勤科等,黄土高原丘陵沟壑小流域土壤水分垂直分布变异特征及影响因子[J].生态学杂志,2009.28(12):2508-2514.
    94.傅伯杰,杨志坚,王仰麟,张平文,黄土丘陵坡地土壤水分空间分布数学模型[J].中国科学(D辑),2001.31(3):185-191.
    95.张超,王会肖,黄土高原丘陵沟壑区土壤水分变化规律的研究[J].中国生态农业学报,2004.12(3):47-50.
    96.刘梅,蒋定生,黄国俊等,不同坡面位置土壤水分差异规律分析[J].水土保持通报,1990.10(2):16-20.
    97.胡良军,邵明安,杨文治,黄土高原土壤水分的空间分异及其与林草布局的关系[J].草业学报,2004.13(6):14-20.
    98.毕华兴,李笑吟,刘鑫等,晋西黄土区土壤水分空间异质性的地统计学分析[J].北京林业大学学报,2006.28(5):59-66.
    99.吕贻忠,李保国,胡克林,徐艳,鄂尔多斯夏初不同地形土壤水分的空间变异[J].中国农业大学学报,2002.7(5):38-43.
    100.王玉宽,朱波,高美容,小流域土壤水分空间分异特征及时稳性分析[J].山地学报,2004.22(1):116-120.
    101.何福红,黄明斌,党廷辉,黄土高原沟壑区小流域土壤水分空间分布特征[J].水土保持通报,2002.22(4):6-9.
    102.周启鸣,刘学军,数字地形分析[M].科学出版社,2006.222-223.
    103.汤国安,刘学军,闾国年,数字高程模型及地学分析的原理和方法[M].北京:科学出版社,2005.1-411.
    104.李丽,郝振纯,基于DEM的流域特征提取综述[J].地球科学进展,2003.18(2):251-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700