经鼻给予人参皂苷Rb1的脑靶向性及其对大鼠脑梗死的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     人参皂苷是人参、三七等中药材的主要有效成分。人参皂苷Rb1ginsenosideRbl,GRb1)是其中含量最丰富的人参皂苷单体之一。研究发现GRb1具有抗氧化、抗凋亡、调节炎症反应、促进神经递质释放等作用,对多种中枢神经系统(central nervous systerm, CNS)疾病具有治疗作用。但其分子量大、水溶性的分子结构特点以及在肠道内容易降解、有首过消除效应等药代动力学特点致使其口服等常规给药方式生物利用度低。经鼻给药具有给药方便无创、吸收迅速的特点,并且可以使药物绕过BBB直接进入脑实质,目前已成为广泛接受的脑靶向给药方式之一。
     自噬(autophagy)的概念由Christian de Duve于20世纪60年代提出,是一种在进化中高度保守的,用于批量降解胞浆内容物,如长寿命蛋白及细胞器的过程。在正常生理情况下,自噬处于低水平,用于维护细胞内环境的稳定。在出现营养或生长因子缺乏、内质网应激、细胞内异常产物堆积等情况下,自噬过程被激活。自噬的调控机制和在各种生理、病理情况下的作用是近几年生命科学领域新的研究热点之一
     本研究观察GRb1经鼻给药后在大鼠脑组织中的药物分布特点,评价此给药方式的脑靶向性;研究经鼻给予GRb1对大鼠实验性脑梗死模型的治疗作用,并对GRb1对脑梗死后自噬过程的可能影响进行初步探讨。
     方法
     建立体外神经元谷氨酸兴奋性毒性模型。选择合适浓度的谷氨酸损伤后立即分别加入GRbl 1.2、12或120μM共同作用2 h。通过MTT的方法验证GRb1对谷氨酸损伤的保护作用。
     成年雄性SD大鼠分别经鼻和经静脉给予GRb1 12.5 mg/kg,在给药后5、15、30、60、120、180 min处死,留取血浆和脑组织。采用HPLC-MS/MS的方法,检测GRb1血浆和脑组织各分区(嗅球+嗅束、皮层、海马、延髓以及小脑)中的含量,采用药物靶向性指数(drug targeting index, DTI)评价经鼻GRb1的脑靶向性。
     大鼠大脑中动脉栓塞(middle cerebral artery occlusion, MCAO)后立即经鼻给予3Rb1 1.25 mg/kg,12.5 mg/kg或者等体积生理盐水,在给药后24 h处死,采用TTC, Nissl、TUNEL染色以及Evans blue渗漏试验等方法观察经鼻GRbl对梗死体积、梗死后神经元变性、血脑屏障损伤的影响,确定经鼻给予GRb1的有效剂量,评价其对脑梗死超急性期和急性期的疗效。
     大鼠MCAO后立即经鼻给予GRb1 12.5 mg/kg,此后每日一次,共14 d。在梗死后第1、2、3、5、7、14 d进行神经功能缺损评分(modified neurological severity score, mNSS)。在梗死后14 d处死大鼠,进行HE染色,计算梗死体积;利用激光共聚焦显微镜,观察梗死周边区FITC-dextran灌注的血管数目。评价重复经鼻给予GRb1对梗死急性期后脑组织修复的影响。
     大鼠MCAO后立即经鼻给予GRb1 12.5 mgkg,在梗死后0、1.5、6、12、24h处死。采用western blot、real-time RT-PCR、透射电镜的方法,观察GRb1对大鼠脑梗死后梗死灶周边区神经细胞超微结构以及LC3、Beclin 1的表达的影响,探讨GRb1对脑梗死治疗作用的可能的新的机制。
     结果
     在作用时间固定的情况下,随着谷氨酸钠浓度的升高,皮层神经元活力逐渐下降。GRb1能够明显减轻5 mM谷氨酸对体外培养皮层神经元的损伤。在12μM时保护作用最大。
     GRb1经鼻给药后5 min即可在血浆中检出,其血浆生物利用度为1.40%。同样,GRb1在给药后5 min在脑组织各分区内达到高峰,随后逐渐下降,但给药后60 min后在皮层、海马等区域GRb1浓度再次升高。经鼻GRb1在脑组织各分区内的DTI为7.35至23.22,表现出明显的脑靶向性。
     大鼠MCAO后立即经鼻给予GRb1能够明显缩小梗死体积,在一定剂量范围内效果与剂量呈正相关。经鼻GRb1 12.5 mg/kg可以明显减轻梗死周边区神经元损伤,减少TUNEL染色阳性细胞数并减轻梗死侧皮层Evans blue渗漏。
     大鼠MCAO后连续给予GRbl 14 d过程中,在1-3 d mNSS显著低于对照组,在14d仍有低于对照组的趋势;GRb1组梗死体积明显小于对照组;梗死周边区微血管数量和对照组相比无明显差异。
     GRb1能调节大鼠MCAO后激活的自噬,使梗死后LC3、Beclin 1的水平较对照组先升高然后下降。
     结论
     本研究结果表明,GRb1在体外能够减轻谷氨酸兴奋性毒性造成的神经元损伤;GRb1经鼻给药后能迅速进入脑组织,并表现出明显的脑靶向性;经鼻GRb1能够缩小脑梗死体积、减轻神经元和微血管损伤、改善梗死后mNSS,但对梗死后梗死周边区血管再生无明显影响,提示GRb1对大鼠脑梗死治疗作用的主要机制是其神经和血管保护作用。更深入的研究发现,GRb1对梗死周边区自噬的活性具有调节作用。人参皂苷经鼻给药是一种快捷有效的CNS疾病治疗方法,具有良好的临床开发和应用前景。
Ginsenosides are the main components of ginseng and notoginseng which are widely used in Far East for thousands of years. Ginsenoside Rb1 (GRb1), one of the most abundant ginsenosides, has been proved to have anti-oxidant, anti-apoptosis, inflammation modulating and transmitters release enhancing effects. GRbl thus could benefit to many central nervous system (CNS) disorders. Due to a relatively large molecular weight of 1109.46, hydrophilic molecular structure and biotransformation in intestinal tracts, GRbl has a poor bioavailability when administrated orally. It's predicted difficult for GRbl to cross the blood-brain barrier (BBB).
     Autophagy is a highly conservative process for the degradation of cellular contents, particularly organelles and long-lasting proteins. Low level autophagy is crucial for maintaining intracellular homeostasis under normal conditions. However, autophagy could be activated by deficit of nutrition and growth factors, endoplasmic reticulum (ER) stress, accumulation of abnormal products and organelle injury. The modulation and role of autophagy under pathological conditions is a hot topic in recent years.
     Intranasal administration is now a widely accepted non-invasive brain targeting delivery method. In the present study, we first investigated the contribution of GRb1 in different brain regions after intranasal administration to evaluate the brain targeting effects of this delivery method. Then, the beneficial effects of intranasal GRb1 on middle cerebral artery occlusion (MCAO) in rats were evaluated. Finally, the influence of GRbl on the activity of autophagy in the border of infarction was monitored.
     Methods
     Different doses of glutamic acid were added to the culture of cortical neuron. The excitotoxity was tested by MTT. Then, GRbl was added to the culture right after glutamic acid. The protective effect of GRb1 was evaluated.
     GRbl was delivered intranasally or intravenously at a dose of 12.5 mg/kg to male Sprague Dawley (SD) rats, respectively. Rats were scarified at 5,15,30,60,120 and 180 min after drug administration. Plasma and brain tissues, i.e. olfactory bulb+olfactory tract, cerebrum, hippocampus, medulla oblongata and cerebellum, were collected. A HPLC-MS/MS method was employed to detect the concentration of GRb1 in plasma and brain regions mentioned above. Drug targeting index (DTI) was used to evaluate the brain targeting effects.
     GRb1 was administrated immediately after the onset of MCAO. Rats were decapitated 24 h later. TTC, Nissl, TUNEL staining and Evans blue test were performed to evaluate the effects of intranasal Rbl on the infarct volume, neurodegeneration and BBB breakdown after MCAO.
     In order to investigate the effects of GRbl on the recovery after acute ischemic stroke, GRb1 was administrated right after the onset of MCAO at a dose of 12.5 mg/kg and once daily for 14 consecutive days. Modified neurological severity score (mNSS) was performed on day 1,2,3,5,7 and 14. Rats were scarified on day 14. HE staining was used to evaluate the infarct volume. A confocal laser microscope was used to observe the number of FITC-dextran perfused microvessels in the peri-infarction area.
     The influence of GRb1 on the state of autophagy after MCAO was investigated. Rats received intranasal GRb1 right after the onset of MCAO and killed at 0,1.5,6, 12,24 h later. Western blot, real-time RT-PCR and transmission electron microscopy was used to monitor the LC3, Beclin 1 levels and ultrastructural change of neuron in the border of infarction.
     Results
     The viability of cortical neuron lowered as the concentration of glutamic acid raised in vitro. GRb1 could ameliorate the excitoxicity caused by 5 mM glutamic acid, with a most effective dose at 12μM.
     The bioavailability (F) in plasma for intranasal GRb1 is approximately 1.40%. However, intranasal GRb1 gained rather fast plasma absorption at as early as 5 min. After i.n administration, the brain GRb1 concentration reached peak level at 5 min, followed by a decline with time. Interestingly, the concentration of GRb1 in some brain regions, such as cerebrum and hippocampus, achieved a second raise at 60 min after intranasal administration. The value of DTI ranged from 7.35 to 23.22 in different brain regions, indicating a significant brain targeting effect.
     Intranasal GRbl could reduce the infarction volume significantly. GRbl at a dose of 12.5 mg/kg was more efficient than 1.25 mg/kg. Intranasal GRb1 12.5 mg/kg could ameliorate the neuronal injury and reduce the number of TUNEL positive cells in the border of infarction. The Evans blue leakage was also suppressed by intranasal GRb1.
     After consecutive administration, the mNSS at day 1-3 were significant lower in the GRb1 group. HE staining indicated the infarct volume was smaller than that of the control group. But the number of microvessels in the border of the infarction in the GRb1 group was not different from that of the control group.
     GRb1 could modulate the activity of autophagy after MCAO in rats. The up-regulation of LC3 and Beclin 1 were amplified at 6 h but suppressed by intranasal GRb1 later.
     Conclusions
     GRb1 could ameliorate the excitotoxity induced by glutamate in cortical neuron culture. Intranasal administrated GRbl could enter CNS with a relative brain targeting effect, reduce the infarct volume, ameliorate neuronal and microvascular injury and improve the neurological function. These results suggest powerful neuronal and vascular protective effects of intranasal GRb1. Moreover, GRb1 could modulate the activity of autophagy in the border of infarction. Intranasal ginsenoside would be a potential brain targeting therapy for CNS disorders.
引文
1. Molina, C.A., J. Alvarez-Sabin, Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis,2009.27 Suppl 1:p.162-7.
    2. Lapchak, P.A., D.M. Araujo, Advances in ischemic stroke treatment:neuroprotective and combination therapies. Expert Opin Emerg Drugs,2007.12(1):p.97-112.
    3. Schlag, E.M., M.S. Mclntosh, Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry,2006.67(14):p. 1510-9.
    4. Lai, C.M., S.P. Li, H. Yu, J.B. Wan, K.W. Kan, Y.T. Wang, A rapid HPLC-ESI-MS/MSfor qualitative and quantitative analysis of saponins in "XUESETONG" injection. J Pharm Biomed Anal,2006.40(3):p.669-78.
    5. Wen, T.C., H. Yoshimura, S. Matsuda, J.H. Lim, M. Sakanaka, Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol,1996.91(1):p.15-22.
    6. Lim, J.H., T.C. Wen, S. Matsuda, J. Tanaka, N. Maeda, H. Peng, J. Aburaya, K. Ishihara, M. Sakanaka, Protection of ischemic hippocampal neurons by ginsenoside Rbl, a main ingredient of ginseng root. Neurosci Res,1997.28(3):p.191-200.
    7. Li, X., G. Wang, J. Sun, H. Hao, Y. Xiong, B. Yan, Y. Zheng, L. Sheng, Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional chinese medicine (TCM) in rats. Biol Pharm Bull,2007.30(5):p. 847-51.
    8. Han, M., X. Sha, Y. Wu, X. Fang, Oral absorption of ginsenoside Rbl using in vitro and in vivo models. Planta Med,2006.72(5):p.398-404.
    9. Zhang, B., R. Hata, P. Zhu, K. Sato, T.C. Wen, L. Yang, H. Fujita, N. Mitsuda, J. Tanaka, K. Samukawa, N. Maeda, M. Sakanaka, Prevention of ischemic neuronal death by intravenous infusion of a ginseng saponin, ginsenoside Rb(1), that upregulates Bcl-x(L) expression. J Cereb Blood Flow Metab,2006.26(5):p.708-21.
    10. Yoshikawa, T., Y. Akiyoshi, T. Susumu, H. Tokado, K. Fukuzaki, R. Nagata, K. Samukawa, H. Iwao, G Kito, Ginsenoside Rbl reduces neurodegeneration in the peri-infarct area of a thromboembolic stroke model in non-human primates. J Pharmacol Sci,2008.107(1):p.32-40.
    11. Yuan, Q.L., C.X. Yang, P. Xu, X.Q. Gao, L. Deng, P. Chen, Z.L. Sun, Q.Y. Chen, Neuroprotective effects of ginsenoside Rbl on transient cerebral ischemia in rats. Brain Res,2007.1167:p.1-12.
    12. Dhuria, S.V., L.R. Hanson, W.H. Frey,2nd, Intranasal delivery to the central nervous system:Mechanisms and experimental considerations. J Pharm Sci,2009.
    13. Hanson, L.R., W.H. Frey,2nd, Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci,2008.9 Suppl 3:p. S5.
    14. Liu, X.F., J.R. Fawcett, R.G. Thorne, W.H. Frey,2nd, Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett,2001.308(2):p.91-4.
    15. Ma, Y.P., M.M. Ma, S. Ge, R.B. Guo, H.J. Zhang, W.H. Frey,2nd, GL. Xu, X.F. Liu, Intranasally delivered TGF-betal enters brain and regulates gene expressions of its receptors in rats. Brain Res Bull,2007.74(4):p.271-7.
    16. Wang, Z.L., S.M. Cheng, M.M. Ma, Y.P. Ma, J.P. Yang, GL. Xu, X.F. Liu, Intranasally delivered bFGF enhances neurogenesis in adult rats following cerebral ischemia Neurosci Lett,2008.446(1):p.30-5.
    17. Yang, J.P., H.J. Liu, S.M. Cheng, Z.L. Wang, X. Cheng, H.X. Yu, X.F. Liu, Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett,2009.449(2):p.108-11.
    18. Lo, E.H., A new penumbra:transitioning from injury into repair after stroke. Nat Med, 2008.14(5):p.497-500.
    19. Lo, E.H., GA. Rosenberg, The neurovascular unit in health and disease:introduction. Stroke,2009.40(3 Suppl):p. S2-3.
    20. Liu, M., J.T. Zhang, [Protective effects of ginsenoside Rbl and Rgl on cultured hippocampal neurons]. Yao Xue Xue Bao,1995.30(9):p.674-8.
    21. Allen, C.L., U. Bayraktutan, Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke,2009.4(6):p.461-70.
    22. Ferrer, I., Apoptosis:future targets for neuroprotective strategies. Cerebrovasc Dis,2006. 21 Suppl 2:p.9-20.
    23. Zhang, B., S. Matsuda, J. Tanaka, N. Tateishi, N. Maeda, T.C. Wen, H. Peng, M. Sakanaka, Ginsenoside Rb(1) prevents image navigation disability, cortical infarction, and thalamic degeneration in rats with focal cerebral ischemia J Stroke Cerebrovasc Dis, 1998.7(1):p.1-9.
    24. Kim, Y.C., S.R. Kim, G.J. Markelonis, T.H. Oh, Ginsenosides Rbl and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res, 1998.53(4):p.426-32.
    25. Lee, S.R., M.R. Kim, J.M. Yon, I.J. Baek, B.J. Lee, B. Ahn, Y.B. Kim, S.J. Kwack, R.D. Lee, S.S. Kim, D.H. Cho, G.H. Hur, Y.W. Yun, S.Y. Nam, Effects of ginsenosides on organogenesis and expression of glutathione peroxidase genes in cultured rat embryos. J Reprod Dev,2008.54(3):p.164-70.
    26. Takano, T., N. Oberheim, M.L. Cotrina, M. Nedergaard, Astrocytes and ischemic injury. Stroke,2009.40(3 Suppl):p. S8-12.
    27. Lopez, M.V., M.P. Cuadrado, O.M. Ruiz-Poveda, A.M. Del Fresno, M.E. Accame, Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta,2007.1770(9):p.1308-16.
    28. Lakhan, S.E., A. Kirchgessner, M. Hofer, Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med,2009.7:p.97.
    29. Kim, H.A., S. Kim, S.H. Chang, H.J. Hwang, Y.N. Choi, Anti-arthritic effect of ginsenoside Rbl on collagen induced arthritis in mice. Int Immunopharmacol,2007. 7(10):p.1286-91.
    30. Chai, H., Q. Wang, L. Huang, T. Xie, Y. Fu, Ginsenoside Rbl inhibits tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Biol Pharm Bull,2008.31(11):p.2050-6.
    31. Seo, Y.J., M.S. Kwon, H.W. Choi, J.E. Jang, J.K. Lee, Y. Sun, J.S. Jung, S.H. Park, H.W. Suh, Intracerebroventricular ginsenosides are antinociceptive in proinflammatory cytokine-induced pain behaviors of mice. Arch Pharm Res,2008.31(3):p.364-9.
    32. Liao, B., H. Newmark, R. Zhou, Neuroprotective effects of ginseng total saponin and ginsenosides Rbl and Rgl on spinal cord neurons in vitro. Exp Neurol,2002.173(2):p. 224-34.
    33. Sakanaka, M., P. Zhu, B. Zhang, T.C. Wen, F. Cao, Y.J. Ma, K. Samukawa, N. Mitsuda, J. Tanaka, M. Kuramoto, H. Uno, R. Hata, Intravenous infusion of dihydroginsenoside Rbl prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma,2007.24(6):p.1037-54.
    34. Yang, C.X., J.X. Liu, Z.L. Sun, X.Q. Gao, L. Deng, Q.L. Yuan, [Effects of Ginsenoside RBI on neural cell apoptosis and expressions of Bcl-2 and Bax in rats following subjected to cerebral ischemia-reperfusion]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008. 39(2):p.214-7.
    35. Sadoshima, J., The role of autophagy during ischemia/reperfusion. Autophagy,2008.4(4): p.402-3.
    36. Yu, J., M. Eto, M. Akishita, A. Kaneko, Y. Ouchi, T. Okabe, Signaling pathway of nitric oxide production induced by ginsenoside Rbl in human aortic endothelial cells:a possible involvement of androgen receptor. Biochem Biophys Res Commun,2007. 353(3):p.764-9.
    37. Cecchelli, R., V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M.P. Dehouck, L. Fenart, Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov,2007.6(8):p.650-61.
    38. Neuwelt, E., N.J. Abbott, L. Abrey, WA. Banks, B. Blakley, T. Davis, B. Engelhardt, P. Grammas, M. Nedergaard, J. Nutt, W. Pardridge, GA. Rosenberg, Q. Smith, L.R. Drewes, Strategies to advance translational research into brain barriers. Lancet Neurol,2008. 7(1):p.84-96.
    39. Yao, X.H., X.J. Li, [Protective effects and its mechanism ofpanaxatriol saponins isolated from Panax notoginseng on cerebral ischemia]. Zhongguo Zhong Yao Za Zhi,2002. 27(5):p.371-3.
    40. Ohashi, R., S. Yan, H. Mu, H. Chai, Q. Yao, P.H. Lin, C. Chen, Effects of homocysteine and ginsenoside Rbl on endothelial proliferation and superoxide anion production. J Surg Res,2006.133(2):p.89-94.
    41. Zhou, W., H. Chai, P.H. Lin, A.B. Lumsden, Q. Yao, C. Chen, Ginsenoside Rbl blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vase Surg, 2005.41(5):p.861-8.
    42. He, F., R. Guo, S.L. Wu, M. Sun, M. Li, Protective effects of ginsenoside Rbl on human umbilical vein endothelial cells in vitro. J Cardiovasc Pharmacol,2007.50(3):p.314-20.
    43. Zlokovic, B.V., Remodeling after stroke. Nat Med,2006.12(4):p.390-1.
    44. Kang, T.H., H.M. Park, Y.B. Kim, H. Kim, N. Kim, J.H. Do, C. Kang, Y. Cho, S.Y. Kim, Effects of red ginseng extract on UVB irradiation-induced skin aging in hairless mice. J Ethnopharmacol,2009.123(3):p.446-51.
    45. Zhang, Z.G., M. Chopp, Neurorestorative therapies for stroke:underlying mechanisms and translation to the clinic. Lancet Neurol,2009.8(5):p.491-500.
    46. Zou, K., S. Zhu, M.R. Meselhy, C. Tohda, S. Cai, K. Komatsu, Dammarane-type Saponins from Panax japonicus and their neurite outgrowth activity in SK-N-SH cells. J Nat Prod,2002.65(9):p.1288-92.
    47. Saito, H., K. Suda, M. Schwab, H. Thoenen, Potentiation of the NGF-mediated nerve fiber outgrowth by ginsenoside Rbl in organ cultures of chicken dorsal root ganglia. Jpn J Pharmacol,1977.27(3):p.445-51.
    48. Tsai, C.C., M.C. Lu, Y.S. Chen, C.H. Wu, C.C. Lin, Locally administered nerve growth factor suppresses ginsenoside Rbl-enhanced peripheral nerve regeneration. Am J Chin Med,2003.31(5):p.665-73.
    49. Carmichael, S.T., Themes and strategies for studying the biology of stroke recovery in the poststroke epoch. Stroke,2008.39(4):p.1380-8.
    50. Xue, J.F., Z.J. Liu, J.F. Hu, H. Chen, J.T. Zhang, N.H. Chen, Ginsenoside Rbl promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res,2006.1106(1):p.91-8.
    51. Chang, Y., S.J. Wang, Ginsenoside Rgl and Rbl enhance glutamate exocytosis from rat cortical nerve terminals by affecting vesicle mobilization through the activation of protein kinase C. Eur J Pharmacol,2008.590(1-3):p.74-9.
    52. Chang, Y., W.J. Huang, L.T. Tien, S.J. Wang, Ginsenosides Rgl and Rbl enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol,2008.578(1):p.28-36.
    53. Xiong, Y., A. Mahmood, M. Chopp, Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs.11(3):p.298-308.
    54. Ohira, K., T. Furuta, H. Hioki, K.C. Nakamura, E. Kuramoto, Y. Tanaka, N. Funatsu, K. Shimizu, T. Oishi, M. Hayashi, T. Miyakawa, T. Kaneko, S. Nakamura, Ischemia-induced neurogenesis of neocortical layer 1 progenitor cells. Nat Neurosci.13(2):p.173-9.
    55. Arai, K., G. Jin, D. Navaratna, E.H. Lo, Brain angiogenesis in developmental and pathological processes:neurovascular injury and angiogenic recovery after stroke. FEBS J,2009.276(17):p.4644-52.
    56. Sengupta, S., S.A. Toh, L.A. Sellers, J.N. Skepper, P. Koolwijk, H.W. Leung, H.W. Yeung, R.N. Wong, R. Sasisekharan, T.P. Fan, Modulating angiogenesis:the yin and the yang in ginseng. Circulation,2004.110(10):p.1219-25.
    57. Papapetropoulos, A., A ginseng-derived oestrogen receptor beta (ERbeta) agonist, Rbl ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol,2007.152(2):p.172-4.
    58. Leung, K.W., L.W. Cheung, Y.L. Pon, R.N. Wong, N.K. Mak, T.P. Fan, S.C. Au, J. Tombran-Tink, A.S. Wong, Ginsenoside Rbl inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol,2007.152(2):p.207-15.
    59. Kimura, Y., M. Sumiyoshi, K. Kawahira, M. Sakanaka, Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. Br J Pharmacol,2006. 148(6):p.860-70.
    60. Lu, J.M., Q. Yao, C. Chen, Ginseng compounds:an update on their molecular mechanisms and medical applications. Curr Vase Pharmacol,2009.7(3):p.293-302.
    61. Attele, A.S., J.A. Wu, C.S. Yuan, Ginseng pharmacology:multiple constituents and multiple actions. Biochem Pharmacol,1999.58(11):p.1685-93.
    62. Lee, J.H., S.M. Jeong, J.H. Kim, B.H. Lee, I.S. Yoon, S.H. Choi, S.M. Lee, Y.S. Park, S.S. Kim, H.C. Kim, B.Y. Lee, S.Y. Nah, Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes. Mol Cells,2006.21(1):p.52-62.
    63. Kawahira, K., M. Sumiyoshi, M. Sakanaka, Y. Kimura, Effects of ginsenoside Rbl at low doses on histamine, substance P, and monocyte chemoattroctant protein 1 in the burn wound areas during the process of acute burn wound repair. J Ethnopharmacol,2008. 117(2):p.278-84.
    64. Liu, D., B. Li, Y. Liu, A.S. Attele, J.W. Kyle, C.S. Yuan, Voltage-dependent inhibition of brain Na(+) channels by American ginseng. Eur J Pharmacol,2001.413(1):p.47-54.
    65. Noh, J.H., S. Choi, J.H. Lee, H. Betz, J.I. Kim, C.S. Park, S.M. Lee, S.Y. Nah, Effects of ginsenosides on glycine receptor alphal channels expressed in Xenopus oocytes. Mol Cells,2003.15(1):p.34-9.
    66. Min, K.T., B.N. Koo, J.W. Kang, S.J. Bai, S.R. Ko, Z.H. Cho, Effect of ginseng saponins on the recombinant serotonin type 3A receptor expressed in xenopus oocytes:implication of possible application as an antiemetic. J Altern Complement Med,2003.9(4):p. 505-10.
    67. Kong, H.L., J.P. Wang, Z.Q. Li, S.M. Zhao, J. Dong, W.W. Zhang, Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin,2009.30(4):p.396-403.
    68. Silva, E., A. Kabil, A. Kortenkamp, Cross-talk between non-genomic and genomic signalling pathways-Distinct effect profiles of environmental estrogens. Toxicol Appl Pharmacol.
    69. Wang, Z., M. Li, W.K. Wu, H.M. Tan, D.F. Geng, Ginsenoside Rbl preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther, 2008.22(6):p.443-52.
    70. Hwang, Y.P., H.G. Jeong, Ginsenoside Rbl protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol.242(1):p.18-28.
    71. Leung, K.W., F.P. Leung, N.K. Mak, J. Tombran-Tink, Y. Huang, R.N. Wong, Protopanaxadiol and protopanaxatriol bind to glucocorticoid and oestrogen receptors in endothelial cells. Br J Pharmacol,2009.156(4):p.626-37.
    72. Cho, J., W. Park, S. Lee, W. Ahn, Y. Lee, Ginsenoside-Rbl from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and-beta, independent of ligand binding. J Clin Endocrinol Metab,2004.89(7):p.3510-5.
    73. Klionsky, D.J., Autophagy:from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol,2007.8(11):p.931-7.
    74. Mizushima, N., B. Levine, A.M. Cuervo, D.J. Klionsky, Autophagy fights disease through cellular self-digestion. Nature,2008.451(7182):p.1069-75.
    75. Boland, B., A. Kumar, S. Lee, F.M. Platt, J. Wegiel, W.H. Yu, R.A. Nixon, Autophagy induction and autophagosome clearance in neurons:relationship to autophagic pathology in Alzheimer's disease. J Neurosci,2008.28(27):p.6926-37.
    76. Pandey, U.B., Z. Nie, Y. Batlevi, B.A. McCray, GP. Ritson, N.B. Nedelsky, S.L. Schwartz, N.A. DiProspero, M.A. Knight, O. Schuldiner, R. Padmanabhan, M. Hild, D.L. Berry, D. Garza, C.C. Hubbert, T.P. Yao, E.H. Baehrecke, J.P. Taylor, HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature,2007.447(7146):p.859-63.
    77. Du, Y, D. Yang, L. Li, G Luo, T. Li, X. Fan, Q. Wang, X. Zhang, Y. Wang, W. Le, An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy,2009.5(5):p.663-75.
    78. Sanjuan, M.A., C.P. Dillon, S.W. Tait, S. Moshiach, F. Dorsey, S. Connell, M. Komatsu, K. Tanaka, J.L. Cleveland, S. Withoff, D.R. Green, Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature,2007.450(7173):p. 1253-7.
    79. Ravikumar, B., S. Imarisio, S. Sarkar, C.J. O' Kane, D.C. Rubinsztein, Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models ofHuntington disease. J Cell Sci,2008.121(Pt 10):p.1649-60.
    80. Kuma, A., M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori, Y. Ohsumi, T. Tokuhisa, N. Mizushima, The role of autophagy during the early neonatal starvation period. Nature,2004.432(7020):p.1032-6.
    81. Edinger, A.L., C.B. Thompson, Defective autophagy leads to cancer. Cancer Cell,2003. 4(6):p.422-4.
    82. Qu, X., J. Yu, G Bhagat, N. Furuya, H. Hibshoosh, A. Troxel, J. Rosen, E.L. Eskelinen, N. Mizushima, Y. Ohsumi, G Cattoretti, B. Levine, Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest,2003.112(12):p. 1809-20.
    83. Yue, Z., S. Jin, C. Yang, A.J. Levine, N. Heintz, Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A,2003.100(25):p.15077-82.
    84. Marino, G, N. Salvador-Montoliu, A. Fueyo, E. Knecht, N. Mizushima, C. Lopez-Otin, Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J Biol Chem,2007.282(25):p.18573-83.
    85. Gozuacik, D., A. Kimchi, Autophagy as a cell death and tumor suppressor mechanism. Oncogene,2004.23(16):p.2891-906.
    86. Shimizu, S., T. Kanaseki, N. Mizushima, T. Mizuta, S. Arakawa-Kobayashi, C.B. Thompson, Y. Tsujimoto, Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol,2004.6(12):p.1221-8.
    87. Scarlatti, F., R. Granata, A.J. Meijer, P. Codogno, Does autophagy have a license to kill mammalian cells? Cell Death Differ,2009.16(1):p.12-20.
    88. Tsujimoto, Y., S. Shimizu, Another way to die:autophagic programmed cell death. Cell Death Differ,2005.12 Suppl 2:p.1528-34.
    89. Zeng, X., J.H. Overmeyer, W.A. Maltese, Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci,2006.119(Pt 2):p.259-70.
    90. Wang, J., Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy,2008. 4(7):p.947-8.
    91. Wang, J., M.W. Whiteman, H. Lian, G. Wang, A. Singh, D. Huang, T. Denmark, A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem,2009.284(32):p.21412-24.
    92. Chu, C.T., J. Zhu, R. Dagda, Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress:implications for neurodegeneration and cell death. Autophagy,2007.3(6):p.663-6.
    93. Gwinn, D.M., D.B. Shackelford, D.F. Egan, M.M. Mihaylova, A. Mery, D.S. Vasquez, B.E. Turk, R.J. Shaw, AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell,2008.30(2):p.214-26.
    94. Sofer, A., K. Lei, C.M. Johannessen, L.W. Ellisen, Regulation of mTOR and cell growth in response to energy stress by REDDI. Mol Cell Biol,2005.25(14):p.5834-45.
    95. Botti, J., M. Djavaheri-Mergny, Y. Pilatte, P. Codogno, Autophagy signaling and the cogwheels of cancer. Autophagy,2006.2(2):p.67-73.
    96. Chang, Y.Y., G. Juhasz, P. Goraksha-Hicks, A.M. Arsham, D.R. Mallin, L.K. Muller, T.P. Neufeld, Nutrient-dependent regulation of autophagy through the target of rapamycin pathway. Biochem Soc Trans,2009.37(Pt 1):p.232-6.
    97. Itakura, E., C. Kishi, K. Inoue, N. Mizushima, Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG Mol Biol Cell,2008.19(12):p.5360-72.
    98. Ku, B., J.S. Woo, C. Liang, K.H. Lee, J.U. Jung, B.H. Oh, An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins. Autophagy,2008. 4(4):p.519-20.
    99. Sinha, S., C.L. Colbert, N. Becker, Y. Wei, B. Levine, Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Autophagy,2008.4(8):p.989-97.
    100. Zalckvar, E., H. Berissi, M. Eisenstein, A. Kimchi, Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy,2009.5(5):p.720-2.
    101. Fimia, GM., A. Stoykova, A. Romagnoli, L. Giunta, S. Di Bartolomeo, R. Nardacci, M. Corazzari, C. Fuoco, A. Ucar, P. Schwartz, P. Gruss, M. Piacentini, K. Chowdhury, F. Cecconi, Ambral regulates autophagy and development of the nervous system. Nature, 2007.447(7148):p.1121-5.
    102. Cecconi, F., S. Di Bartolomeo, R. Nardacci, C. Fuoco, M. Corazzari, L. Giunta, A. Romagnoli, A. Stoykova, K. Chowdhury, GM. Fimia, M. Piacentini, A novel role for autophagy in neurodevelopment. Autophagy,2007.3(5):p.506-8.
    103. Liang, C., P. Feng, B. Ku, B.H. Oh, J.U. Jung, UVRAG:a new player in autophagy and tumor cell growth. Autophagy,2007.3(1):p.69-71.
    104. Liang, C., D. Sir, S. Lee, J.H. Ou, J.U. Jung, Beyond autophagy:the role of UVRAG in membrane trafficking. Autophagy,2008.4(6):p.817-20.
    105. Takahashi, Y, D. Coppola, N. Matsushita, H.D. Cualing, M. Sun, Y. Sato, C. Liang, J.U. Jung, J.Q. Cheng, J.J. Mule, W.J. Pledger, H.G. Wang, Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol,2007.9(10): p.1142-51.
    106. Vaccaro, M.I., A. Ropolo, D. Grasso, J.L. Iovanna, A novel mammalian trans-membrane protein reveals an alternative initiation pathway for autophagy. Autophagy,2008.4(3):p. 388-90.
    107. Oppenheim, R.W., K. Blomgren, D.W. Ethell, M. Koike, M. Komatsu, D. Prevette, K.A. Roth, Y. Uchiyama, S. Vinsant, C. Zhu, Developing postmitotic mammalian neurons in vivo lacking Apaf-1 undergo programmed cell death by a caspase-independent, nonapoptotic pathway involving autophagy. J Neurosci,2008.28(6):p.1490-7.
    108. Chen, J.L., H.H. Lin, K.J. Kim, A. Lin, J.H. Ou, D.K. Ann, PKC delta signaling:a dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy,2009. 5(2):p.244-6.
    109. Park, K.J., S.H. Lee, C.H. Lee, J.Y. Jang, J. Chung, M.H. Kwon, Y.S. Kim, Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun,2009.382(4):p. 726-9.
    110. Li, D.D., L.L. Wang, R. Deng, J. Tang, Y. Shen, J.F. Guo, Y. Wang, L.P. Xia, G.K. Feng, Q.Q. Liu, W.L. Huang, Y.X. Zeng, X.F. Zhu, The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene,2009.28(6):p.886-98.
    111. Wei, Y, S. Pattingre, S. Sinha, M. Bassik, B. Levine, JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell,2008.30(6):p.678-88.
    112. Wei, Y, S. Sinha, B. Levine, Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy,2008.4(7):p.949-51.
    113. Nishida, K., O. Yamaguchi, K. Otsu, Crosstalk between autophagy and apoptosis in heart disease. Circ Res,2008.103(4):p.343-51.
    114. Shacka, J.J., B.J. Klocke, C. Young, M. Shibata, J.W. Olney, Y. Uchiyama, P. Saftig, KA. Roth, Cathepsin D deficiency induces persistent neurodegeneration in the absence of Bax-dependent apoptosis. J Neurosci,2007.27(8):p.2081-90.
    115. Bredesen, D.E., Key note lecture:toward a mechanistic taxonomy for cell death programs. Stroke,2007.38(2 Suppl):p.652-60.
    116. Sinha, S., B. Levine, The autophagy effector Beclin 1:a novel BH3-only protein. Oncogene,2008.27 Suppl 1:p. S137-48.
    117. Akar, U., A. Chaves-Reyez, M. Barria, A. Tari, A. Sanguino, Y. Kondo, S. Kondo, B. Arun, G Lopez-Berestein, B. Ozpolat, Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy,2008.4(5): p.669-79.
    118. Ciechomska, I.A., GC. Goemans, J.N. Skepper, A.M. Tolkovsky, Bcl-2 complexed with Beclin-1 maintains full anti-apoptotic function. Oncogene,2009.28(21):p.2128-41.
    119. Azad, M.B., Y. Chen, E.S. Henson, J. Cizeau, E. McMillan-Ward, S.J. Israels, S.B. Gibson, Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy,2008.4(2):p.195-204.
    120. Lomonosova, E., G Chinnadurai, BH3-only proteins in apoptosis and beyond:an overview. Oncogene,2008.27 Suppl 1:p. S2-19.
    121. Levine, B., S. Sinha, G Kroemer, Bcl-2 family members:dual regulators of apoptosis and autophagy. Autophagy,2008.4(5):p.600-6.
    122. Luo, S., D.C. Rubinsztein, Apoptosis blocks Beclin 1-dependent autophagosome synthesis:an effect rescued by Bcl-xL. Cell Death Differ,2009.
    123. Yu, L., A. Alva, H. Su, P. Dutt, E. Freundt, S. Welsh, E.H. Baehrecke, M.J. Lenardo, Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 2004.304(5676):p.1500-2.
    124. Swerdlow, S., K. McColl, Y. Rong, M. Lam, A. Gupta, C.W. Distelhorst, Apoptosis inhibition by Bcl-2 gives way to autophagy in glucocorticoid-treated lymphocytes. Autophagy,2008.4(5):p.612-20.
    125. Wang, Z.H., L. Xu, Z.L. Duan, L.Q. Zeng, N.H. Yan, Z.L. Peng, Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol,2007.107(1):p.107-13.
    126. Wu, Y.T., H.L. Tan, Q. Huang, Y.S. Kim, N. Pan, W.Y. Ong, Z.G. Liu, C.N. Ong, H.M. Shen, Autophagy plays a protective role during zVAD-induced necrotic cell death. Autophagy,2008.4(4):p.457-66.
    127. Boya, P., R.A. Gonzalez-Polo, N. Casares, J.L. Perfettini, P. Dessen, N. Larochette, D. Metivier, D. Meley, S. Souquere, T. Yoshimori, G. Pierron, P. Codogno, G Kroemer, Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol,2005.25(3):p.1025-40.
    128. Fujiwara, K., S. Daido, A. Yamamoto, R. Kobayashi, T. Yokoyama, H. Aoki, E. Iwado, N. Shinojima, Y. Kondo, S. Kondo, Pivotal role of the cyclin-dependent kinase inhibitor p21WAFl/CIP1 in apoptosis and autophagy. J Biol Chem,2008.283(1):p.388-97.
    129. Ginet, V., J. Puyal, P.G. Clarke, A.C. Truttmann, Enhancement of Autophagic Flux after Neonatal Cerebral Hypoxia-Ischemia and Its Region-Specific Relationship to Apoptotic Mechanisms. Am J Pathol,2009.
    130. Rami, A., Upregulation of Beclin 1 in the ischemic penumbra. Autophagy,2008.4(2):p. 227-9.
    131. Wen, YD., R. Sheng, L.S. Zhang, R. Han, X. Zhang, X.D. Zhang, F. Han, K. Fukunaga, Z.H. Qin, Newonal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomalpathways. Autophagy,2008.4(6): p.762-9.
    132. Matsui, Y., H. Takagi, X. Qu, M. Abdellatif, H. Sakoda, T. Asano, B. Levine, J. Sadoshima, Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res, 2007.100(6):p.914-22.
    133. Puyal, J., A. Vaslin, V. Mottier, P.G Clarke, Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol,2009.66(3):p.378-89.
    134. Koike, M., M. Shibata, M. Tadakoshi, K. Gotoh, M. Komatsu, S. Waguri, N. Kawahara, K. Kuida, S. Nagata, E. Kominami, K. Tanaka, Y. Uchiyama, Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol,2008.172(2):p.454-69.
    135. Samokhvalov, V., B.A. Scott, C.M. Crowder, Autophagy protects against hypoxic injury in C. elegans. Autophagy,2008.4(8):p.1034-41.
    136. Ferraro, E., A. Pulicati, M.T. Cencioni, M. Cozzolino, F. Navoni, S. di Martino, R. Nardacci, M.T. Carri, F. Cecconi, Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell, 2008.19(8):p.3576-88.
    137. Carloni, S., G. Buonocore, W. Balduini, Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis,2008.32(3):p.329-39.
    138. Dhuria, S.V., L.R. Hanson, W.H. Frey,2nd, Intranasal delivery to the central nervous system:mechanisms and experimental considerations. J Phann Sci.99(4):p.1654-73.
    139. Costantino, H.R., L. Ilium, G. Brandt, P.H. Johnson, S.C. Quay, Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm,2007.337(1-2):p.1-24.
    140. Liu, X.F., J.R. Fawcett, R.G. Thome, T.A. DeFor, W.H. Frey,2nd, Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci,2001.187(1-2):p.91-7.
    141. Danielyan, L., R. Schafer, A. von Ameln-Mayerhofer, M. Buadze, J. Geisler, T. Klopfer, U. Burkhardt, B. Proksch, S. Verleysdonk, M. Ayturan, GH. Buniatian, C.H. Gleiter, W.H. Frey,2nd, Intranasal delivery of cells to the brain. Eur J Cell Biol,2009.88(6):p. 315-24.
    1. Garattini, S., Glutamic acid, twenty years later. J Nutr,2000.130(4S Suppl):p.901S-9S.
    2. Balazs, R., Trophic effect of glutamate. Curr Top Med Chem,2006.6(10):p.961-8.
    3. Corona, J.C., L.B. Tovar-y-Romo, R. Tapia, Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets,2007.11(11):p. 1415-28.
    4. Dong, X.X., Y. Wang, Z.H. Qin, Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin,2009. 30(4):p.379-87.
    5. Mehta, S.L., N. Manhas, R. Raghubir, Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev,2007.54(1):p.34-66.
    6. Kim, Y.C., S.R. Kim, G.J. Markelonis, T.H. Oh, Ginsenosides Rbl and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res, 1998.53(4):p.426-32.
    7. Yang, C.X., J.X. Liu, Z.L. Sun, X.Q. Gao, L. Deng, Q.L. Yuan, [Effects of Ginsenoside RBI on neural cell apoptosis and expressions of Bcl-2 and Box in rats following subjected to cerebral ischemia-reperfusion]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008. 39(2):p.214-7.
    8. Zhang, B., R. Hata, P. Zhu, K. Sato, T.C. Wen, L. Yang, H. Fujita, N. Mitsuda, J. Tanaka, K. Samukawa, N. Maeda, M. Sakanaka, Prevention of ischemic neuronal death by intravenous infusion of a ginseng saponin, ginsenoside Rb(1), that upregulates Bcl-x(L) expression. J Cereb Blood Flow Metab,2006.26(5):p.708-21.
    9. Sakanaka, M., P. Zhu, B. Zhang, T.C. Wen, F. Cao, Y.J. Ma, K. Samukawa, N. Mitsuda, J. Tanaka, M. Kuramoto, H. Uno, R. Hata, Intravenous infusion of dihydroginsenoside Rbl prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma,2007.24(6):p.1037-54.
    10. Yuan, Q.L., C.X. Yang, P. Xu, X.Q. Gao, L. Deng, P. Chen, Z.L. Sun, Q.Y. Chen, Neuroprotective effects of ginsenoside Rbl on transient cerebral ischemia in rats. Brain Res,2007.1167:p.1-12.
    11. Donnan, G.A., M. Fisher, M. Macleod, S.M. Davis, Stroke. Lancet,2008.371(9624):p. 1612-23.
    12. Brouns, R., P.P. De Deyn, The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg,2009.111(6):p.483-95.
    13. Hazell, A.S., Excitotoxic mechanisms in stroke:an update of concepts and treatment strategies. Neurochem Int,2007.50(7-8):p.941-53.
    14. Liu, M., J.T. Zhang, [Protective effects of ginsenoside Rb1 and Rg1 on cultured hippocampal neurons]. Yao Xue Xue Bao,1995.30(9):p.674-8.
    15. Papapetropoulos, A., A ginseng-derived oestrogen receptor beta (ERbeta) agonist, Rbl ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol,2007.152(2):p.172-4.
    16. Liu, P., Y. Xu, H. Yin, J. Wang, K. Chen, Y. Li, Developmental toxicity research of ginsenoside Rbl using a whole mouse embryo culture model. Birth Defects Res B Dev Reprod Toxicol,2005.74(2):p.207-9.
    17. Radad, K., G Gille, R. Moldzio, H. Saito, W.D. Rausch, Ginsenosides Rbl and Rgl effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res,2004. 1021(1):p.41-53.
    18. Lee, J.H., S.M. Jeong, J.H. Kim, B.H. Lee, LS. Yoon, S.H. Choi, S.M. Lee, Y.S. Park, S.S. Kim, H.C. Kim, B.Y. Lee, S.Y. Nah, Effects of ginsenosides and their metabolites on voltage-dependent Ca(2+) channel subtypes. Mol Cells,2006.21(1):p.52-62.
    19. Liu, D., B. Li, Y. Liu, A.S. Attele, J.W. Kyle, C.S. Yuan, Voltage-dependent inhibition of brain Na(+) channels by American ginseng. Eur J Pharmacol,2001.413(1):p.47-54.
    20. Doyle, K.P., R.P. Simon, M.P. Stenzel-Poore, Mechanisms of ischemic brain damage. Neuropharmacology,2008.55(3):p.310-8.
    21. Lu, J.M., Q. Yao, C. Chen, Ginseng compounds:an update on their molecular mechanisms and medical applications. Curr Vase Pharmacol,2009.7(3):p.293-302.
    22. Attele, A.S., J.A. Wu, C.S. Yuan, Ginseng pharmacology:multiple constituents and multiple actions. Biochem Pharmacol,1999.58(11):p.1685-93.
    1. Hanson, L.R., W.H. Frey,2nd, Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci,2008.9 Suppl 3:p. S5.
    2. Dhuria, S.V., L.R. Hanson, W.H. Frey,2nd, Intranasal delivery to the central nervous system:mechanisms and experimental considerations. J Pharm Sci.99(4):p.1654-73.
    3. Costantino, H.R., L. Illum, G. Brandt, P.H. Johnson, S.C. Quay, Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm,2007.337(1-2):p.1-24.
    4. Liu, X.F., J.R. Fawcett, R.G. Thome, T.A. DeFor, W.H. Frey,2nd, Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci,2001.187(1-2):p.91-7.
    5. Lu, J.M., Q. Yao, C. Chen, Ginseng compounds:an update on their molecular mechanisms and medical applications. Curr Vase Pharmacol,2009.7(3):p.293-302.
    6. Attele, A.S., J.A. Wu, C.S. Yuan, Ginseng pharmacology:multiple constituents and multiple actions. Biochem Pharmacol,1999.58(11):p.1685-93.
    7. Persidsky, Y, S.H. Ramirez, J. Haorah, G.D. Kanmogne, Blood-brain barrier:structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol,2006.1(3):p.223-36.
    8. Abbott, N.J., L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci,2006.7(1):p.41-53.
    9. Pires, A., A. Fortuna, G Alves, A. Falcao, Intranasal drug delivery:how, why and what for? J Pharm Pharm Sci,2009.12(3):p.288-311.
    10. Jiang, Y., B. David, P. Tu, Y. Barbin, Recent analytical approaches in quality control of traditional Chinese medicines—a review. Anal Chim Acta.657(1):p.9-18.
    11. Lee, J., E. Lee, D. Kim, J. Yoo, B. Koh, Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol,2009. 122(1):p.143-8.
    12. Li, X., G. Wang, J. Sun, H. Hao, Y. Xiong, B. Yan, Y Zheng, L. Sheng, Pharmacokinetic and absolute bioavailability study of total panax notoginsenoside, a typical multiple constituent traditional Chinese medicine (TCM) in rats. Biol Pharm Bull,2007.30(5):p. 847-51.
    13. Sritularak, B., O. Morinaga, C.S. Yuan, Y. Shoyama, H. Tanaka, Quantitative analysis of ginsenosides Rbl, Rgl, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J Nat Med,2009.63(3):p.360-3.
    14. Sohoel, A., A. Plum, S. Frokjaer, P. Thygesen,1251 used for labelling of proteins in an absorption model changes the absorption rate of insulin aspart. Int J Pharm,2007. 330(1-2):p.114-20.
    15. Vyas, T.K., A.K. Babbar, R.K. Sharma, S. Singh, A. Misra, Intranasal mucoadhesive microemulsions of clonazepam:preliminary studies on brain targeting. J Pharm Sci,2006. 95(3):p.570-80.
    16. Jogani, V.V., P.J. Shah, P. Mishra, A.K. Mishra, A.R. Misra, Nose-to-brain delivery of tacrine. J Pharm Pharmacol,2007.59(9):p.1199-205.
    17. Ma, Y.P., M.M. Ma, S. Ge, R.B. Guo, H.J. Zhang, W.H. Frey,2nd, GL. Xu, X.F. Liu, Intranasally delivered TGF-betal enters brain and regulates gene expressions of its receptors in rats. Brain Res Bull,2007.74(4):p.271-7.
    18. Yang, J.P., H.J. Liu, S.M. Cheng, Z.L. Wang, X. Cheng, H.X. Yu, X.F. Liu, Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett,2009.449(2):p.108-11.
    19. Sakanaka, M., P. Zhu, B. Zhang, T.C. Wen, F. Cao, Y.J. Ma, K. Samukawa, N. Mitsuda, J. Tanaka, M. Kuramoto, H. Uno, R. Hata, Intravenous infusion of dihydroginsenoside Rbl prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma,2007.24(6):p.1037-54.
    20. Wen, T.C., H. Yoshimura, S. Matsuda, J.H. Lim, M. Sakanaka, Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol,1996.91(1):p.15-22.
    21. Chen, F., E.A. Eckman, C.B. Eckman, Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides. FASEB J,2006.20(8):p.1269-71.
    22. Yuan, Q.L., C.X. Yang, P. Xu, X.Q. Gao, L. Deng, P. Chen, Z.L. Sun, Q.Y. Chen, Neuroprotective effects of ginsenoside Rbl on transient cerebral ischemia in rats. Brain Res,2007.1167:p.1-12.
    23. Neuwelt, E., N.J. Abbott, L. Abrey, WA. Banks, B. Blakley, T. Davis, B. Engelhardt, P. Grammas, M. Nedergaard, J. Nutt, W. Pardridge, GA. Rosenberg, Q. Smith, L.R. Drewes, Strategies to advance translational research into brain barriers. Lancet Neurol,2008. 7(1):p.84-96.
    24. Ballabh, P., A. Braun, M. Nedergaard, The blood-brain barrier:an overview:structure, regulation, and clinical implications. Neurobiol Dis,2004.16(1):p.1-13.
    25. Leung, K.W., L.W. Cheung, Y.L. Pon, R.N. Wong, N.K. Mak, T.P. Fan, S.C. Au, J. Tombran-Tink, A.S. Wong, Ginsenoside Rbl inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol,2007.152(2):p.207-15.
    26. Leung, K.W., F.P. Leung, Y. Huang, N.K. Mak, R.N. Wong, Non-genomic effects of ginsenoside-Re in endothelial cells via glucocorticoid receptor. FEBS Lett,2007.581(13): p.2423-8.
    27. del Zoppo, G.J., T. Mabuchi, Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab,2003.23(8):p.879-94.
    28. Wu, Y.J., X.Y. Zhu, X.Y. Sha, X.L. Fang, [The pharmacokinetics and pharmacodynamics of intranasal preparation of Panax notoginseng Saponins]. Yao Xue Xue Bao,2005. 40(4):p.377-81.
    1. Longa, E.Z., P.R. Weinstein, S. Carlson, R. Cummins, Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989.20(1):p.84-91.
    2. Liu, X.F., J.R. Fawcett, R.G. Thome, W.H. Frey,2nd, Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett,2001.308(2):p.91-4.
    3. Uyama, O., N. Okamura, M. Yanase, M. Narita, K. Kawabata, M. Sugita, Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab,1988.8(2):p.282-4.
    4. Wu, J., H.K. Jeong, S.E. Bulin, S.W. Kwon, J.H. Park, I. Bezprozvanny, Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res,2009. 87(8):p.1904-12.
    5. Qian, Y.H., H. Han, X.D. Hu, L.L. Shi, Protective effect of ginsenoside Rbl on beta-amyloid protein(1-42)-induced neurotoxicity in cortical neurons. Neurol Res,2009. 31(7):p.663-7.
    6. Xie, Y.H., X.C. Chen, J. Zhang, T.W. Huang, J.Q. Song, YX. Fang, X.D. Pan, Z.Y Lin, [Ginsenoside Rb1 attenuates beta-amyloid peptide(25-35)-induced hyperphosphorylation of tau protein through CDK5 signal pathway]. Yao Xue Xue Bao, 2007.42(8):p.828-32.
    7. Chen, X., T. Huang, J. Zhang, J. Song, L. Chen, Y. Zhu, Involvement of calpain and p25 of CDK5 pathway in ginsenoside Rbl's attenuation of beta-amyloid peptide25-35-induced tau hyperphosphorylation in cortical neurons. Brain Res,2008. 1200:p.99-106.
    8. Song, J.Q., X.C. Chen, J. Zhang, T.W. Huang, Y.Q. Zeng, J. Shen, L.M. Chen, [JNK/p38 MAPK involves in ginsenoside Rbl attenuating beta-amyloid peptide (25-35)-induced tau protein hyperphosphorylation in embryo rat cortical neurons]. Yao Xue Xue Bao, 2008.43(1):p.29-34.
    9. Wen, T.C., H. Yoshimura, S. Matsuda, J.H. Lim, M. Sakanaka, Ginseng root prevents learning disability and neuronal loss in gerbils with 5-minute forebrain ischemia. Acta Neuropathol,1996.91(1):p.15-22.
    10. Lim, J.H., T.C. Wen, S. Matsuda, J. Tanaka, N. Maeda, H. Peng, J. Aburaya, K. Ishihara, M. Sakanaka, Protection of ischemic hippocampal neurons by ginsenoside Rbl, a main ingredient of ginseng root. Neurosci Res,1997.28(3):p.191-200.
    11. Zhang, B., S. Matsuda, J. Tanaka, N. Tateishi, N. Maeda, T.C. Wen, H. Peng, M. Sakanaka, Ginsenoside Rb(1) prevents image navigation disability, cortical infarction, and thalamic degeneration in rats with focal cerebral ischemia. J Stroke Cerebrovasc Dis, 1998.7(1):p.1-9.
    12. Lo, E.H., A new penumbra:transitioning from injury into repair after stroke. Nat Med, 2008.14(5):p.497-500.
    13. Sun, M., Y. Zhao, Y. Gu, C. Xu, Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int,2009. 54(5-6):p.339-46.
    14. Yang, C.X., J.X. Liu, Z.L. Sun, X.Q. Gao, L. Deng, Q.L. Yuan, [Effects of Ginsenoside RBI on neural cell apoptosis and expressions of Bcl-2 and Box in rats following subjected to cerebral ischemia-reperfusion]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008. 39(2):p.214-7.
    15. Zhang, B., R. Hata, P. Zhu, K. Sato, T.C. Wen, L. Yang, H. Fujita, N. Mitsuda, J. Tanaka, K. Samukawa, N. Maeda, M. Sakanaka, Prevention of ischemic neuronal death by intravenous infusion of a ginseng saponin, ginsenoside Rb(1), that upregulates Bcl-x(L) expression. J Cereb Blood Flow Metab,2006.26(5):p.708-21.
    16. Sakanaka, M., P. Zhu, B. Zhang, T.C. Wen, F. Cao, Y.J. Ma, K. Samukawa, N. Mitsuda, J. Tanaka, M. Kuramoto, H. Uno, R. Hata, Intravenous infusion of dihydroginsenoside Rbl prevents compressive spinal cord injury and ischemic brain damage through upregulation of VEGF and Bcl-XL. J Neurotrauma,2007.24(6):p.1037-54.
    17. Yuan, Q.L., C.X. Yang, P. Xu, X.Q. Gao, L. Deng, P. Chen, Z.L. Sun, Q.Y. Chen, Neuroprotective effects of ginsenoside Rbl on transient cerebral ischemia in rats. Brain Res,2007.1167:p.1-12.
    18. Cecchelli, R., V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M.P. Dehouck, L. Fenart, Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov,2007.6(8):p.650-61.
    19. Fagan, S.C., D.C. Hess, E.J. Hohnadel, D.M. Pollock, A. Ergul, Targets for vascular protection after acute ischemic stroke. Stroke,2004.35(9):p.2220-5.
    20. Zlokovic, B.V., The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron,2008.57(2):p.178-201.
    21. He, F., R. Guo, S.L. Wu, M. Sun, M. Li, Protective effects of ginsenoside Rbl on human umbilical vein endothelial cells in vitro. J Cardiovasc Pharmacol,2007.50(3):p.314-20.
    22. Lopez, M.V., M.P. Cuadrado, O.M. Ruiz-Poveda, A.M. Del Fresno, M.E. Accame, Neuroprotective effect of individual ginsenosides on astrocytes primary culture. Biochim Biophys Acta,2007.1770(9):p.1308-16.
    1. Arai, K., G. Jin, D. Navaratna, E.H. Lo, Brain angiogenesis in developmental and pathological processes:neurovascular injury and angiogenic recovery after stroke. FEBS J,2009.276(17):p.4644-52.
    2. Kimura, Y., M. Sumiyoshi, K. Kawahira, M. Sakanaka, Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. Br J Pharmacol,2006. 148(6):p.860-70.
    3. Leung, K.W., L.W. Cheung, Y.L. Pon, R.N. Wong, N.K. Mak, T.P. Fan, S.C. Au, J. Tombran-Tink, A.S. Wong, Ginsenoside Rbl inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol,2007.152(2):p.207-15.
    4. Longa, E.Z., P.R. Weinstein, S. Carlson, R. Cummins, Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989.20(1):p.84-91.
    5. Cheng, S., M. Ma, Y. Ma, Z. Wang, G Xu, X. Liu, Combination therapy with intranasal NGF and electroacupuncture enhanced cell proliferation and survival in rats after stroke. Neurol Res,2009.31(7):p.753-8.
    6. Watanabe, T., Y. Okuda, N. Nonoguchi, M.Z. Zhao, Y. Kajimoto, D. Furutama, H. Yukawa, M.A. Shibata, Y. Otsuki, T. Kuroiwa, S. Miyatake, Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab,2004.24(11):p.1205-13.
    7. Yang, J.P., H.J. Liu, Z.L. Wang, S.M. Cheng, X. Cheng, G.L. Xu, X.F. Liu, The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neurosci Lett, 2009.461(3):p.212-6.
    8. Hanson, L.R., W.H. Frey,2nd, Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci,2008.9 Suppl 3:p. S5.
    9. Lo, E.H., A new penumbra:transitioning from injury into repair after stroke. Nat Med, 2008.14(5):p.497-500.
    10. Xiong, Y, A. Mahmood, M. Chopp, Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs.11(3):p.298-308.
    11. Ohashi, R., S. Yan, H. Mu, H. Chai, Q. Yao, P.H. Lin, C. Chen, Effects of homocysteine and ginsenoside Rbl on endothelial proliferation and superoxide anion production. J Surg Res,2006.133(2):p.89-94.
    12. Sengupta, S., S.A. Toh, L.A. Sellers, J.N. Skepper, P. Koolwijk, H.W. Leung, H.W. Yeung, R.N. Wong, R. Sasisekharan, T.P. Fan, Modulating angiogenesis:the yin and the yang in ginseng. Circulation,2004.110(10):p.1219-25.
    13. Papapetropoulos, A., A ginseng-derived oestrogen receptor beta (ERbeta) agonist, Rbl ginsenoside, attenuates capillary morphogenesis. Br J Pharmacol,2007.152(2):p.172-4.
    14. Martinez-Vila, E., P. Irimia, Challenges of neuroprotection and neurorestoration in ischemic stroke treatment. Cerebrovasc Dis,2005.20 Suppl 2:p.148-58.
    15. Savitz, S.I., M. Fisher, Future of neuroprotection for acute stroke:in the aftermath of the SAINT trials. Ann Neurol,2007.61(5):p.396-402.
    16. Ginsberg, M.D., Current status of neuroprotection for cerebral ischemia:synoptic overview. Stroke,2009.40(3 Suppl):p. S111-4.
    17. Shen, L., J. Zhang, NMDA receptor and iNOS are involved in the effects of ginsenoside Rgl on hippocampal neurogenesis in ischemic gerbils. Neurol Res,2007.29(3):p.270-3.
    18. Chang, Y., S.J. Wang, Ginsenoside Rgl and Rbl enhance glutamate exocytosis from rat cortical nerve terminals by affecting vesicle mobilization through the activation of protein kinase C. Eur J Pharmacol,2008.590(1-3):p.74-9.
    19. Chang, Y., W.J. Huang, L.T. Tien, S.J. Wang, Ginsenosides Rgl and Rbl enhance glutamate release through activation of protein kinase A in rat cerebrocortical nerve terminals (synaptosomes). Eur J Pharmacol,2008.578(1):p.28-36.
    20. Saito, H., K. Suda, M. Schwab, H. Thoenen, Potentiation of the NGF-mediated nerve fiber outgrowth by ginsenoside Rbl in organ cultures of chicken dorsal root ganglia. Jpn J Pharmacol,1977.27(3):p.445-51.
    21. Mook-Jung, I., H.S. Hong, J.H. Boo, K.H. Lee, S.H. Yun, M.Y. Cheong, I. Joo, K. Huh, M.W. Jung, Ginsenoside Rbl and Rgl improve spatial learning and increase hippocampal synaptophysin level in mice. J Neurosci Res,2001.63(6):p.509-15.
    22. Zhao, H., Q. Li, Z. Zhang, X. Pei, J. Wang, Y. Li, Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res,2009.1256:p. 111-22.
    1. Liu, M., J.T. Zhang, [Protective effects of ginsenoside Rbl and Rgl on cultured hippocampal neurons]. Yao Xue Xue Bao,1995.30(9):p.674-8.
    2. Kim, Y.C., S.R. Kim, GJ. Markelonis, T.H. Oh, Ginsenosides Rbl and Rg3 protect cultured rat cortical cells from glutamate-induced neurodegeneration. J Neurosci Res, 1998.53(4):p.426-32.
    3. Liao, B., H. Newmark, R. Zhou, Neuroprotective effects of ginseng total saponin and ginsenosides Rbl and Rgl on spinal cord neurons in vitro. Exp Neurol,2002.173(2):p. 224-34.
    4. Yuan, Q.L., C.X. Yang, P. Xu, X.Q. Gao, L. Deng, P. Chen, Z.L. Sun, Q.Y. Chen, Neuroprotective effects of ginsenoside Rbl on transient cerebral ischemia in rats. Brain Res,2007.1167:p.1-12.
    5. Sakanaka, M., P. Zhu, B. Zhang, T.C. Wen, F. Cao, Y.J. Ma, K. Samukawa, N. Mitsuda, J. Tanaka, M. Kuramoto, H. Uno, R. Hata, Intravenous infusion of dihydroginsenoside Rbl prevents compressive spinal cord injury and ischemic brain damage through upregulation ofVEGF and Bcl-XL. J Neurotrauma,2007.24(6):p.1037-54.
    6. Yang, C.X., J.X. Liu, Z.L. Sun, X.Q. Gao, L. Deng, Q.L. Yuan, [Effects of Ginsenoside RBI on neural cell apoptosis and expressions of Bcl-2 and Box in rats following subjected to cerebral ischemia-reperfusion]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008. 39(2):p.214-7.
    7. Zhang, B., R. Hata, P. Zhu, K. Sato, T.C. Wen, L. Yang, H. Fujita, N. Mitsuda, J. Tanaka, K. Samukawa, N. Maeda, M. Sakanaka, Prevention of ischemic neuronal death by intravenous infusion of a ginseng saponin, ginsenoside Rb(1), that upregulates Bcl-x(L) expression. J Cereb Blood Flow Metab,2006.26(5):p.708-21.
    8. Sadoshima, J., The role of autophagy during ischemia/reperfusion. Autophagy,2008.4(4): p.402-3.
    9. Longa, E.Z., P.R. Weinstein, S. Carlson, R. Cummins, Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989.20(1):p.84-91.
    10. Liu, X.F., J.R. Fawcett, R.G Thome, W.H. Frey,2nd, Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neurosci Lett,2001.308(2):p.91-4.
    11. Cao, L., J. Xu, Y. Lin, X. Zhao, X. Liu, Z. Chi, Autophagy is upregulated in rats with status epilepticus and partly inhibited by Vitamin E. Biochem Biophys Res Commun, 2009.379(4):p.949-53.
    12. Mizushima, N., B. Levine, A.M. Cuervo, D.J. Klionsky, Autophagy fights disease through cellular self-digestion. Nature,2008.451(7182):p.1069-75.
    13. Klionsky, D.J., Autophagy:from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol,2007.8(11):p.931-7.
    14. Boland, B., A. Kumar, S. Lee, F.M. Platt, J. Wegiel, W.H. Yu, R.A. Nixon, Autophagy induction and autophagosome clearance in neurons:relationship to autophagic pathology in Alzheimer's disease. J Neurosci,2008.28(27):p.6926-37.
    15. Klionsky, D.J., A.M. Cuervo, P.O. Seglen, Methods for monitoring autophagy from yeast to human. Autophagy,2007.3(3):p.181-206.
    16. Rami, A., A. Langhagen, S. Steiger, Focal cerebral ischemia induces upregulation of Beclin 1 and autophagy-like cell death. Neurobiol Dis,2008.29(1):p.132-41.
    17. Adhami, F., G. Liao, Y.M. Morozov, A. Schloemer, V.J. Schmithorst, J.N. Lorenz, R.S. Dunn, C.V. Vorhees, M. Wills-Karp, J.L. Degen, R.J. Davis, N. Mizushima, P. Rakic, B.J. Dardzinski, S.K. Holland, F.R. Sharp, C.Y. Kuan, Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am J Pathol,2006.169(2):p.566-83.
    18. Park, H.K., K. Chu, K.H. Jung, S.T. Lee, J.J. Bahn, M. Kim, S.K. Lee, J.K. Roh, Autophagy is Involved in the ischemic preconditioning. Neurosci Lett,2009.451(1):p. 16-9.
    19. Liang, X.H., L.K. Kleeman, H.H. Jiang, G. Gordon, J.E. Goldman, G. Berry, B. Herman, B. Levine, Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol,1998.72(11):p.8586-96.
    20. Kihara, A., Y. Kabeya, Y. Ohsumi, T. Yoshimori, Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep,2001.2(4):p.330-5.
    21. Ku, B., J.S. Woo, C. Liang, K.H. Lee, J.U. Jung, B.H. Oh, An insight into the mechanistic role of Beclin 1 and its inhibition by prosurvival Bcl-2 family proteins. Autophagy,2008. 4(4):p.519-20.
    22. Sinha, S., C.L. Colbert, N. Becker, Y. Wei, B. Levine, Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog Mll. Autophagy,2008.4(8):p.989-97.
    23. Park, K.J., S.H. Lee, C.H. Lee, J.Y Jang, J. Chung, M.H. Kwon, Y.S. Kim, Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun,2009.382(4):p. 726-9.
    24. Wang, J., M.W. Whiteman, H. Lian, G. Wang, A. Singh, D. Huang, T. Denmark, A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem,2009.284(32):p.21412-24.
    25. Vicencio, J.M., C. Ortiz, A. Criollo, A.W. Jones, O. Kepp, L. Galluzzi, N. Joza, I. Vitale, E. Morselli, M. Tailler, M. Castedo, M.C. Maiuri, J. Molgo, G. Szabadkai, S. Lavandero, G. Kroemer, The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ,2009.16(7):p.1006-17.
    26. Rami, A., Upregulation of Beclin 1 in the ischemic penumbra. Autophagy,2008.4(2):p. 227-9.
    27. Wen, Y.D., R. Sheng, L.S. Zhang, R. Han, X. Zhang, X.D. Zhang, F. Han, K. Fukunaga, Z.H. Qin, Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy,2008.4(6): p.762-9.
    28. Puyal, J., A. Vaslin, V. Mottier, P.G. Clarke, Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann Neurol,2009.66(3):p.378-89.
    29. Koike, M., M. Shibata, M. Tadakoshi, K. Gotoh, M. Komatsu, S. Waguri, N. Kawahara, K. Kuida, S. Nagata, E. Kominami, K. Tanaka, Y. Uchiyama, Inhibition of autophagy prevents hippocampal pyramidal neuron death after hypoxic-ischemic injury. Am J Pathol,2008.172(2):p.454-69.
    30. Samokhvalov, V., B.A. Scott, C.M. Crowder, Autophagy protects against hypoxic injury in C. elegans. Autophagy,2008.4(8):p.1034-41.
    31. Ferraro, E., A. Pulicati, M.T. Cencioni, M. Cozzolino, F. Navoni, S. di Martino, R. Nardacci, M.T. Carri, F. Cecconi, Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell, 2008.19(8):p.3576-88.
    32. Carloni, S., G. Buonocore, W. Balduini, Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol Dis,2008.32(3):p.329-39.
    33. Chu, C.T., J. Zhu, R. Dagda, Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress:implications for neurodegeneration and cell death. Autophagy,2007.3(6):p.663-6.
    34. Kong, H.L., J.P. Wang, Z.Q. Li, S.M. Zhao, J. Dong, W.W. Zhang, Anti-hypoxic effect of ginsenoside Rbl on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin,2009.30(4):p.396-403.
    35. Kiffin, R., U. Bandyopadhyay, A.M. Cuervo, Oxidative stress and autophagy. Antioxid Redox Signal,2006.8(1-2):p.152-62.
    36. Kubota, C., S. Torii, N. Hou, N. Saito, Y. Yoshimoto, H. Imai, T. Takeuchi, Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem.285(1):p.667-74.
    37. Wang, Z., M. Li, W.K. Wu, H.M. Tan, D.F. Geng, Ginsenoside Rbl preconditioning protects against myocardial infarction after regional ischemia and reperfusion by activation of phosphatidylinositol-3-kinase signal transduction. Cardiovasc Drugs Ther, 2008.22(6):p.443-52.
    38. Hwang, Y.P., H.G. Jeong, Ginsenoside Rbl protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol.242(1):p.18-28.
    39. Cho, J., W. Park, S. Lee, W. Ahn, Y. Lee, Ginsenoside-Rbl from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and-beta, independent of ligand binding. J Clin Endocrinol Metab,2004.89(7):p.3510-5.
    40. Leung, K.W., L.W. Cheung, Y.L. Pon, R.N. Wong, N.K. Mak, T.P. Fan, S.C. Au, J. Tombran-Tink, A.S. Wong, Ginsenoside Rbl inhibits tube-like structure formation of endothelial cells by regulating pigment epithelium-derived factor through the oestrogen beta receptor. Br J Pharmacol,2007.152(2):p.207-15.
    41. Yu, J., M. Eto, M. Akishita, A. Kaneko, Y. Ouchi, T. Okabe, Signaling pathway of nitric oxide production induced by ginsenoside Rbl in human aortic endothelial cells:a possible involvement of androgen receptor. Biochem Biophys Res Commun,2007. 353(3):p.764-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700