苦杏仁苷十四酸酯为模板合成一维纳米无机材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模板法因其结构规整、操作方便、易于控制等优点已成为合成一维纳米材料的首选方法。在模板法中,水凝胶作为合成无机纳米材料的模板已得到广泛研究和应用,但仍存在着机理不明确、价格高昂、合成复杂等诸多缺陷。而水凝胶因子因其优良的可控性、生物相容性而备受关注,并有可能避免上述缺陷。本文以酶催化合成的苦杏仁苷十四酸酯凝胶因子为模板,合成了铁氧化物纳米线以及二氧化硅纳米管两种无机材料。主要工作和结果如下:
     (1)通过酶催化法合成了苦杏仁苷十四酸酯凝胶因子,采用红外光谱(IR)、核磁共振氢谱(1H NMR)、核磁共振碳谱(13C NMR)以及质谱(MS)对其进行了结构表征及确证。其凝胶性能结果表明,该凝胶因子可以凝胶中等极性及芳香性溶剂。对该凝胶因子在盐、高分子、不同pH条件下的凝胶行为进行了研究。
     (2)凝胶因子对非均相对正己烷-水体系的凝胶性能研究表明正己烷-水体系的凝胶温度随着正己烷含量的增加,其凝胶温度下降,且通过扫描电子显微镜(SEM)发现其微观形貌也发生了相应变化。模板法合成铁氧化物一般通过将铁离子还原或沉淀到模板中,本文采用将分散在正己烷中的四氧化三铁纳米粒进行排列的方式合成出直径为10 nm的铁氧化物纳米线,通过SEM对其微观形貌进行了表征,并通过热重分析(TGA/DTA)对合成的纳米线组分进行了判断,初步推断该纳米线为三氧化二铁纳米线。
     (3)经过实验条件的优化,以酸性的凝胶因子苦杏仁苷十四酸酯为模板,γ-氨丙基三乙氧基硅烷( Aminopropyltriethoxysilane , APS )作为助结构导向剂(Co-Structure-Directing Agent,CSDA),四乙氧基硅烷(Tetraethylorthosilicate,TEOS)为硅源,在水环境中合成了二氧化硅纳米管。SEM和透射电子显微镜(TEM)结果显示该纳米管直径为200-300 nm,管壁厚50 nm,长度可达12μm。
At present, template method has become the first choice for the preparations of nano-materials, due to its easiness, convenience and the regular structures of products. However, there are some disadvantages, such as unclear mechanism, expensiveness, and complicated steps, which would limit the applications. In this method, hydrogel has been widely used as the template to prepare the inorganic nano-materials. Thus, extensive attention has been focused on hydrogelator in the wide ranges of applications. In this study, two inorganic nano-materials: iron oxide nanowires and silica nanotubes have been synthesized by using amygdalin myristic esters as template. The main results are as followed:
     (1) The amygdalin myristic esters were synthesized through enzyme catalysis method. Its structure was characterized by IR, 1H NMR, 13C NMR and MS. The results of its gellation ability showed that medium polarity and aromatic solvents could be gelated by the gelator. Besides, its gel behaviors in salt solutions, polymer solutions and at different pH solutions were studied respectively.
     (2) The relationship between the gel temperature and the content in the n-hexane - water system was studied. The gel temperature decreased with the increasing of n-hexane content. Besides, we found that the content of n-hexane could change the shape and the surface appearance of the system using SEM. Generally, the iron ions were reduced or precipitated to the template to prepare the iron oxide nanowires in the template method. However, in our method, iron oxide nanowires were synthesized by arranging iron oxide nanoparticles dispersed in hexane. The morphology was characterized by SEM. The components were analyzed by TGA / DTA, which presumed to be ferric oxide.
     (3) Silica nanotubes were prepared successfully using acidic gelator amygdalin myristic esters as the template, APS as the CSDA and the TEOS as silica source in water environment. Moreover, the parameters of the synthesis were explored and discussed.
引文
[1]杜朝锋黄英,秦秀兰.模板技术在纳米材料制备中的应用与发展.材料导报, 2006, 20(4): 38-42
    [2]许仲梓金陆.纳米材料模板合成技术研究.材料导报, 2007, 21(F11): 143-147
    [3]王秀丽.模板法合成纳米结构材料.化学通报, 2005, 68(10): 723-730
    [4] Losic D. Microstructured surfaces engineered using biological templates: a facile approach for the fabrication of superhydrophobic surfaces. J Serb Chem Soc, 2008, 73(11): 1123-1135
    [5] Yamauchi Y, Kuroda K. Rational design of mesoporous metals and related nanomaterials by a soft-template approach. Chemistry-an Asian Journal, 2008, 3(4): 664-676
    [6] Liu P, Zhang L. Hollow Nanostructured Polyaniline: Preparation, Properties and Applications. Critical Reviews in Solid State and Materials Sciences, 2009, 34(1-2): 75-87
    [7] Zhang Q, Wang W S, Goebl J et al. Self-templated synthesis of hollow nanostructures. Nano Today, 2009, 4(6): 494-507
    [8] Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 1995, 268(5216): 1466-1468
    [9] Tonucci R J, Justus B L, Campillo A J et al. Ngnochannel Array Glass. Science, 1992, 258(5083): 783-785
    [10] Khan H R, Petrikowski K. Synthesis and properties of the arrays of magnetic nanowires of Co and CoFe. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002, 19(1-2): 345-348
    [11] Wang Q L. Preparation and characterization of SrTiO3 nanowires via sol-gel template method. Journal of Hunan Agricultural University (Natural Sciences), 2008, 34(2): 245-248
    [12] Zhang L Y, Zhang Y F. Fabrication and magnetic properties of Fe3O4 nanowire arrays in different diameters. Journal of Magnetism and Magnetic Materials, 2009,321(5): L15-L20
    [13] Borissov D, Isik-Uppenkamp S, Rohwerder M. Fabrication of Iron Nanowire Arrays by Electrodeposition into Porous Alumina. Journal of Physical Chemistry C, 2009, 113(8): 3133-3138
    [14] Ajayan P M, Stephan O, Redlich P et al. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature, 1995, 375(6532): 564-567
    [15] Wen Z, Wang Q, Li J. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts. Advanced Functional Materials, 2008, 18(6): 959-964
    [16] Satishkumar B C, Govindaraj A, Nath M et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry, 2000, 10(9): 2115-2119
    [17] Rao C N R, Satishkumar B C, Govindaraj A. Zirconia nanotubes. Chemical Communications, 1997(16): 1581-1582
    [18] Ji L J, Wang Z, Li Z et al. Preparation of aligned titania nanowires with an aligned carbon nanotube composite template. Materials Letters, 2008, 62(12-13): 1979-1982
    [19] Adhyapak P V, Karandikar P, Vijayamohanan K et al. Synthesis of silver nanowires inside mesoporous MCM-41 host. Materials Letters, 2004, 58(7-8): 1168-1171
    [20] Aravamudhan S, Luongo K, Poddar P et al. Porous silicon templates for electrodeposition of nanostructures. Applied Physics A: Materials Science & Processing, 2007, 87(4): 773-780
    [21] Surowiec Z, Wiertel M, Budzynski M et al. Magnetite nanowires in MCM-41 type mesoporous silica templates. J Non-Cryst Solids, 2008, 354(35-39): 4271-4274
    [22] Deng F, Yue L, Qi X H et al. Synthesis of Mesoporous TiO2 Using Gem in i Surfactant a t Room Tempera ture. Journal of Inorganic Materials, 2009, 24(1): 39-42
    [23] Zhang L, Qiao S, Jin Y et al. Hydrophobic Functional Group Initiated Helical Mesostructured Silica for Controlled Drug Release. Advanced Functional Materials, 2008, 18(23): 3834-3842
    [24] Chaure N B, Stamenov P, Rhen F M F et al. Oriented cobalt nanowires prepared by electrodeposition in a porous membrane. Journal of Magnetism and Magnetic Materials, 2005, 290: 1210-1213
    [25] Zhou F, Li S, Vo C D et al. Biomimetic deposition of silica templated by a cationic polyamine-containing microgel. Langmuir, 2007, 23(19): 9737-9744
    [26] Fan T X, Sun B H, Gu J J et al. Biomorphic Al2O3 fibers synthesized using cotton as bio-templates. Scr Mater, 2005, 53(8): 893-897
    [27] Fu Y B, Zhang L D. Simultaneous deposition of Ni nanoparticles and wires on a tubular halloysite template: A novel metallized ceramic microstructure. Journal of Solid State Chemistry, 2005, 178(11): 3595-3600
    [28] Wang Q, Zhao Y B, Yang Y J et al. Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels. Colloid and Polymer Science, 2007, 285(5): 515-521
    [29] Hamilton L a E a D. Effective Gelation of Water Using a Series of Bis-urea Diearboxylie Aeids. AngewChemIntEd, 2000, 39(19): 3447-3450
    [30] Karbarz M, Pulka K, Misicka A et al. pH and Temperature-Sensitive N-Isopropylacrylamide Ampholytic Networks Incorporating L-Lysine. Langmuir, 2006, 22(18): 7843-7847
    [31]杨亚江,崔文瑾.能使有机溶剂凝胶化的凝胶因子研究进展.有机化学, 2001, 21(9): 632-639
    [32] Sangeetha N M, Maitra U. Supramolecular gels: Functions and uses. Chemical Society Reviews, 2005, 34: 821–836
    [33] Van Tomme S R, Storm G, Hennink W E. In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 2008, 355(1-2): 1-18
    [34] Yang Z M, Liang G L, Xu B. Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter, 2007, 3(5): 515-520
    [35] Jun Li , Loh X J. Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug DeliveryReviews, 2008, 60: 1000–1017
    [36] George M, Weiss R G. Molecular Organogels:Soft Matter Comprised of Low-Molecular-Mass Organic Gelators and Organic Liquids. Accounts Of Chemical Research, 2006, 39(8): 489-497
    [37] Gronwald O, Sakurai K, Luboradzki R et al. Further evidence for the gelation ability–structure correlation in sugar-based gelators. Carbohydrate Research 2001, 331: 307–318
    [38] Bhattacharya S, Acharya S N G. Pronounced Hydrogel Formation by the Self-Assembled Aggregates of N-Alkyl Disaccharide Amphiphiles. Chemistry of Materials, 1999, 11: 3504-3511
    [39] Wang G, Hamilton A D. Low molecular weight organogelators for water. Chemical Communications, 2003: 310–311
    [40] Masahiro S, Sanae O, Mutsumi K et al. Supramolecular hydrogels and organogels based on novel L-valine and L-isoleucine amphiphiles. Tetrahedron Letters, 2005, 46: 303–306
    [41] Kiyonaka S, Sugiyasu K, Shinkai S et al. First Thermally Responsive Supramolecular Polymer Based on Glycosylated Amino Acid. Journal of the American Chemical Society, 2002, 124: 10954-10955
    [42] Masahiro S, Sanae O, Hirofusa S et al. Supramolecular hydrogel formed by glucoheptonamide of L-lysine: simple preparation and excellent hydrogelation ability. Tetrahedron, 2007, 63: 7302–7308
    [43] Bhata S, Uday Maitraa. Low molecular mass cationic gelators derived from deoxycholic acid: remarkable gelation of aqueous solvents. Tetrahedron 2007, 63: 7309–7320
    [44] Kono S, Wang Y J, Tang L M. Influence of gelator structures on formation and stability of supramolecular hydrogels. Chinese Chemical Letters, 2007, 18(12): 1548–1550
    [45] Saha A, Manna S, Nandi A K. A Mechanistic Approach on the Self-Organization of the Two-Component Thermoreversible Hydrogel of Riboflavin and Melamine. Langmuir, 2007, 23(1): 13126-13135
    [46] Hirst A R, Smith D K. Two-Component Gel-Phase Materials-Highly TunableSelf-Assembling Systems. Chemistry-a European Journal, 2005, 11(19): 5496-5508
    [47] Meléndez R E, Carr A J, Linton B R et al. Controlling Hydrogen Bonding From Molecular Recognition to Organogelation. Structure and Bonding, 2000, 96: 31-61
    [48] Oda R, Huc I, Candau S J et al. Gemini Surfactants as New, Low Molecular Weight Gelators of Organic Solvents and Water. Angewandte Chemie-International Edition, 1998, 37(19): 2689-2691
    [49] Ono Y, Nakashima K, Sano M et al. Organic gels are useful as a template for the preparation of hollow fiber silica. Chemical Communications, 1998(14): 1477-1478
    [50] Llusar M, Sanchez C. Inorganic and Hybrid Nanofibrous Materials Templated with Organogelators. Chemistry of Materials, 2008, 20(3): 782-820
    [51] Anon. Preparation of inorganic nano fibers by using gelators. Sen-I Gakkaishi, 2006, 62(9): P278-P279
    [52] Chang X, Li W, Yang Y et al. Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires. Materials Chemistry and Physics, 2006, 99(1): 61-65
    [53] Jong Hwa Jung, Seiji Shinkai, Shimizu T. Nanometer-Level Sol-Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica. Chem Mater, 2003, 15: 2141-2145
    [54] Ono Y, Nakashima K, Sano M et al. Organogels are useful as a template for the preparation of novel helical silica fibers. Journal of Materials Chemistry, 2001, 11(10): 2412-2419
    [55] Jung J H, Ono Y, Shinkai S. Novel Silica Structures Which Are Prepared by Transcription of Various Superstructures Formed in Organogels. Langmuir, 1999, 16(4): 1643-1649
    [56] Jung J H, Lee S H, Yoo J S et al. Creation of double silica nanotubes by using crown-appended cholesterol nanotubes. Chemistry-a European Journal, 2003, 9(21): 5307-5313
    [57] Jung J H, Shinkai S, Shimizu T. Nanometer-Level Sol-Gel Transcription of Cholesterol Assemblies into Monodisperse Inner Helical Hollows of the Silica.Chemistry of Materials, 2003, 15: 2141-2145
    [58] Jung J H, Yoshida K, Shimizu T. Creation of Novel Double-Helical Silica Nanotubes Using Binary Gel System. Langmuir, 2002, 18(23): 8724-8727
    [59] Kawano S, Tamaru S, Fujita N et al. Sol-gel polycondensation of tetraethyl orthosilicate (TEOS) in sugar-based porphyrin organogels: Inorganic conversion of a sugar-directed porphyrinic fiber library through sol-gel transcription processes. Chemistry-a European Journal, 2004, 10(2): 343-351
    [60] Yang Y G, Suzuki M, Kimura M et al. Preparation of cotton-like silica. Chemical Communications, 2004(11): 1332-1333
    [61] Wan X B, Pei X F, Zhao H Y et al. The formation of helical mesoporous silica nanotubes. Nanotechnology, 2008, 19(31):
    [62] Yang Y G, Suzuki M, Shirai H et al. Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow. Chemical Communications, 2005(15): 2032-2034
    [63] Pei X F, Zhang J, Wang S B et al. Organization of helical mesoporous silica nanotubes. Journal of Sol-Gel Science and Technology, 2009, 50(3): 397-402
    [64] Yang Y, Suzuki M, Owa S et al. Control of Mesoporous Silica Nanostructures and Pore-Architectures Using a Thickener and a Gelator. Journal of the American Chemical Society, 2006, 129(3): 581-587
    [65] Bao C Y, Lu R, Xue P C et al. Generation of US nano-necklaces and NiS nanotubes templated by sugar-appended hydrogel. Journal of Nanoscience and Nanotechnology, 2006, 6(3): 807-812
    [66] Tan C H, Lu R, Xue P C et al. Synthesis of CuS nanoribbons templated by hydrogel. Materials Chemistry and Physics, 2008, 112(2): 500-503
    [67] Sahiner N. In situ metal particle preparation in cross-linked poly (2-acrylamido- 2-methyl- 1-propansulfonic acid) hydrogel networks. Colloid and Polymer Science, 2006, 285(3): 283-292
    [68] Jung J H, Amaike M, Shinkai S. Sol-gel transcription of novel sugar-based superstructures composed of sugar-integrated gelators into silica: creation of a lotus-shaped silica structure. Chemical Communications, 2000(23): 2343-2344
    [69] Jung J H, Ono Y, Shinkai S. Novel preparation method for multi-layered, tubularsilica using an azacrown-appended cholesterol as template and metal-deposition into the interlayer space. Journal of the Chemical Society-Perkin Transactions 2, 1999(7): 1289-1291
    [70] Friggeria A, Feringab B L, Esch J V. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. Journal of Controlled Release, 2004, 97: 241–248
    [71] Petrova R I, Swift J A. Selective Growth and Distribution of Crystalline Enantiomers in Hydrogels. Journal of the American Chemical Society, 2004, 126(4): 1168-1173
    [72] Moreau L, Barthe′Le′My P, El Maataoui M et al. Supramolecular Assemblies of Nucleoside Phosphocholine Amphiphiles. Journal of the American Chemical Society, 2004, 126: 7533-7539
    [73] Xing B, Yu C W, Chow K H et al. Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel: A Potential Candidate for Biomaterials. Journal of the American Chemical Society, 2002, 124(50): 14846-14847
    [74] Hardy J G, Hirst A R, Ashworth I et al. Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 2007, 63(31): 7397-7406
    [75] Yan Zhang, Hongwei Gu, Zhimou Yang et al. Supramolecular Hydrogels Respond to Ligand-Receptor Interaction. Journal of the American Chemical Society, 2003, 125: 13680-13681
    [76] Zhang Y, Yang Z, Yuan F et al. Molecular Recognition Remolds the Self-Assembly of Hydrogelators and Increases the Elasticity of the Hydrogel by 106-Fold. Journal of the American Chemical Society, 2004, 126: 15028-15029
    [77]魏金婷,刘文奇.方药中苦杏仁苷的研究和应用进展.海南医学院学报, 2007, 13(6): 589-591
    [78]毛多斌,王宇,胡林.酶催化选择性酯化在蔗糖酯合成中的应用研究进展.日用化学工业, 2006, 36(6): 369-373
    [79]闾肖波,苏宝根,杨亦文等.纯苦杏仁苷的制备.中国医药工业杂志, 2006,37(3): 165-167
    [80] Vemula P K, Li J, George J. Enzyme Catalysis: Tool to Make and Break Amygdalin Hydrogelators from Renewable Resources: A Delivery Model for Hydrophobic Drugs. Journal of the American Chemical Society, 2006, 128: 8932-8938
    [81] Xue D S, Li F S. Fe-57 Mossbauer study of magnetic nanowires. Hyperfine Interactions, 2004, 156(1): 31-40
    [82] Aranda P, Garcia J M. Porous membranes for the preparation of magnetic nanostructures. Journal of Magnetism and Magnetic Materials, 2002, 249(1-2): 214-219
    [83] Bhattacharya S, Krishnan-Ghosh Y. First report of phase selective gelation of oil from oil/water mixtures. Possible implications toward containing oil spills. Chemical Communications, 2001(2): 185-186
    [84] Trivedi D R, Ballabh A, Dastidar P. An easy to prepare organic salt as a low molecular mass organic gelator capable of selective gelation of oil from oil/water mixtures. Chemistry of Materials, 2003, 15(21): 3971-3973
    [85] Trivedi D R, Ballabh A, Dastidar P et al. Structure-property correlation of a new family of organogelators based on organic salts and their selective gelation of oil from oil/water mixtures. Chemistry-a European Journal, 2004, 10(21): 5311-5322
    [86] Bardelang D, Camerel F, Margeson J C et al. Unusual sculpting of dipeptide particles by ultrasound induces gelation. Journal of the American Chemical Society, 2008, 130(11): 3313-3315
    [87] Debnath S, Shome A, Dutta S et al. Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification. Chemistry-a European Journal, 2008, 14(23): 6870-6881
    [88] Peng J X, Xia H Y, Liu K Q et al. Water-in-oil gel emulsions from a cholesterol derivative: Structure and unusual properties. Journal of Colloid and Interface Science, 2009, 336(2): 780-785
    [89] Yang Z, Gu H, Du J et al. Self-assembled hybrid nanofibers confer a magnetorheological supramolecular hydrogel. Tetrahedron, 2007, 63(31): 7349-7357
    [90] Sanders J P, Gallagher P K. Kinetics of the oxidation of magnetite using simultaneous TG/DSC. Journal of Thermal Analysis and Calorimetry, 2003, 72(3): 777-789
    [91] Sanders J P, Gallagher P K. Thermomagnetometric evidence of gamma-Fe2O3 as an intermediate in the oxidation of magnetite. Thermochimica Acta, 2003, 406(1-2): 241-243
    [92] Can M M, Ozcan S, Firat T. Magnetic behaviour of iron nanoparticles passivated by oxidation. Physica Status Solidi C - Current Topics in Solid State Physics, 2006, 3(5): 1271-1278
    [93] Jung J H, Ono Y, Hanabusa K et al. Creation of Both Right-Handed and Left-Handed Silica Structures by Sol?Gel Transcription of Organogel Fibers Comprised of Chiral Diaminocyclohexane Derivatives. Journal of the American Chemical Society, 2000, 122(20): 5008-5009
    [94] Xueling C, Wang L, Yang Y et al. Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires. Materials Chemistry and Physics, 2006, 99(1): 61-65
    [95] Che S, Garcia-Bennett A E, Yokoi T et al. A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. nature materials, 2003, 2(12): 801-805
    [96] Che S, Liu Z, Ohsuna T et al. Synthesis and characterization of chiral mesoporous silica. Nature, 2004, 429: 281-284
    [97] Friggeri A, Gronwald O, Van Bommel K J C et al. More than just a catalyst: a novel role for benzylamine in the sol-gel transcription of organogels. Chemical Communications, 2001(23): 2434-2435

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700