用高角分辨的X射线点源的晕研究星际尘埃的空间分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当X射线穿越星际介质时会被星际尘埃颗粒吸收和散射,散射角度较小的光子就会在原来的X射线周围形成一个弥散的图像,这就是“晕”。散射的强度与被散射光子的能量、散射光深、尘埃颗粒的成分和大小分布以及尘埃颗粒在视线方向上的空间分布都有关系,因此X射线散射“晕”也就成为研究星际尘埃颗粒大小分布以及空间分布的一种重要手段。Chandra卫星上的ACIS具有很高的角分辨率、良好的能量分辨率和较宽的能量范围,因此成为最理想的研究X射线晕的仪器。但在标准的TE观测模式下,强源的光子通常在源的中心造成严重的堆积效应,使我们不能直接得到高角分辨率的晕的形状。
    因此我们首先改进了Yao等人提出的从HETG/ACIS的CC模式的0阶数据或者用TE模式中的1阶数据提取小角度处的晕的径向分布的方法,并重新分析了Chandra观测的Cygnus X-1数据。然后我们用这种方法得到了17个X射线点源的晕的形状,再利用星际尘埃模型WD01和MRN去拟合晕的强度分布,得到了氢的散射柱密度以及星际尘埃的空间分布,从WD01模型和MRN模型中拟合出来的氢的散射柱密度有很好的线性相关性,并且它们与能谱拟合中得到的氢的吸收柱密度也有很好的线性关系,它们的关系如下:NH,WD01 =(0.720±0.009)×N_(H,abs) + (0.051±0.013)和N_(H,MRN) = (1.156±0.016)×N_(H,abs) +(0.062±0.024),单位为10~(22) cm~(-2)。利用1.5角秒到60角秒之间的晕我们得到了晕的相对强度(FHI)与NH的统计关系。WD01模型和MRN模型的拟合结果都显示在点源附近有相对较高密度的星际尘埃存在,我们认为这是在X射线双星附近存在分子云的有力证据。我们发现扣除点源附近(x = 0.99 ? 1.0)的氢后的氢的散射柱密度与点源的X射线光子所经过的有效散射距离有一个很好的线性关系,而点源附近的氢的散射柱密度与有效散射距离则没有明显的相关性,说明点源附近的星际尘埃与银河系的尘埃盘没有必然联系。我们还估算了两颗特殊的X射线脉冲星Vela X-1和GX 301-2附近的星风结构以及密度等。
    最后我们提出用X射线暂现源的晕来研究星际尘埃的立体结构,用更高角分辨率的X射线散射晕来研究点源附近星际尘埃的分布,甚至是星风的结构,以及利用点源附近的尘埃柱密度的统计分布来验证大质量恒星不经过超新星爆发而直接塌缩形成黑洞的可能性。
X-rays are absorbed and scattered by dust grains when they travel through theinterstellar medium. The scattering within small angles results in an X-ray “halo”. Thehalo properties are significantly affected by the energy of radiation, the optical depth ofthe scattering, the grain size distributions and compositions, and the spatial distributionof dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is animportant tool to study the size distribution and spatial distribution of interstellar grains,which plays a central role in the astrophysical study of the interstellar medium, suchas the thermodynamics and chemistry of the gas and the dynamics of star formation.With excellent angular resolution, good energy resolution and broad energy band, theChandra ACIS is so far the best instrument for studying the X-ray halos. But the directimages of bright sources obtained with ACIS usually suffer from severe pileup whichprevents us from obtaining the halos in small angles.
    We first improve the method proposed by Yao et al to resolve the X-ray dust scat-tering halos of point sources from the zeroth order data in CC-mode or the first or-der data in TE mode with Chandra HETG/ACIS. Using this method we re-analyzethe Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scat-tering halos around 17 bright X-ray point sources using Chandra data. All sourceswere observed with the HETG/ACIS in CC-mode or TE-mode. Using the inter-stellar grain models of WD01 model and MRN model to fit the halo profiles, weget the hydrogen column densities and the spatial distributions of the scattering dustgrains along the line of sights (LOS) to these sources. We find there is a good lin-ear correlation not only between the scattering hydrogen column density from WD01model and the one from MRN model, but also between NH derived from spectralfits and the one derived from the grain models WD01 and MRN (except for GX301-2 and Vela X-1): NH,WD01 = (0.720 ± 0.009) × N_(H,abs) + (0.051 ± 0.013) andN_(H,MRN) = (1.156 ± 0.016) × N_(H,abs) + (0.062 ± 0.024) in the units 10~(22) cm~(-2). Thenthe correlation between FHI and NH is obtained. Both WD01 model and MRN modelfits show that the scattering dust density very close to these sources is much higher thanthe normal interstellar medium and we consider it is the evidence of molecular cloudsaround these X-ray binaries. We also find that there is the linear correlation between
    the effective distance through the galactic dust layer and hydrogen scattering columndensity NH excluding the one in x = 0.99 ? 1.0 but the correlation does not exist be-tween he effective distance and the NH in x = 0.99?1.0. It shows that the dust nearbythe X-ray sources is not the dust from galactic disk. Then we estimate the structure anddensity of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2.Finally we discuss the possibility of probing the three dimensional structure ofthe interstellar using the X-ray halos of the transient sources, probing the spatial dis-tributions of interstellar dust medium nearby the point sources, even the structure ofthe stellar winds using higher angular resolution X-ray dust scattering halos and testingthe model that the black hole can be formed from the direct collapse of a massive starwithout supernova using the statistical distribution of the dust density nearby the X-raybinaries.
引文
[1] Overbeck J W. Small-angle scattering of celestial x-rays by interstellar grains. The Astro-physical Journal, 1965, 141:864–866
    [2] Mauche C W and Gorensten P. Measurements of x-ray scattering from interstellar grains.The Astrophysical Journal, 1986, 302:371–38
    [3] Henke B L. Low energy x-ray diagnostics. ed. D. T. Attwood & B. L. Henke (New York:AIP), 1981, pages 146–150
    [4] Mathis J S and Lee C W. X-ray halos as diagnostics of interstellar grains. The AstrophysicalJournal, 1991, 376:490–499
    [5] Smith R K and Dwek E. Soft x-ray scattering and halos from dust. The AstrophysicalJournal, 1998, 503:831–842
    [6] Frisch F C. The interstellar medium of our galaxy. Century of Space Science, KluwerAcademic Publishers, 2001, I:647–675
    [7] Ferrière K M. The interstellar environment of our galaxy. Reviews of Modern Physics, 2001,73:1031–1066
    [8] Larson R B. Turbulence and star formation in molecular clouds. Monthly Notices of theRoyal Astronomical Society, 1981, 194:809–826
    [9] Myers P C, Goodman A A, Gusten R, et al. Observations of magnetic fields in diffuse clouds.The Astrophysical Journal, 1995, 442:177–185
    [10] Maloney P. Are molecular clouds in virial equilibrium? The Astrophysical Journal, 1990,348:L9–L12
    [11] Heyer M B C, Snell R L, Howe J E, et al. The five college radio astronomy observatory cosurvey of the outer galaxy. The Astrophysical Journal, 1998, 115:241–258
    [12] Jenkins E B and Savage B D. Ultraviolet photometry from the orbiting astronomical obser-vatory. xiv. an extension of the survey of lyman-alf absorption from interstellar hydrogen.The Astrophysical Journal, 1974, 187:243–255
    [13] Bohlin R C. Copernicus observations of interstellar absorption at lyman alpha. The Astro-physical Journal, 1975, 200:402–414
    [14] Seab C G. Interstellar peocesses. edited by F. J. Hollenbach and H. A. Thronson, Jr. (Reidel,Dordrecht), 1987, pages 491–500
    [15] Hollenbach D and Salpeter E E. Surface recombination of hydrogen molecules. The Astro-physical Journal, 1971, 163:155–164
    [16] Duley W W and Williams D A. The formation of h2 on interstellar dust. Monthly Notices ofthe Royal Astronomical Society, 1993, 260:37–42
    [17] Katz N, Furman I, and O. Biham a e a. Molecular hydrogen formation on astrophysicallyrelevant surfaces. The Astrophysical Journal, 1999, 522:305–312
    [18] Shull J M and Beckwith S. Interstellar molecular hydrogen. Annual review of astronomyand astrophysics, 1982, 20:163–190
    [19] Watson W D. Heating of interstellar h i clouds by ultraviolet photoelectron emission fromgrains. The Astrophysical Journal, 1972, 176:103–110
    [20] Bakes E L O and Tielens A G G M. The photoelectric heating mechanism for very smallgraphitic grains and polycyclic aromatic hydrocarbons. The Astrophysical Journal, 1994,427:822–838
    [21] Burke J R and Hollenbach D J. The gas-grain interaction in the interstellar medium -thermalaccommodation and trapping. The Astrophysical Journal, 1983, 265:223–234
    [22] Woolf N J and Ney E P. Circumstellar infrared emission from cool stars. The AstrophysicalJournal, 1969, 155:L181–L184
    [23] Salpeter E E. Planetary nebulae, supernova remnants, and the interstellar medium /the henrynorris russell lecture. The Astrophysical Journal, 1976, 206:673–678
    [24] Dwek E and Scalo J M. The evolution of refractory interstellar grains in the solar neighbor-hood. The Astrophysical Journal, 1980, 239:193–211
    [25] G.Seab C and Shull J M. Shock processing of interstellar grains. The Astrophysical Journal,1983, 275:652–660
    [26] Jones A P, Tielens A G G M, Hollenbach D J, et al. Grain destruction in shocks in theinterstellar medium. The Astrophysical Journal, 1994, 433:797–810
    [27] Mathis J S, Rumpl W, and Nordsieck K H. The size distribution of interstellar grains. TheAstrophysical Journal, 1977, 217:425–433
    [28] Weingartner J C and Draine B T. Dust grain-size distributions and extinction in the milkyway, large magellanic cloud, and small magellanic cloud. The Astrophysical Journal, 2001,548:296–309
    [29] Meyer D M and Savage B D. Ultraviolet interstellar extinction toward 1367 stars observedby ans. The Astrophysical Journal, 1981, 248:545–562
    [30] Witt A N, Bohlin R C, and Stecher T P. The variation of galactic interstellar extinction in theultraviolet. The Astrophysical Journal, 1984, 279:698–704
    [31] Knacke R F and Thomson R K. Infrared extinction cross sections of silicate grains. Publica-tions of the Astronomical Society of the Pacific, 1973, 85:341–347
    [32] Draine B T and Lee H M. Optical properties of interstellar graphite and silicate grains. TheAstrophysical Journal, 1984, 285:89–108
    [33] Duley W W and Williams D A. The infrared spectrum of interstellar dust -surface functionalgroups on carbon. Monthly Notices of the Royal Astronomical Society, 1981, 196:269–274
    [34] Leger A and Puget J L. Identification of the 'unidentified' ir emission features of interstellardust? Astronomy and Astrophysics, 1984, 137:L5–L8
    [35] Li A and Draine B T. Infrared emission from interstellar dust. ii. the diffuse interstellarmedium. The Astrophysical Journal, 2001, 554:778–802
    [36] Boulanger F and Perault M. Diffuse infrared emission from the galaxy. i -solar neighbor-hood. The Astrophysical Journal, 1988, 330:964–985
    [37] Boulanger F, Abergel A, Bernard J P, et al. The dust/gas correlation at high galactic latitude.Astronomy and Astrophysics, 1996, 312:256–262
    [38] Schlegel D J, Finkbeiner D P, and Davis M. Maps of dust infrared emission for use inestimation of reddening and cosmic microwave background radiation foregrounds. The As-trophysical Journal, 1998, 500:525–553
    [39] Wright E L, Mather J C, Bennett C L, et al. Preliminary spectral observations of the galaxywith a 7 deg beam by the cosmic background explorer (cobe). The Astrophysical Journal,1991, 381:200–209
    [40] Draine B T and Anderson N. Temperature ?uctuations and infrared emission from interstellargrains. The Astrophysical Journal, 1985, 292:494–499
    [41] Dwek E, Arendt R G, Fixsen D J, et al. Detection and characterization of cold interstellar dustand polycyclic aromatic hydrocarbon emission, from cobe observations. The AstrophysicalJournal, 1997, 475:565–579
    [42] Desert F X, Boulanger F, and Puget J L. Interstellar dust models for extinction and emission.Astronomy and Astrophysics, 1990, 237:215–236
    [43] Lagache G, Abergel A, Boulanger F, et al. The interstellar cold dust observed by cobe.Astronomy and Astrophysics, 1998, 333:709–720
    [44] Lagache G, Abergel A, Boulanger F, et al. First detection of the warm ionised medium dustemission. implication for the cosmic far-infrared background. Astronomy and Astrophysics,1999, 344:322–332
    [45] Lagache G, Haffner L M, Reynolds R J, et al. Evidence for dust emission in the warm ionisedmedium sing wham data. Astronomy and Astrophysics, 2000, 354:247–252
    [46] Ristorcelli I, Serra G, Lamarre J M, et al. Discovery of a cold extended condensation in theorion a complex. The Astrophysical Journal, 1998, 496:267–273
    [47] Bernard J P, Abergel A, Ristorcelli I, et al. Pronaos observations of mcld 123.5 + 24.9: colddust in the polaris cirrus cloud. Astronomy and Astrophysics, 1999, 347:640–649
    [48] Martin P G. On the interaction of cosmic x-rays with interstellar grains. Monthly Notices ofthe Royal Astronomical Society, 1970, 149:221–235
    [49] Giacconi R, Branduardi G, Briel U, et al. The einstein /heao 2/ x-ray observatory. TheAstrophysical Journal, 1979, 230:540–550
    [50] Rolf D P. Evidence for the detection of x-ray scattering from interstellar dust grains. Nature,1983, 302:46–48
    [51] Catura R C. Evidence for x-ray scattering by interstellar dust. The Astrophysical Journal,1983, 275:645–651
    [52] Trumper J. Coupled hydromagnetic wave excitation and cosmic ray acceleration at interstel-lar shocks. Adv. Space Res., 1983, 2:241–249
    [53] Predehl P, Schmitt J H M M, Snoewden S L, et al. A lunar occultation of the dust-scatteringhalo around gx 5-1 observed with rosat. Science, 1992, 257:935–937
    [54] Predehl P, Brauninger H, Burkert W, et al. Rosat observations of the x-ray halo around gx339-4. Astronomy and Astrophysics, 1991, 246:L40–L43
    [55] Draine B T and Tan J C. The scattered x-ray halo around nova cygni 1992: Testing a modelfor interstellar dust. The Astrophysical Journal, 2003, 594:347–362
    [56] Predehl P, Burwitz V, Paerels F, et al. Chandra measurement of the geometrical distance tocyg x-3 using its x-ray scattering halo. Astronomy and Astrophysics, 2000, 357:L25–L28
    [57] Tan J C and Draine B T. X-ray scattering halos from the galactic center: Implications fordiffuse emission around sagittarius a*. The Astrophysical Journal, 2004, 606:296–305
    [58] Baganoff F K, Maeda Y, Morris M, et al. Chandra x-ray spectroscopic imaging of sagittariusa* and the central parsec of the galaxy. The Astrophysical Journal, 2003, 591:891–915
    [59] Smith R K, Edgar R J, and Shafer R A. The x-ray halo of gx 13+1. The AstrophysicalJournal, 2002, 581:562–569
    [60] Landgraf M, Baggaley W J, Grun E, et al. Aspects of the mass distribution of interstellar dustgrains in the solar system from in situ measurements. J. Geophys. Res., 2000, 105:10343–10352
    [61] Witt A, Smith R K, and Dwek E. X-ray halos and large grains in the diffuse interstellarmedium. The Astrophysical Journal, 2001, 550:L201–L205
    [62] Yao Y S, Zhang S N, Zhang X L, et al. A new method to resolve x-ray halos around pointsources with chandra data and its application to cygnus x-1. The Astrophysical Journal, 2003,594:L43–L46
    [63] Xiang J G, Zhang S N, and Yao Y S. Study the x-ray dust scattering halos with chandra obser-vations of cygnus x-3 and cygnus x-1. Chin. J. Astron. Astrophys. accepted for publication(astro-ph/0412508), 2004, pages 1–7
    [64] Xiang J G, Zhang S N, and Yao Y S. Probing the spatial distribution of the interstellar dustmedium by high angular resolution x-ray dust scattering halos of point sources. accepted byThe Astrophysical Journal (astro-ph/0503256), 2005, pages 1–24
    [65] Hwang U, Holt S S, and Petre R. Mapping the x-ray-emitting ejecta in cassiopeia a withchandra. The Astrophysical Journal, 2000, 537:L119–L122
    [66] Weisskopf M C, Hester J J, Tennant A F, et al. Discovery of spatial and spectral structure inthe x-ray emission from the crab nebula. The Astrophysical Journal, 2000, 536:L81–L84
    [67] Marshall H L, Canizares C R, and Schulz N S. The high-resolution x-ray spectrum of ss 433using the chandra hetgs. The Astrophysical Journal, 2002, 564:941–952
    [68] Weisskopf M C, Aldcroft T L, Bautz M, et al. An overview of the performance of the chandrax-ray observatory. accepted for Experimental Astronomy(astro-ph/0503319), 2005, pages 1–72
    [69] Juett A M, Schulz N S, and Deepto C. High-resolution x-ray spectroscopy of the interstel-lar medium: Structure at the oxygen absorption edge. The Astrophysical Journal, 2004,612:308–318
    [70] Dickey J M. A new distance to cygnus x-3. The Astrophysical Journal, 1983, 273:L71–L73
    [71] Predehl P and Schimitt J H M M. X-raying the interstellar medium: Rosat observations ofdust scattering halos. Astronomy and Astrophysics, 1994, 293:889–905
    [72] Bowyer S, Byram E T, Chubb T A, et al. Cosmic x-ray sources. Science, 1965, 147:394–398
    [73] Gies D R and Bolton C T. The optical spectrum of hde 226868 = cygnus x-1. i -radialvelocities and orbital elements. The Astrophysical Journal, 1982, 260:240–248
    [74] Gies D R and Bolton C T. The optical spectrum of hde 226868 = cygnus x-1. ii -spectrophotometry and mass estimates. The Astrophysical Journal, 1986, 304:371–393
    [75] Ninkov Z, Walker G A H, and Yang S. The primary orbit and the absorption lines of hde226868 (cygnus x-1). The Astrophysical Journal, 1987, 321:425–437
    [76] Schulz N S and Brandt W N. Variability of the x-ray p cygni line profiles from circinus x-1near zero phase. The Astrophysical Journal, 2002, 572:971–983
    [77] Schulz N S, Cui W, Canizares C R, et al. The first high-resolution x-ray spectrum of cygnusx-1: Soft x-ray ionization and absorption. The Astrophysical Journal, 2002, 565:1141–1149
    [78] Morrison R and McCammon D. Interstellar photoelectric absorption cross sections, 0.03-10kev. The Astrophysical Journal, 1983, 270:119–122
    [79] Predehel P and Schmitt J H M M. X-raying the interstellar medium: Rosat observations ofdust scattering halos. Astronomy and Astrophysics, 1995, 293:889–905
    [80] Chapuis C and Corbel S. On the optical extinction and distance of grs 1915+105. Astronomyand Astrophysics, 2004, 414:659–665
    [81] Watanabe S, Sako M, Ishida M, et al. Detection of a fully resolved compton shoulder of theiron kαline in the chandra x-ray spectrum of gx 301-2. The Astrophysical Journal, 2003,597:L37–L40
    [82] Kretschmar P, Pan H C, Kendziorra E, et al. Phase resolved x-ray spectra of vela x-1. As-tronomy and Astrophysics, 1997, 325:623–630
    [83] Gilfanov M, Revnivtsev M, and Molkov S. Boundary layer, accretion disk and x-ray vari-ability in the luminous lmxbs. Astronomy and Astrophysics, 2003, 410:217–230
    [84] Hutchings J B, Crampton D, Cowley A P, et al. Optical and uv spectroscopy of the blackhole binary candidate lmc x-1. Astronomical Journal, 1987, 94:340–344
    [85] Cui W, Yu F X, Zhang S N, et al. A chandra spectroscopic survey of persistent black holecandidates. The Astrophysical Journal, 2002, 576:357–365
    [86] Webster B L and Murdin P. Cygnus x-1–a spectroscopic binary with a heavy companion?Nature, 1972, 235:37–39
    [87] Bolton C T. Identifications of cyg x-1 with hde 226868. Nature, 1972, 235:271–273
    [88] D. R. E P, Schreier J, and et al. On the stability of the period of cygnus x-3. The AstrophysicalJournal, 1976, 209:L73–L75
    [89] Leach R W, Murray S S, Schreier E J, et al. observations of cygnus x-3 with the uhurusatellite. The Astrophysical Journal, 1975, 199:184–188
    [90] K. O. P W M, Sanford E E, Becklin J, et al. Further joint x-ray, infrared, and radio observa-tions of cygnus x-3. The Astrophysical Journal, 1976, 207:78–87
    [91] Lamb R C, Dower R G, and Fickle R K. The period derivative of cygnus x-3. The Astro-physical Journal, 1979, 229:L19–L22
    [92] Elsner R F, Ghosh P, Darbro W, et al. Observations of cygnus x-3 with the einstein heao 2x-ray observatory : The period derivative and the asymmetric x-ray light curve. The Astro-physical Journal, 1980, 239:335–344
    [93] van der Klis M and Bonnet-Bidaud J M. A change in light curve asymmetry and theephemeris of cygnus x-3. Astronomy and Astrophysics, 1981, 95:L5–L7
    [94] van der Klis M and Bonnet-Bidaud J M. The x-ray ephemeris of cygnus x-3. Astronomy andAstrophysics, 1989, 214:203–208
    [95] Kitamoto S, Miyamoto S, Matsui W, et al. 4.8-hour modulation of x-rays from cygnus x-3.Publications of the Astronomical Society of Japan, 1987, 39:259–285
    [96] Kitamoto S, Mizobuchi S, Yamashita K, et al. Time variations in the x-rays from cygnus x-3observed with ginga. The Astrophysical Journal, 1992, 384:263–268
    [97] Kitamoto S, Hirano A, Kawashima K, et al. Orbital period changes of cygnus x-3. Publica-tions of the Astronomical Society of Japan, 1995, 47:233–238
    [98] Haberl F and White N. The x-ray absorption spectrum of vela x-1. The Astrophysical Journal,1990, 361:225–234
    [99] Kuulkers E and Klis M V D. The first radius-expansion x-ray burst from gx 3+1. Astronomyand Astrophysics, 2000, 356:L45–L48
    [100] Cash W, Shipley A, Osterman S, et al. Laboratory detection of x-ray fringes with a grazing-incidence interferometer. Nature, 2000, 407:160–162
    [101] Barziv O, Kaper L, Kerkwijk M H V, et al. The mass of the neutron star in vela x-1. Astron-omy and Astrophysics, 2001, 377:925–944
    [102] Nagase F. Accretion-powered x-ray pulsars. Publications of the Astronomical Society ofJapan, 1989, 41:1–79
    [103] van Kerkwijk M H, van Paradijs J, Zuiderwijk J, et al. Spectroscopy of hd77581 and themass of vela x-1. Astronomy and Astrophysics, 1995, 303:483–496
    [104] Huthoff F and Kaper L. On the absence of wind bow-shocks around ob-runaway stars:Probing the physical conditions of the interstellar medium. Astronomy and Astrophysics,2002, 383:999–1010
    [105] Sadakane K, Hirata R, Jugaku J, et al. Ultraviolet spectroscopic observations of hd77581(vela x-1 = 4u 0900-40). The Astrophysical Journal, 1985, 288:284–291
    [106] van Loon J T, Kaper L, and Hammerschlag-Hensberge G. Modelling the orbital modulationof ultraviolet resonance lines in high-mass x-ray binaries. Astronomy and Astrophysics,2001, 375:498–526
    [107] Raubenheimer B C, North A R, de Jager O C, et al. Tev gamma-ray properties of vela x-1.The Astrophysical Journal, 1994, 428:777–784
    [108] Kaper L, Hammerschlag-Hensberge G, and Zuiderwijk E J. Spectroscopic evidence forphoto-ionization wakes in vela x-1 and 4u 1700–37. Astronomy and Astrophysics, 1994,289:846–854
    [109] Fender R P and Hendry M A. The radio luminosity of persistent x-ray binaries. MonthlyNotices of the Royal Astronomical Society, 2000, 317:1–8
    [110] Goldstein G, Huenemoerder D P, and Blank D. Variation in emission and absorption linesand continuum ?ux by orbital phase in vela x-1. Astronomical Journal, 2004, 127:2310–2321
    [111] Paul B, Dewangan G C, Sako M, et al. Pulse phase resolved spectroscopy of the fe kαline ofvela x-1 with chandra hetg. The Proceedings of the IAU 8th Asian-Pacific Regional Meeting,held at National Center of Sciences, Hitotsubashi Memorial Hall, Tokyo, July 2 -5, 2002,Edited by S. Ikeuchi, J. Hearnshaw, and T. Hanawa, the Astronomical Society of Japan, 2002,II:355–356
    [112] Sato N, Hayakawa S, Nagase F, et al. X-ray probing of the circumstellar matter in the vela x-1 system from observations over an eclipse phase. Publications of the Astronomical Societyof Japan, 1986, 38:731–750
    [113] Sako M, Liedahl D A, Kahn S M, et al. The x-ray spectrum and global structure of the stellarwind in vela x-1. The Astrophysical Journal, 1999, 525:921–934
    [114] Dupree A K, Gursky H, Black J H, et al. Simultaneous ultraviolet, optical, and x-ray observa-tions of the x-ray source vela x-1 /hd 77581/. The Astrophysical Journal, 1980, 238:969–981
    [115] Parkes G E, Culhane J L, Mason K O, et al. A spectral study of wray 977, the optical coun-terpart of the binary x-ray pulsar 4u 1223-62. Monthly Notices of the Royal AstronomicalSociety, 1980, 191:547–558
    [116] Kaper L, Lamers H J G L M, Ruymaekers E, et al. Wray 977 (gx 301-2): a hypergiant withpulsar companion. Astronomy and Astrophysics, 1995, 300:446–452
    [117] Koh D T, Bildsten L, Chakrabarty D, et al. Rapid spin-up episodes in the wind-fed accretingpulsar gx 301-2. The Astrophysical Journal, 1997, 479:933–947
    [118] Kreykenbohm I, Pottschmidt K, Kretschmar P, et al. Gx 301-2 as seen by integral. astro-ph/0406683, 2004, pages 1–6
    [119] White N E and Swank J H. The 41.5 day binary x-ray pulsar 4u 1223 -62 (gx 301 -2). TheAstrophysical Journal, 1984, 287:856–867
    [120] Layton J T, Blondin J M, Owen M P, et al. Tidal mass transfer in elliptical-orbit binary stars.New Astronomy, 1998, 3:111–119
    [121] Haberl F. The x-ray properties of gx 301 -2 (4u 1223 -62). The Astrophysical Journal,1991, 376:245–255
    [122] Leahy D A. Evidence for a gas stream in gx301 -2. Monthly Notices of the Royal Astro-nomical Society, 1991, 250:310–313
    [123] Stevens I R. An enhanced stellar wind accretion model for binary x-ray transients. MonthlyNotices of the Royal Astronomical Society, 1988, 232:199–213
    [124] Chichkov M A, Syunyaev R A, Lapshov I Y, et al. Watch/granat observations of the x-raypulsar gx 301-2. Astronomy Letters, 1995, 21:435–441
    [125] Kosugi G, Ogasawara R, and Terada H. A variable infrared counterpart to the soft gamma-rayrepeater sgr 1806-20. The Astrophysical Journal, 2005, 623:L125–L128
    [126] Wang X Y, Wu X F, Fan Y Z, et al. An energetic blast wave from the 2004 december 27giant ?are of the soft gamma-ray repeater sgr 1806-20. The Astrophysical Journal, 2005,623:L29–L32
    [127] S.Molkov, Hurley K, Sunyaev R, et al. The broad-band spectrum of the persistent emissionfrom sgr 1806-20. Astronomy and Astrophysics, 2005, 433:L13–L16
    [128] Mereghetti S, Gotz D, Mirabel I F, et al. Integral discovery of persistent hard x-ray emissionfrom the soft gamma-ray repeater sgr 1806-20. Astronomy and Astrophysics, 2005, 433:L9–L12
    [129] West R M, Lauberts A, Schuster H E, et al. Astrometry of sn 1987a and sanduleak-69 202.Astronomy and Astrophysics, 1987, 177:L1–L2
    [130] Walborn N R, Lasker B M, Laidler V G, et al. The composite image of sanduleak -69 deg 202,candidate precursor to supernova 1987 a in the large magellanic cloud. The AstrophysicalJournal, 1987, 321:L41–L44
    [131] Walborn N R, Prevot M L, Prevot L, et al. The spectrograms of sanduleak -69.202 deg,precursor to supernova 1987a in the large magellanic cloud. Astronomy and Astrophysics,1989, 219:229–236
    [132] Ryder S, Staveley-Smith L, Dopita M, et al. Sn 1978k: an extraordinary supernova in thenearby galaxy ngc 1313. The Astrophysical Journal, 1993, 416:167–181
    [133] Aldering G, Humphreys R M, and Richmond M. Sn 1993j: The optical properties of itsprogenitor. Astronomical Journal, 1994, 107:662–672
    [134] Cohen J G, Darling J, and Porter A. The nonvariability of the progenitor of supernova 1993jin m81. Astronomical Journal, 1995, 110:308–311
    [135] van Dyk S D, Hamuy M, and Filippenko A V. Supernovae and massive star formation regions.Astronomical Journal, 1996, 111:2017–2028
    [136] Cowan J. Supernova birth for a black hole. Nature, 1999, 401:124–125
    [137] sraelian G, Rebolo R, Basri G, et al. Evidence of a supernova origin for the black hole in thesystem gro j1655 -40. Nature, 1999, 401:142–144
    [138] Maeder A. Stellar yields as a function of initial metallicity and mass limit for black holeformation. Astronomy and Astrophysics, 1992, 264:105–120
    [139] Fryer C L and Kalogera V. Theoretical black hole mass distributions. The AstrophysicalJournal, 2001, 554:548–560
    [140] Mirabel I F and Rodrigues I. Formation of a black hole in the dark. Science, 2003, 300:1119–1121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700